Scientific Papers

Advances towards the use of gastrointestinal tumor patient-derived organoids as a therapeutic decision-making tool | Biological Research


  • Nuwer R. US agency seeks to phase out animal testing. Nature. 2022. https://doi.org/10.1038/d41586-022-03569-.

    Article 
    PubMed 

    Google Scholar
     

  • Wadman M. FDA no longer has to require animal testing for new drugs. Science. 2023;379(6628):127–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. https://gco.iarc.fr/today. Accessed 2 Dec 2022.

  • Arnold M, Abnet CC, Neale RE, Vignat J, Giovannucci EL, McGlynn KA, Bray F. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology. 2020;159(1):335–349315.

    Article 
    PubMed 

    Google Scholar
     

  • Wang DK, Zuo Q, He QY, Li B. Targeted immunotherapies in gastrointestinal cancer: from molecular mechanisms to implications. Front Immunol. 2021;12:705999.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dahiya DS, Kichloo A, Singh J, Albosta M, Lekkala M. Current immunotherapy in gastrointestinal malignancies a review. J Investig Med. 2021;69(3):689–96.

    Article 
    PubMed 

    Google Scholar
     

  • Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15(2):81–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen H, Wang HY, He X, Wu CI. On the low reproducibility of cancer studies. Natl Sci Rev. 2018;5(5):619–24.

    Article 
    PubMed 

    Google Scholar
     

  • Kaelin WG Jr. Common pitfalls in preclinical cancer target validation. Nat Rev Cancer. 2017;17(7):425–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aziz F, Yang X, Wen Q, Yan Q. A method for establishing human primary gastric epithelial cell culture from fresh surgical gastric tissues. Mol Med Rep. 2015;12(2):2939–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miserocchi G, Mercatali L, Liverani C, De Vita A, Spadazzi C, Pieri F, Bongiovanni A, Recine F, Amadori D, Ibrahim T. Management and potentialities of primary cancer cultures in preclinical and translational studies. J Transl Med. 2017;15(1):229.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirsch D, Seyfried S, Staib T, Fiedler D, Sauer C, Ried T, Witt S, Rueckert F, Gaiser T. Newly established gastrointestinal cancer cell lines retain the genomic and immunophenotypic landscape of their parental cancers. Sci Rep. 2020;10(1):17895.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan H, Demirci U, Chen P. Emerging organoid models: leaping forward in cancer research. J Hematol Oncol. 2019;12(1):142.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gillet JP, Calcagno AM, Varma S, Marino M, Green LJ, Vora MI, Patel C, Orina JN, Eliseeva TA, Singal V, et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci USA. 2011;108(46):18708–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noben M, Vanhove W, Arnauts K, Santo Ramalho A, Van Assche G, Vermeire S, Verfaillie C, Ferrante M. Human intestinal epithelium in a dish: current models for research into gastrointestinal pathophysiology. United European Gastroenterol J. 2017;5(8):1073–81.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bleijs M, van de Wetering M, Clevers H, Drost J. Xenograft and organoid model systems in cancer research. EMBO J. 2019;38(15):e101654.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dieter SM, Giessler KM, Kriegsmann M, Dubash TD, Mohrmann L, Schulz ER, Siegl C, Weber S, Strakerjahn H, Oberlack A, et al. Patient-derived xenografts of gastrointestinal cancers are susceptible to rapid and delayed B-lymphoproliferation. Int J Cancer. 2017;140(6):1356–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng M, Pi C, Li K, Sheng L, Zuo Y, Yuan J, Zou Y, Zhang X, Zhao W, Lee RJ, et al. Patient-derived xenograft: a more standard “avatar” model in preclinical studies of gastric cancer. Front Oncol. 2022;12:898563.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Angelis ML, Francescangeli F, Nicolazzo C, Xhelili E, La Torre F, Colace L, Bruselles A, Macchia D, Vitale S, Gazzaniga P, et al. An orthotopic patient-derived xenograft (PDX) model allows the analysis of metastasis-associated features in colorectal cancer. Front Oncol. 2022;12:869485.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ben-David U, Ha G, Tseng YY, Greenwald NF, Oh C, Shih J, McFarland JM, Wong B, Boehm JS, Beroukhim R, et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet. 2017;49(11):1567–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durinikova E, Buzo K, Arena S. Preclinical models as patients’ avatars for precision medicine in colorectal cancer: past and future challenges. J Exp Clin Cancer Res. 2021;40(1):185.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weeber F, van de Wetering M, Hoogstraat M, Dijkstra KK, Krijgsman O, Kuilman T, Gadellaa-van Hooijdonk CG, van der Velden DL, Peeper DS, Cuppen EP, et al. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc Natl Acad Sci USA. 2015;112(43):13308–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morton CL, Houghton PJ. Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc. 2007;2(2):247–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gunti S, Hoke ATK, Vu KP, London NR Jr. Organoid and spheroid tumor models: techniques and applications. Cancers. 2021;13(4):874.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiswald LB, Richon S, Validire P, Briffod M, Lai-Kuen R, Cordelieres FP, Bertrand F, Dargere D, Massonnet G, Marangoni E, et al. Newly characterised ex vivo colospheres as a three-dimensional colon cancer cell model of tumour aggressiveness. Br J Cancer. 2009;101(3):473–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balmana M, Mereiter S, Diniz F, Feijao T, Barrias CC, Reis CA. Multicellular human gastric-cancer spheroids mimic the glycosylation phenotype of gastric carcinomas. Molecules. 2018;23(11):2815.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Zhang X, Li X, Zhang Y, Hou T, Wei L, Qu L, Shi L, Liu Y, Zou L, et al. Anti-gastric cancer activity in three-dimensional tumor spheroids of bufadienolides. Sci Rep. 2016;6:24772.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Qin Y, Jia M, Li L, Zhang W, Li L, Zhang Z, Liu Y. A gastric cancer patient-derived three-dimensional cell spheroid culture model. Am J Cancer Res. 2023;13(3):964–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagle PW, Plukker JTM, Muijs CT, van Luijk P, Coppes RP. Patient-derived tumor organoids for prediction of cancer treatment response. Semin Cancer Biol. 2018;53:258–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeppesen M, Hagel G, Glenthoj A, Vainer B, Ibsen P, Harling H, Thastrup O, Jorgensen LN, Thastrup J. Short-term spheroid culture of primary colorectal cancer cells as an in vitro model for personalizing cancer medicine. PLoS ONE. 2017;12(9):e0183074.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet. 2018;19(11):671–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li G, Ma S, Wu Q, Kong D, Yang Z, Gu Z, Feng L, Zhang K, Cheng S, Tian Y, et al. Establishment of gastric signet ring cell carcinoma organoid for the therapeutic drug testing. Cell Death Discov. 2022;8(1):6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohta Y, Sato T. Intestinal tumor in a dish. Front Med. 2014;1:14.

    Article 

    Google Scholar
     

  • Walsh AJ, Cook RS, Sanders ME, Arteaga CL, Skala MC. Drug response in organoids generated from frozen primary tumor tissues. Sci Rep. 2016;6:18889.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alzeeb G, Metges JP, Corcos L, Le Jossic-Corcos C. Three-dimensional culture systems in gastric cancer research. Cancers. 2020;12(10):2800.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mo S, Tang P, Luo W, Zhang L, Li Y, Hu X, Ma X, Chen Y, Bao Y, He X, et al. Patient-derived organoids from colorectal cancer with paired liver metastasis reveal tumor heterogeneity and predict response to chemotherapy. Adv Sci. 2022;9(31):e2204097.

    Article 

    Google Scholar
     

  • Ooft SN, Weeber F, Dijkstra KK, McLean CM, Kaing S, van Werkhoven E, Schipper L, Hoes L, Vis DJ, van de Haar J, et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci Transl Med. 2019;11(513):eaay2574.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saito Y, Muramatsu T, Kanai Y, Ojima H, Sukeda A, Hiraoka N, Arai E, Sugiyama Y, Matsuzaki J, Uchida R, et al. Establishment of patient-derived organoids and drug screening for biliary tract carcinoma. Cell Rep. 2019;27(4):1265-1276.e1264.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, van Houdt W, van Gorp J, Taylor-Weiner A, Kester L, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161(4):933–45.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarro LM, Bradshaw CR, Allen GE, Arnes-Benito R, Sidorova O, Gaspersz MP, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med. 2017;23(12):1424–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang L, Holtzinger A, Jagan I, BeGora M, Lohse I, Ngai N, Nostro C, Wang R, Muthuswamy LB, Crawford HC, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med. 2015;21(11):1364–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seppala TT, Zimmerman JW, Sereni E, Plenker D, Suri R, Rozich N, Blair A, Thomas DL 2nd, Teinor J, Javed A, et al. Patient-derived organoid pharmacotyping is a clinically tractable strategy for precision medicine in pancreatic cancer. Ann Surg. 2020;272(3):427–35.

    Article 
    PubMed 

    Google Scholar
     

  • Tiriac H, Belleau P, Engle DD, Plenker D, Deschenes A, Somerville TDD, Froeling FEM, Burkhart RA, Denroche RE, Jang GH, et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 2018;8(9):1112–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao M, Lin M, Rao M, Thompson H, Hirai K, Choi M, Georgakis GV, Sasson AR, Bucobo JC, Tzimas D, et al. Development of patient-derived gastric cancer organoids from endoscopic biopsies and surgical tissues. Ann Surg Oncol. 2018;25(9):2767–75.

    Article 
    PubMed 

    Google Scholar
     

  • Seidlitz T, Merker SR, Rothe A, Zakrzewski F, von Neubeck C, Grutzmann K, Sommer U, Schweitzer C, Scholch S, Uhlemann H, et al. Human gastric cancer modelling using organoids. Gut. 2019;68(2):207–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan HHN, Siu HC, Law S, Ho SL, Yue SSK, Tsui WY, Chan D, Chan AS, Ma S, Lam KO, et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell. 2018;23(6):882-897.e811.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao Y, Xu X, Yang L, Zhu J, Wan J, Shen L, Xia F, Fu G, Deng Y, Pan M, et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell. 2020;26(1):17-26.e16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan B, Zhao X, Wang X, Liu E, Liu C, Zong Y, Jiang Y, Hou M, Chen Y, Chen L, et al. Patient-derived organoids for personalized gallbladder cancer modelling and drug screening. Clin Transl Med. 2022;12(1):e678.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim M, Mun H, Sung CO, Cho EJ, Jeon HJ, Chun SM, Jung DJ, Shin TH, Jeong GS, Kim DK, et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun. 2019;10(1):3991.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grossman JE, Muthuswamy L, Huang L, Akshinthala D, Perea S, Gonzalez RS, Tsai LL, Cohen J, Bockorny B, Bullock AJ, et al. Organoid sensitivity correlates with therapeutic response in patients with pancreatic cancer. Clin Cancer Res. 2022;28(4):708–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernandez-Mateos J, Khan K, Lampis A, Eason K, Huntingford I, Burke R, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359(6378):920–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong J, Lee H, Kim D, Han SK, Ha D, Shin K, Kim S. Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients. Nat Commun. 2020;11(1):5485.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Demyan L, Habowski AN, Plenker D, King DA, Standring OJ, Tsang C, St Surin L, Rishi A, Crawford JM, Boyd J, et al. Pancreatic cancer patient-derived organoids can predict response to neoadjuvant chemotherapy. Ann Surg. 2022;276(3):450–62.

    Article 
    PubMed 

    Google Scholar
     

  • Schuth S, Le Blanc S, Krieger TG, Jabs J, Schenk M, Giese NA, Buchler MW, Eils R, Conrad C, Strobel O. Patient-specific modeling of stroma-mediated chemoresistance of pancreatic cancer using a three-dimensional organoid-fibroblast co-culture system. J Exp Clin Cancer Res. 2022;41(1):312.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holokai L, Chakrabarti J, Broda T, Chang J, Hawkins JA, Sundaram N, Wroblewski LE, Peek RM Jr, Wang J, Helmrath M, et al. Increased programmed death-ligand 1 is an early epithelial cell response to helicobacter pylori infection. PLoS Pathog. 2019;15(1):e1007468.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou G, Lieshout R, van Tienderen GS, de Ruiter V, van Royen ME, Boor PPC, Magre L, Desai J, Koten K, Kan YY, et al. Modelling immune cytotoxicity for cholangiocarcinoma with tumour-derived organoids and effector T cells. Br J Cancer. 2022;127(4):649–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trumpi K, Frenkel N, Peters T, Korthagen NM, Jongen JMJ, Raats D, van Grevenstein H, Backes Y, Moons LM, Lacle MM, et al. Macrophages induce “budding” in aggressive human colon cancer subtypes by protease-mediated disruption of tight junctions. Oncotarget. 2018;9(28):19490–507.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim MB, Hwangbo S, Jang S, Jo YK. Bioengineered Co-culture of organoids to recapitulate host-microbe interactions. Mater Today Bio. 2022;16:100345.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, Van Houdt WJ, Pronk A, Van Gorp J, Siersema PD, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141(5):1762–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Denu JM. Vitamin B3 and sirtuin function. Trends Biochem Sci. 2005;30(9):479–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, Ohta Y, Toshimitsu K, Nakazato Y, Kawasaki K, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell. 2016;18(6):827–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ganesh K, Wu C, O’Rourke KP, Szeglin BC, Zheng Y, Sauve CG, Adileh M, Wasserman I, Marco MR, Kim AS, et al. A rectal cancer organoid platform to study individual responses to chemoradiation. Nat Med. 2019;25(10):1607–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nuciforo S, Fofana I, Matter MS, Blumer T, Calabrese D, Boldanova T, Piscuoglio S, Wieland S, Ringnalda F, Schwank G, et al. Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep. 2018;24(5):1363–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huch M, Bonfanti P, Boj SF, Sato T, Loomans CJ, van de Wetering M, Sojoodi M, Li VS, Schuijers J, Gracanin A, et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 2013;32(20):2708–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Corbo V, Jager M, Ponz-Sarvise M, Tiriac H, Spector MS, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160(1–2):324–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Driehuis E, van Hoeck A, Moore K, Kolders S, Francies HE, Gulersonmez MC, Stigter ECA, Burgering B, Geurts V, Gracanin A, et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc Natl Acad Sci USA. 2019;116(52):26580–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seppala TT, Zimmerman JW, Suri R, Zlomke H, Ivey GD, Szabolcs A, Shubert CR, Cameron JL, Burns WR, Lafaro KJ, et al. Precision medicine in pancreatic cancer: patient-derived organoid pharmacotyping is a predictive biomarker of clinical treatment response. Clin Cancer Res. 2022;28(15):3296–307.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haque MR, Wessel CR, Leary DD, Wang C, Bhushan A, Bishehsari F. Patient-derived pancreatic cancer-on-a-chip recapitulates the tumor microenvironment. Microsyst Nanoeng. 2022;8:36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nanki K, Toshimitsu K, Takano A, Fujii M, Shimokawa M, Ohta Y, Matano M, Seino T, Nishikori S, Ishikawa K, et al. Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis. Cell. 2018;174(4):856-869.e817.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seidlitz T, Koo BK, Stange DE. Gastric organoids-an in vitro model system for the study of gastric development and road to personalized medicine. Cell Death Differ. 2021;28(1):68–83.

    Article 
    PubMed 

    Google Scholar
     

  • Steele NG, Chakrabarti J, Wang J, Biesiada J, Holokai L, Chang J, Nowacki LM, Hawkins J, Mahe M, Sundaram N, et al. An organoid-based preclinical model of human gastric cancer. Cell Mol Gastroenterol Hepatol. 2019;7(1):161–84.

    Article 
    PubMed 

    Google Scholar
     

  • Kumar V, Ramnarayanan K, Sundar R, Padmanabhan N, Srivastava S, Koiwa M, Yasuda T, Koh V, Huang KK, Tay ST, et al. Single-cell atlas of lineage states, tumor microenvironment, and subtype-specific expression programs in gastric cancer. Cancer Discov. 2022;12(3):670–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang R, Dang M, Harada K, Han G, Wang F, Pool Pizzi M, Zhao M, Tatlonghari G, Zhang S, Hao D, et al. Single-cell dissection of intratumoral heterogeneity and lineage diversity in metastatic gastric adenocarcinoma. Nat Med. 2021;27(1):141–51.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rathje F, Klingler S, Aberger F. Organoids for modeling (colorectal) cancer in a dish. Cancers. 2022;14(21):5416.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dutta D, Clevers H. Organoid culture systems to study host-pathogen interactions. Curr Opin Immunol. 2017;48:15–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alipour M. Molecular mechanism of helicobacter pylori-induced gastric cancer. J Gastrointest Cancer. 2021;52(1):23–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boccellato F, Woelffling S, Imai-Matsushima A, Sanchez G, Goosmann C, Schmid M, Berger H, Morey P, Denecke C, Ordemann J, et al. Polarised epithelial monolayers of the gastric mucosa reveal insights into mucosal homeostasis and defence against infection. Gut. 2019;68(3):400–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCracken KW, Cata EM, Crawford CM, Sinagoga KL, Schumacher M, Rockich BE, Tsai YH, Mayhew CN, Spence JR, Zavros Y, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature. 2014;516(7531):400–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartfeld S, Bayram T, van de Wetering M, Huch M, Begthel H, Kujala P, Vries R, Peters PJ, Clevers H. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology. 2015;148(1):126-136.e126.

    Article 
    PubMed 

    Google Scholar
     

  • Iyer P, Barreto SG, Sahoo B, Chandrani P, Ramadwar MR, Shrikhande SV, Dutt A. Non-typhoidal Salmonella DNA traces in gallbladder cancer. Infect Agent Cancer. 2016;11:12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scanu T, Spaapen RM, Bakker JM, Pratap CB, Wu LE, Hofland I, Broeks A, Shukla VK, Kumar M, Janssen H, et al. Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host Microbe. 2015;17(6):763–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sepe LP, Hartl K, Iftekhar A, Berger H, Kumar N, Goosmann C, Chopra S, Schmidt SC, Gurumurthy RK, Meyer TF, et al. Genotoxic effect of Salmonella paratyphi A infection on human primary gallbladder cells. MBio. 2020;11(5):10–128.

    Article 

    Google Scholar
     

  • Leslie JL, Huang S, Opp JS, Nagy MS, Kobayashi M, Young VB, Spence JR. Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect Immun. 2015;83(1):138–45.

    Article 
    PubMed 

    Google Scholar
     

  • Kakni P, Jutten B, Teixeira Oliveira Carvalho D, Penders J, Truckenmuller R, Habibovic P, Giselbrecht S. Hypoxia-tolerant apical-out intestinal organoids to model host-microbiome interactions. J Tissue Eng. 2023;14:20417314221149210.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong JCH, Guerra GR, Millen RM, Roth S, Xu H, Neeson PJ, Darcy PK, Kershaw MH, Sampurno S, Malaterre J, et al. Tumor-infiltrating lymphocyte function predicts response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. JCO Precis Oncol. 2018;2:1–15.

    Article 
    PubMed 

    Google Scholar
     

  • Fang H, Huang Y, Luo Y, Tang J, Yu M, Zhang Y, Zhong M. SIRT1 induces the accumulation of TAMs at colorectal cancer tumor sites via the CXCR4/CXCL12 axis. Cell Immunol. 2022;371:104458.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu J. Vascularized organoids: a more complete model. Int J Stem Cells. 2021;14(2):127–37.

    PubMed 

    Google Scholar
     

  • Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi H, Enomoto A, Woods SL, Burt AD, Takahashi M, Worthley DL. Cancer-associated fibroblasts in gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 2019;16(5):282–95.

    Article 
    PubMed 

    Google Scholar
     

  • Xu C, Zhang K, Yang F, Zhou X, Liu S, Li Y, Ma S, Zhao X, Lu T, Lu S, et al. CD248(+) cancer-associated fibroblasts: a novel prognostic and therapeutic target for renal cell carcinoma. Front Oncol. 2021;11:773063.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, Corbo V, Oni TE, Hearn SA, Lee EJ, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 2017;214(3):579–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biffi G, Oni TE, Spielman B, Hao Y, Elyada E, Park Y, Preall J, Tuveson DA. IL1-induced JAK/STAT signaling is antagonized by TGFbeta to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 2019;9(2):282–301.

    Article 
    PubMed 

    Google Scholar
     

  • Liu J, Li P, Wang L, Li M, Ge Z, Noordam L, Lieshout R, Verstegen MMA, Ma B, Su J, et al. Cancer-associated fibroblasts provide a stromal niche for liver cancer organoids that confers trophic effects and therapy resistance. Cell Mol Gastroenterol Hepatol. 2021;11(2):407–31.

    Article 
    PubMed 

    Google Scholar
     

  • Luo X, Fong ELS, Zhu C, Lin QXX, Xiong M, Li A, Li T, Benoukraf T, Yu H, Liu S. Hydrogel-based colorectal cancer organoid co-culture models. Acta Biomater. 2021;132:461–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harryvan TJ, Hawinkels L, Mini-Tumor Working Group, Ostman A, Ten Dijke P, Strell C, Hornsveld M. A novel pancreatic cancer mini-tumor model to study desmoplasia and myofibroblastic cancer-associated fibroblast differentiation. Gastro Hep Adv. 2022;1(4):678–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeltz C, Primac I, Erusappan P, Alam J, Noel A, Gullberg D. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins. Semin Cancer Biol. 2020;62:166–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hernandez-Caceres MP, Munoz L, Pradenas JM, Pena F, Lagos P, Aceiton P, Owen GI, Morselli E, Criollo A, Ravasio A, et al. Mechanobiology of autophagy: the unexplored side of cancer. Front Oncol. 2021;11:632956.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Dang F, Ren J, Wei W. Biochemical aspects of PD-L1 regulation in cancer immunotherapy. Trends Biochem Sci. 2018;43(12):1014–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janjigian YY, Kawazoe A, Yanez P, Li N, Lonardi S, Kolesnik O, Barajas O, Bai Y, Shen L, Tang Y, et al. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature. 2021;600(7890):727–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andre T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, Smith D, Garcia-Carbonero R, Benavides M, Gibbs P, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med. 2020;383(23):2207–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Janjigian YY, Shitara K, Moehler M, Garrido M, Salman P, Shen L, Wyrwicz L, Yamaguchi K, Skoczylas T, Campos Bragagnoli A, et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet. 2021;398(10294):27–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, Fanchi LF, Slagter M, van der Velden DL, Kaing S, Kelderman S, et al. Generation of tumor-reactive t cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell. 2018;174(6):1586-1598.e1512.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cattaneo CM, Dijkstra KK, Fanchi LF, Kelderman S, Kaing S, van Rooij N, van den Brink S, Schumacher TN, Voest EE. Tumor organoid-T-cell coculture systems. Nat Protoc. 2020;15(1):15–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, Liu IH, Chiou SH, Salahudeen AA, Smith AR, et al. Organoid modeling of the tumor immune microenvironment. Cell. 2018;175(7):1972-1988.e1916.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jitawatanarat P, Wee W. Update on antiangiogenic therapy in colorectal cancer: aflibercept and regorafenib. J Gastrointest Oncol. 2013;4(2):231–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cookson C, Kuchler H, Miller J. How science is getting closer to a world without animal testing. London: Finantial Times; 2022.


    Google Scholar
     

  • Kim MP, Evans DB, Wang H, Abbruzzese JL, Fleming JB, Gallick GE. Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nat Protoc. 2009;4(11):1670–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alzeeb G, Arzur D, Trichet V, Talagas M, Corcos L, Le Jossic-Corcos C. Gastric cancer cell death analyzed by live cell imaging of spheroids. Sci Rep. 2022;12(1):1488.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Bodmer WF. Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines. Proc Natl Acad Sci USA. 2006;103(4):976–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuwata T, Yanagihara K, Iino Y, Komatsu T, Ochiai A, Sekine S, Taniguchi H, Katai H, Kinoshita T, Ohtsu A. Establishment of novel gastric cancer patient-derived xenografts and cell lines: pathological comparison between primary tumor, patient-derived, and cell-line derived xenografts. Cells. 2019;8(6):585.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Na YS, Ryu MH, Park YS, Lee CW, Lee JK, Park Y, Park JM, Ma J, Kang YK. Establishment of patient-derived xenografts from patients with gastrointestinal stromal tumors: analysis of clinicopathological characteristics related to engraftment success. Sci Rep. 2020;10(1):7996.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu X, Chen Y, Lu J, He K, Chen Y, Ding Y, Jin K, Wang H, Zhang H, Wang H, et al. Patient-derived xenograft models for gastrointestinal tumors: a single-center retrospective study. Front Oncol. 2022;12:985154.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Y, Tian T, Li Z, Tang Z, Wang L, Wu J, Li Y, Dong B, Li Y, Li N, et al. Establishment and characterization of patient-derived tumor xenograft using gastroscopic biopsies in gastric cancer. Sci Rep. 2015;5:8542.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pham NA, Radulovich N, Ibrahimov E, Martins-Filho SN, Li Q, Pintilie M, Weiss J, Raghavan V, Cabanero M, Denroche RE, et al. Patient-derived tumor xenograft and organoid models established from resected pancreatic, duodenal and biliary cancers. Sci Rep. 2021;11(1):10619.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, Sato T, Stange DE, Begthel H, van den Born M, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6(1):25–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nozaki K, Mochizuki W, Matsumoto Y, Matsumoto T, Fukuda M, Mizutani T, Watanabe M, Nakamura T. Co-culture with intestinal epithelial organoids allows efficient expansion and motility analysis of intraepithelial lymphocytes. J Gastroenterol. 2016;51(3):206–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakrabarti J, Zavros Y. Generation and use of gastric organoids for the study of Helicobacter pylori pathogenesis. Methods Cell Biol. 2020;159:23–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsai YH, Czerwinski M, Wu A, Dame MK, Attili D, Hill E, Colacino JA, Nowacki LM, Shroyer NF, Higgins PDR, et al. A method for cryogenic preservation of human biopsy specimens and subsequent organoid culture. Cell Mol Gastroenterol Hepatol. 2018;6(2):218-222.e217.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link