Scientific Papers

Maximising the value of transmitted data from PSATs tracking marine fish: a case study on Atlantic bluefin tuna | Animal Biotelemetry


  • Hussey NE, Kessel ST, Aarestrup K, Cooke SJ, Cowley PD, Fisk AT, et al. Aquatic animal telemetry: a panoramic window into the underwater world. Science. 1979;2015(348):1255642. https://doi.org/10.1126/science.1255642.

    Article 
    CAS 

    Google Scholar
     

  • Block BA, Jonsen ID, Jorgensen SJ, Winship AJ, Shaffer SA, Bograd SJ, et al. Tracking apex marine predator movements in a dynamic ocean. Nature. 2011;475:86–90. https://doi.org/10.1038/nature10082.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Righton D, Westerberg H, Feunteun E, Økland F, Gargan P, Amilhat E, et al. Empirical observations of the spawning migration of European eels: the long and dangerous road to the Sargasso Sea. Sci Adv. 2016;2:e1501694. https://doi.org/10.1126/sciadv.1501694.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walli A, Teo SL, Boustany A, Farwell CJ, Williams T, Dewar H, et al. Seasonal movements, aggregations and diving behavior of Atlantic bluefin tuna (Thunnus thynnus) revealed with archival tags. PLoS ONE. 2009;4: e6151. https://doi.org/10.1371/journal.pone.0006151.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rikardsen AH, Righton D, Strøm JF, Thorstad EB, Gargan P, Sheehan T, et al. Redefining the oceanic distribution of Atlantic salmon. Sci Rep. 2021;11:1–12. https://doi.org/10.1038/s41598-021-91137-y.

    Article 
    CAS 

    Google Scholar
     

  • Doherty PD, Baxter JM, Godley BJ, Graham RT, Hall G, Hall J, et al. Testing the boundaries: seasonal residency and inter-annual site fidelity of basking sharks in a proposed Marine Protected Area. Biol Conserv. 2017;209:68–75. https://doi.org/10.1016/j.biocon.2017.01.018.

    Article 

    Google Scholar
     

  • Studds CE, Kendall BE, Murray NJ, Wilson HB, Rogers DI, Clemens RS, et al. Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nat Commun. 2017;8:1–7. https://doi.org/10.1038/ncomms14895.

    Article 
    CAS 

    Google Scholar
     

  • le Corre M, Jaeger A, Pinet P, Kappes MA, Weimerskirch H, Catry T, et al. Tracking seabirds to identify potential Marine Protected Areas in the tropical western Indian Ocean. Biol Conserv. 2012;156:83–93. https://doi.org/10.1016/j.biocon.2011.11.015.

    Article 

    Google Scholar
     

  • Musyl MK, Gilman EL. Meta-analysis of post-release fishing mortality in apex predatory pelagic sharks and white marlin. Fish Fish. 2019;20:466–500. https://doi.org/10.1111/faf.12358.

    Article 

    Google Scholar
     

  • Sepulveda CA, Heberer C, Aalbers SA, Spear N, Kinney M, Bernal D, et al. Post-release survivorship studies on common thresher sharks (Alopias vulpinus) captured in the southern California recreational fishery. Fish Res. 2015;161:102–8. https://doi.org/10.1016/j.fishres.2014.06.014.

    Article 

    Google Scholar
     

  • Stokesbury MJW, Neilson JD, Susko E, Cooke SJ. Estimating mortality of Atlantic bluefin tuna (Thunnus thynnus) in an experimental recreational catch-and-release fishery. Biol Conserv. 2011;144:2684–91. https://doi.org/10.1016/j.biocon.2011.07.029.

    Article 

    Google Scholar
     

  • Block BA, Teo SLH, Walli A, Boustany A, Stokesbury MJW, Farwell CJ, et al. Electronic tagging and population structure of Atlantic bluefin tuna. Nature. 2005;434:1121–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • de Pontual H, Lalire M, Fablet R, Laspougeas C, Garren F, Martin S, et al. New insights into behavioural ecology of European seabass off the West Coast of France: implications at local and population scales. ICES J Mar Sci. 2019;76:501–15. https://doi.org/10.1093/icesjms/fsy086.

    Article 

    Google Scholar
     

  • Lindley ST, Erickson DL, Moser ML, Williams G, Langness OP, McCovey BW, et al. Electronic tagging of green sturgeon reveals population structure and movement among estuaries. Trans Am Fish Soc. 2011;140:108–22. https://doi.org/10.1080/00028487.2011.557017.

    Article 

    Google Scholar
     

  • Lombardo SM, Adams AJ, Danylchuk AJ, Luck CA, Ajemian MJ. Novel deep-water spawning patterns of bonefish (Albula vulpes), a shallow water fish. Mar Biol. 2020;167:1–11. https://doi.org/10.1007/s00227-020-03799-3.

    Article 

    Google Scholar
     

  • Tsuda Y, Kawabe R, Tanaka H, Mitsunaga Y, Hiraishi T, Yamamoto K, et al. Monitoring the spawning behaviour of chum salmon with an acceleration data logger. Ecol Freshw Fish. 2006;15:264–74. https://doi.org/10.1111/j.1600-0633.2006.00147.x.

    Article 

    Google Scholar
     

  • Aranda G, Abascal FJ, Varela JL, Medina A. Spawning behaviour and post-spawning migration patterns of Atlantic Bluefin Tuna (Thunnus thynnus) ascertained from satellite archival tags. PLoS ONE. 2013;8:e76445. https://doi.org/10.1371/journal.pone.0076445.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Block BA, Whitlock R, Schallert RJ, Wilson S, Stokesbury MJW, Castleton M, et al. Estimating natural mortality of atlantic bluefin tuna using acoustic telemetry. Sci Rep. 2019;9:1–14. https://doi.org/10.1038/s41598-019-40065-z.

    Article 
    CAS 

    Google Scholar
     

  • Williams-Grove LJ, Szedlmayer ST. Mortality estimates for red snapper based on ultrasonic telemetry in the Northern Gulf of Mexico. N Am J Fish Manag. 2016;36:1036–44. https://doi.org/10.1080/02755947.2016.1184197.

    Article 

    Google Scholar
     

  • Strøm JF, Rikardsen AH, Campana SE, Righton D, Carr J, Aarestrup K, et al. Ocean predation and mortality of adult Atlantic salmon. Sci Rep. 2019;9:1–11. https://doi.org/10.1038/s41598-019-44041-5.

    Article 
    CAS 

    Google Scholar
     

  • Seitz AC, Courtney MB, Evans MD, Manishin K. Pop-up satellite archival tags reveal evidence of intense predation on large immature chinook salmon (Oncorhynchus tshawytscha) in the north Pacific Ocean. Can J Fish Aquat Sci. 2019;76:1608–15. https://doi.org/10.1139/cjfas-2018-0490.

    Article 

    Google Scholar
     

  • Weinz AA, Matley JK, Klinard NV, Fisk AT, Colborne SF. Identification of predation events in wild fish using novel acoustic transmitters. Anim Biotelemetry. 2020;8:1–14. https://doi.org/10.1186/s40317-020-00215-x.

    Article 

    Google Scholar
     

  • Patterson TA, Hartmann K. Designing satellite tagging studies: estimating and optimizing data recovery. Fish Oceanogr. 2011;20:449–61. https://doi.org/10.1111/j.1365-2419.2011.00595.x.

    Article 

    Google Scholar
     

  • Witt MJ, Åkesson S, Broderick AC, Coyne MS, Ellick J, Formia A, et al. Assessing accuracy and utility of satellite-tracking data using Argos-linked Fastloc-GPS. Anim Behav. 2010;80:571–81. https://doi.org/10.1016/j.anbehav.2010.05.022.

    Article 

    Google Scholar
     

  • Hazel J. Evaluation of fast-acquisition GPS in stationary tests and fine-scale tracking of green turtles. J Exp Mar Biol Ecol. 2009;374:58–68. https://doi.org/10.1016/J.JEMBE.2009.04.009.

    Article 

    Google Scholar
     

  • Afonso P, Fontes J, Guedes R, Tempera F, Holland KN, Santos RS, et al. Tagging and tracking of marine animals with electronic devices. Netherlands: Springer; 2009. https://doi.org/10.1007/978-1-4020-9640-2.

    Book 

    Google Scholar
     

  • Lutcavage ME, Brill RW, Skomal GB, Chase BC, Goldstein JL, Tutein J. Tracking adult North Atlantic bluefin tuna (Thunnus thynnus) in the northwestern Atlantic using ultrasonic telemetry. Mar Biol. 2000;137:347–58. https://doi.org/10.1007/s002270000302.

    Article 

    Google Scholar
     

  • Priede IG, French J. Tracking of marine animals by satellite. Int J Remote Sens. 1991;12:667–80. https://doi.org/10.1080/01431169108929684.

    Article 

    Google Scholar
     

  • Wilson R, Ducamp J, Rees G, Culik B, Neikamp K. Estimation of location: global coverage using light intensity. Wildlife Telemetry: Remote Monitoring and Tracking of Animals. 1992.

  • Wildlife Computers. MiniPAT User Guide 2021:1–42.

  • Block BA, Dewar H, Farwell C, Prince ED. A new satellite technology for tracking the movements of Atlantic bluefin tuna. Proc Natl Acad Sci USA. 1998;95:9384–9. https://doi.org/10.1073/pnas.95.16.9384.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hill RD, Braun MJ. Geolocation by light level 2001:315–30. https://doi.org/10.1007/978-94-017-1402-0_17.

  • Lam CH, Nasby-Lucas N, Ortega-Garcia S, Offield P, Domeier ML. Depth-based geolocation processing of multi-year striped marlin archival tag data reveals residency in the Eastern Pacific Ocean. Anim Biotelemetry. 2022;10:1–14. https://doi.org/10.1186/s40317-022-00294-y.

    Article 

    Google Scholar
     

  • Nielsen A, Sibert JR. State–space model for light-based tracking of marine animals. Can J Fish Aquat Sci. 2007;64:1055–68. https://doi.org/10.1139/f07-064.

    Article 

    Google Scholar
     

  • Ekstrom P. Error measures for template-fit geolocation based on light. Deep Sea Res 2 Top Stud Oceanogr. 2007;54:392–403. https://doi.org/10.1016/j.dsr2.2006.12.002.

    Article 

    Google Scholar
     

  • Lisovski S, Bauer S, Briedis M, Davidson SC, Dhanjal-Adams KL, Hallworth MT, et al. Light-level geolocator analyses: a user’s guide. J Anim Ecol. 2020;89:221–36. https://doi.org/10.1111/1365-2656.13036.

    Article 
    PubMed 

    Google Scholar
     

  • Nielsen A, Bigelow KA, Musyl MK, Sibert JR. Improving light-based geolocation by including sea surface temperature. Fish Oceanogr. 2006;15:314–25. https://doi.org/10.1111/j.1365-2419.2005.00401.x.

    Article 

    Google Scholar
     

  • Lam CH, Nielsen A, Sibert JR. Incorporating sea-surface temperature to the light-based geolocation model TrackIt. Mar Ecol Prog Ser. 2010;419:71–84. https://doi.org/10.3354/meps08862.

    Article 

    Google Scholar
     

  • Teo SLH, Boustany A, Blackwell S, Walli A, Weng KC, Block BA. Validation of geolocation estimates based on light level and sea surface temperature from electronic tags. Mar Ecol Prog Ser. 2004;283:81–98. https://doi.org/10.3354/meps283081.

    Article 

    Google Scholar
     

  • Braun CD, Galuardi B, Thorrold SR. HMMoce: an R package for improved geolocation of archival-tagged fishes using a hidden Markov method. Methods Ecol Evol. 2018;9:1212. https://doi.org/10.1111/2041-210X.12959.

    Article 

    Google Scholar
     

  • Kay WP, Naumann DS, Bowen HJ, Withers SJ, Evans BJ, Wilson RP, et al. Minimizing the impact of biologging devices: using computational fluid dynamics for optimizing tag design and positioning. Methods Ecol Evol. 2019;10:1222–33. https://doi.org/10.1111/2041-210X.13216.

    Article 

    Google Scholar
     

  • Holton MD, Wilson RP, Teilmann J, Siebert U. Animal tag technology keeps coming of age: an engineering perspective. Philos Trans R Soc B Biol Sci. 2021;376:20200229. https://doi.org/10.1098/rstb.2020.0229.

    Article 

    Google Scholar
     

  • Musyl MK, Domeier ML, Nasby-Lucas N, Brill RW, McNaughton LM, Swimmer JY, et al. Performance of pop-up satellite archival tags. Mar Ecol Prog Ser. 2011;433:1–28. https://doi.org/10.3354/meps09202.

    Article 

    Google Scholar
     

  • Lutcavage ME, Lam CH, Galuardi B. Seventeen years and $3 million dollars later: performance of PSAT tags deployed on Atlantic bluefin and bigeye tuna. Collect Vol Sci Papers ICCAT. 2015;71:1757–65.


    Google Scholar
     

  • Hays GC, Bradshaw CJA, James MC, Lovell P, Sims DW. Why do Argos satellite tags deployed on marine animals stop transmitting? J Exp Mar Biol Ecol. 2007;349:52–60. https://doi.org/10.1016/j.jembe.2007.04.016.

    Article 

    Google Scholar
     

  • Jonsen ID, Flemming JM, Myers RA. Robust state-space modeling of animal movement data. Ecology. 2005;86:2874–80. https://doi.org/10.1890/04-1852.

    Article 

    Google Scholar
     

  • Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J. State-space models of individual animal movement. Trends Ecol Evol. 2008;23:87–94. https://doi.org/10.1016/j.tree.2007.10.009.

    Article 
    PubMed 

    Google Scholar
     

  • Wildlife Computers. Location Processing (GPE3 & Fastloc GPS) in the Wildlife Computers Data Portal User Guide 2015:25.

  • Wright SR, Righton D, Naulaerts J, Schallert RJ, Bendall V, Griffiths C, et al. Fidelity of yellowfin tuna to seamount and island foraging grounds in the central South Atlantic Ocean. Deep Sea Res 1 Oceanogr Res Pap. 2021;172:103513. https://doi.org/10.1016/j.dsr.2021.103513.

    Article 

    Google Scholar
     

  • Winship AJ, Jorgensen SJ, Shaffer SA, Jonsen ID, Robinson PW, Costa DP, et al. State-space framework for estimating measurement error from double-tagging telemetry experiments. Methods Ecol Evol. 2012;3:291–302. https://doi.org/10.1111/j.2041-210X.2011.00161.x.

    Article 

    Google Scholar
     

  • Braun CD, Skomal GB, Thorrold SR, Berumen ML. Movements of the reef manta ray (Manta alfredi) in the Red Sea using satellite and acoustic telemetry. Mar Biol. 2015;162:2351–62. https://doi.org/10.1007/s00227-015-2760-3.

    Article 

    Google Scholar
     

  • Gatti P, Fisher JAD, Cyr F, Galbraith PS, Robert D, Le Bris A. A review and tests of validation and sensitivity of geolocation models for marine fish tracking. Fish Fisheries. 2021;22:1041. https://doi.org/10.1111/faf.12568.

    Article 

    Google Scholar
     

  • Bauer RK, Fromentin JM, Demarcq H, Bonhommeau S. Habitat use, vertical and horizontal behaviour of Atlantic bluefin tuna (Thunnus thynnus) in the Northwestern Mediterranean Sea in relation to oceanographic conditions. Deep Sea Res 2 Top Stud Oceanogr. 2017;141:248–61. https://doi.org/10.1016/j.dsr2.2017.04.006.

    Article 

    Google Scholar
     

  • Wilson SG, Block BA. Habitat use in Atlantic bluefin tuna Thunnus thynnus inferred from diving behavior. Endanger Species Res. 2009;10:355–67. https://doi.org/10.3354/esr00240.

    Article 

    Google Scholar
     

  • Lawson GL, Castleton MR, Block BA. Movements and diving behavior of Atlantic bluefin tuna Thunnus thynnus in relation to water column structure in the northwestern Atlantic. Mar Ecol Prog Ser. 2010;400:245–65. https://doi.org/10.3354/meps08394.

    Article 

    Google Scholar
     

  • Horton TW, Block BA, Drumm A, Hawkes LA, O’Cuaig M, Maoiléidigh ÓN, et al. Tracking Atlantic bluefin tuna from foraging grounds off the west coast of Ireland. ICES J Mar Sci. 2020;77:2066. https://doi.org/10.1093/icesjms/fsaa090.

    Article 

    Google Scholar
     

  • Wilson SG, Jonsen ID, Schallert RJ, Ganong JE, Castleton MR, Spares AD, et al. Tracking the fidelity of Atlantic bluefin tuna released in Canadian waters to the Gulf of Mexico spawning grounds. Can J Fish Aquat Sci. 2015;72:1700–17. https://doi.org/10.1139/cjfas-2015-0110.

    Article 

    Google Scholar
     

  • Wildlife Computers. Spreadsheet File Descriptions 2019:1–43.

  • Pedersen MW. Hidden Markov models for geolocation of fish. 2007.

  • Pedersen MW, Patterson TA, Thygesen UH, Madsen H. Estimating animal behavior and residency from movement data. Oikos. 2011;120:1281–90. https://doi.org/10.1111/j.1600-0706.2011.19044.x.

    Article 

    Google Scholar
     

  • Andrzejaczek S, Schallert RJ, Forsberg K, Arnoldi NS, Cabanillas-Torpoco M, Purizaca W, et al. Reverse diel vertical movements of oceanic manta rays off the northern coast of Peru and implications for conservation. Ecol Sol Evid. 2021;2:e12051. https://doi.org/10.1002/2688-8319.12051.

    Article 

    Google Scholar
     

  • Freitas C, Freitas M, Andrzejaczek S, Dale JJ, Whippen W, Block BA. First insights into the movements and vertical habitat use of blue marlin (Makaira nigricans) in the eastern North Atlantic. Anim Biotelemetry. 2022;10:12. https://doi.org/10.1186/S40317-022-00284-0.

    Article 

    Google Scholar
     

  • Tone K, Nakamura Y, Chiang WC, Yeh HM, Hsiao ST, Li CH, et al. Migration and spawning behavior of the greater amberjack Seriola dumerili in eastern Taiwan. Fish Oceanogr. 2022;31:1–18. https://doi.org/10.1111/FOG.12559.

    Article 

    Google Scholar
     

  • Morales NA, Heidemeyer M, Bauer R, Hernández S, Acuña E, van Gennip SJ, et al. Residential movements of top predators in Chile’s most isolated marine protected area: implications for the conservation of the Galapagos shark, Carcharhinus galapagensis, and the yellowtail amberjack, Seriola lalandi. Aquat Conserv. 2021;31:340–55. https://doi.org/10.1002/AQC.3472.

    Article 

    Google Scholar
     

  • Aarestrup K, Baktoft H, Birnie-Gauvin K, Sundelöf A, Cardinale M, Quilez-Badia G, et al. First tagging data on large Atlantic bluefin tuna returning to Nordic waters suggest repeated behaviour and skipped spawning. Sci Rep. 2022;12:1–11. https://doi.org/10.1038/s41598-022-15819-x.

    Article 
    CAS 

    Google Scholar
     

  • Ekstrom PA. An advance in geolocation by light. Memoirs of National Institute of Polar Research 2004:210–26.

  • Amante C, Eakins BW. ETOPO1 Global Relief Model converted to PanMap layer format. NOAA-National Geophysical Data Center 2009. https://doi.org/10.1594/PANGAEA.769615.

  • R Core Team. R: A language and environment for statistical computing 2018.

  • QGIS.org. QGIS Geographic Information System 2021.

  • Biometrika S. The probable error of a mean. Biometrika. 1908;6:1–25. https://doi.org/10.1093/biomet/6.1.1.

    Article 

    Google Scholar
     

  • Chambers JM, Hastie TJ. Statistical models in S. Wadsworth & Brooks/Cole Advanced Books & Software; 2017. https://doi.org/10.1201/9780203738535.

  • Bates D, Maechler M, Bolker B. lme4: linear mixed-effects models using S4 classes. R Package Version 11-7 2013. citeulike-article-id:1080437.

  • Hartig F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models 2022.

  • Rodgers JL, Nicewander WA. Thirteen ways to look at the correlation coefficient. American Statistician 1988:59–66.

  • Mather FJ, Mason JM, Jones AC. Historical document: life history and fisheries of Atlantic bluefin tuna. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Center; 1995.

  • Fromentin J-M, Bonhommeau S, Arrizabalaga H, Kell LT. The spectre of uncertainty in management of exploited fish stocks: the illustrative case of Atlantic bluefin tuna. Mar Policy. 2014;47:8–14. https://doi.org/10.1016/j.marpol.2014.01.018.

    Article 

    Google Scholar
     

  • Taylor NG, Mcallister MK, Lawson GL, Carruthers T, Block BA. Atlantic Bluefin Tuna : a novel multistock spatial model for assessing population biomass. PLoS ONE. 2011;6: e27693. https://doi.org/10.1371/journal.pone.0027693.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rooker JR, Fraile I, Liu H, Abid N, Dance MA, Itoh T, et al. Wide-ranging temporal variation in transoceanic movement and population mixing of bluefin tuna in the North Atlantic Ocean. Front Mar Sci. 2019;6:1–13. https://doi.org/10.3389/fmars.2019.00398.

    Article 

    Google Scholar
     

  • Puncher GN, Cariani A, Maes GE, Van Houdt J, Herten K, Cannas R, et al. Spatial dynamics and mixing of bluefin tuna in the Atlantic Ocean and Mediterranean Sea revealed using next-generation sequencing. Mol Ecol Resour. 2018;18:620–38. https://doi.org/10.1111/1755-0998.12764.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Morse MR, Kerr LA, Galuardi B, Cadrin SX. Performance of stock assessments for mixed-population fisheries: the illustrative case of Atlantic bluefin tuna. ICES J Mar Sci. 2020;77:2043–55. https://doi.org/10.1093/ICESJMS/FSAA082.

    Article 

    Google Scholar
     

  • Braun CD, Skomal GB, Thorrold SR. Integrating archival tag data and a high-resolution oceanographic model to estimate basking shark (Cetorhinus maximus) movements in the Western Atlantic. Front Mar Sci. 2018;5:1–14. https://doi.org/10.3389/fmars.2018.00025.

    Article 

    Google Scholar
     

  • Doherty PD, Baxter JM, Gell FR, Godley BJ, Graham RT, Hall G, et al. Long-term satellite tracking reveals variable seasonal migration strategies of basking sharks in the north-east Atlantic. Sci Rep. 2017;7:1–10. https://doi.org/10.1038/srep42837.

    Article 
    CAS 

    Google Scholar
     

  • Biais G, Coupeau Y, Séret B, Calmettes B, Lopez R, Hetherington S, et al. Return migration patterns of porbeagle shark (Lamna nasus) in the Northeast Atlantic: implications for stock range and structure. ICES J Mar Sci. 2017;74:1268–76. https://doi.org/10.1093/ICESJMS/FSW233.

    Article 

    Google Scholar
     

  • Braun CD, Gaube P, Afonso P, Fontes J, Skomal GB, Thorrold SR, et al. Assimilating electronic tagging, oceanographic modelling, and fisheries data to estimate movements and connectivity of swordfish in the North Atlantic. ICES J Mar Sci. 2019;76:2305–17. https://doi.org/10.1093/ICESJMS/FSZ106.

    Article 

    Google Scholar
     

  • Arostegui M, Gaube P, Berumen M, DiGiulian A, Jones B, Røstad A, et al. Vertical movements of a pelagic thresher shark (Alopias pelagicus): insights into the species’ physiological limitations and trophic ecology in the Red Sea. Endanger Species Res. 2020;43:387–94. https://doi.org/10.3354/esr01079.

    Article 

    Google Scholar
     

  • Strøm JF, Thorstad EB, Chafe G, Sørbye SH, Righton D, Rikardsen AH, et al. Ocean migration of pop-up satellite archival tagged Atlantic salmon from the Miramichi River in Canada. ICES J Mar Sci. 2017;74:1356–70. https://doi.org/10.1093/ICESJMS/FSW220.

    Article 

    Google Scholar
     

  • Bestley S, Jonsen ID, Hindell MA, Harcourt RG, Gales NJ. Taking animal tracking to new depths: synthesizing horizontal–vertical movement relationships for four marine predators. Ecology. 2015;96:417–27. https://doi.org/10.1890/14-0469.1.

    Article 
    PubMed 

    Google Scholar
     

  • Skubel RA, Wilson K, Papastamatiou YP, Verkamp HJ, Sulikowski JA, Benetti D, et al. A scalable, satellite-transmitted data product for monitoring high-activity events in mobile aquatic animals. Anim Biotelemetry. 2020;8:1–14. https://doi.org/10.1186/s40317-020-00220-0.

    Article 

    Google Scholar
     

  • Perle CR, Snyder S, Merten W, Simmons M, Dacey J, Rodriguez-Sanchez R, et al. Dolphinfish movements in the Eastern Pacific Ocean of Mexico using conventional and electronic tags. Anim Biotelemetry. 2020. https://doi.org/10.1186/s40317-020-00217-9.

    Article 

    Google Scholar
     

  • Curnick DJ, Andrzejaczek S, Jacoby DMP, Coffey DM, Carlisle AB, Chapple TK, et al. Behavior and ecology of silky sharks around the Chagos archipelago and evidence of Indian Ocean wide movement. Front Mar Sci. 2020;7:1045. https://doi.org/10.3389/fmars.2020.596619.

    Article 

    Google Scholar
     

  • Lipscombe RS, Spaet JLY, Scott A, Lam CH, Brand CP, Butcher PA, et al. Habitat use and movement patterns of tiger sharks (Galeocerdo cuvier) in eastern Australian waters. ICES J Mar Sci. 2020;77:3127–37. https://doi.org/10.1093/icesjms/fsaa212.

    Article 

    Google Scholar
     

  • Peel LR, Stevens GMW, Daly R, Keating Daly CA, Collin SP, Nogués J, et al. Regional movements of reef manta rays (Mobula alfredi) in seychelles waters. Front Mar Sci. 2020;7:558. https://doi.org/10.3389/fmars.2020.00558.

    Article 

    Google Scholar
     

  • Woillez M, Fablet R, Ngo TT, Lalire M, Lazure P, de Pontual H. A HMM-based model to geolocate pelagic fish from high-resolution individual temperature and depth histories: European sea bass as a case study. Ecol Modell. 2016;321:10–22. https://doi.org/10.1016/J.ECOLMODEL.2015.10.024.

    Article 

    Google Scholar
     

  • Chassignet EP, Hurlburt HE, Smedstad OM, Halliwell GR, Hogan PJ, Wallcraft AJ, et al. Ocean prediction with the hybrid coordinate ocean model (HYCOM). In: Ocean weather forecasting: an integrated view of oceanography. Netherlands: Springer; 2006. p. 413–26. https://doi.org/10.1007/1-4020-4028-8_16.

    Chapter 

    Google Scholar
     

  • Auger-Méthé M, Field C, Albertsen CM, Derocher AE, Lewis MA, Jonsen ID, et al. State-space models’ dirty little secrets: even simple linear Gaussian models can have estimation problems. Sci Rep. 2016;6:1–10. https://doi.org/10.1038/srep26677.

    Article 
    CAS 

    Google Scholar
     

  • Nielsen JK, Mueter FJ, Adkison MD, Loher T, McDermott SF, Seitz AC. Potential utility of geomagnetic data for geolocation of demersal fishes in the North Pacific Ocean. Anim Biotelemetry. 2020;8:1–20. https://doi.org/10.1186/s40317-020-00204-0.

    Article 

    Google Scholar
     



  • Source link