Scientific Papers

Inhibiting tau-induced elevated nSMase2 activity and ceramides is therapeutic in an Alzheimer’s disease mouse model | Translational Neurodegeneration


  • Cummings J. Anti-amyloid monoclonal antibodies are transformative treatments that redefine Alzheimer’s disease therapeutics. Drugs. 2023;83(7):569–76.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Avgerinos KI, Ferrucci L, Kapogiannis D. Effects of monoclonal antibodies against amyloid-beta on clinical and biomarker outcomes and adverse event risks: a systematic review and meta-analysis of phase III RCTs in Alzheimer’s disease. Ageing Res Rev. 2021;68:101339.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ossenkoppele R, Pichet Binette A, Groot C, Smith R, Strandberg O, Palmqvist S, et al. Amyloid and tau PET-positive cognitively unimpaired individuals are at high risk for future cognitive decline. Nat Med. 2022;28(11):2381–7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Simon D, Garcia-Garcia E, Royo F, Falcon-Perez JM, Avila J. Proteostasis of tau. Tau overexpression results in its secretion via membrane vesicles. FEBS Lett. 2012;586(1):47–54.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gibbons GS, Lee VMY, Trojanowski JQ. Mechanisms of cell-to-cell transmission of pathological tau: a review. JAMA Neurol. 2019;76(1):101–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yanamandra K, Jiang H, Mahan TE, Maloney SE, Wozniak DF, Diamond MI, et al. Anti-tau antibody reduces insoluble tau and decreases brain atrophy. Ann Clin Transl Neurol. 2015;2(3):278–88.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mullard A. Failure of first anti-tau antibody in Alzheimer disease highlights risks of history repeating. Nat Rev Drug Discov. 2021;20(1):3–5.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Imbimbo BP, Balducci C, Ippati S, Watling M. Initial failures of anti-tau antibodies in Alzheimer’s disease are reminiscent of the amyloid-beta story. Neural Regen Res. 2023;18(1):117–8.

    Article 
    PubMed 

    Google Scholar
     

  • Saman S, Kim W, Raya M, Visnick Y, Miro S, Saman S, et al. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J Biol Chem. 2012;287(6):3842–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ruan Z, Pathak D, Venkatesan Kalavai S, Yoshii-Kitahara A, Muraoka S, Bhatt N, et al. Alzheimer’s disease brain-derived extracellular vesicles spread tau pathology in interneurons. Brain. 2021;144(1):288–309.

    Article 
    PubMed 

    Google Scholar
     

  • Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319(5867):1244–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tallon C, Hollinger KR, Pal A, Bell BJ, Rais R, Tsukamoto T, et al. Nipping disease in the bud: nSMase2 inhibitors as therapeutics in extracellular vesicle-mediated diseases. Drug Discovery Today. 2021;26:1656–68.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tabatadze N, Savonenko A, Song H, Bandaru VV, Chu M, Haughey NJ. Inhibition of neutral sphingomyelinase-2 perturbs brain sphingolipid balance and spatial memory in mice. J Neurosci Res. 2010;88(13):2940–51.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tallon C, Bell BJ, Sharma A, Pal A, Malvankar MM, Thomas AG, et al. Dendrimer-conjugated nSMase2 inhibitor reduces tau propagation in mice. Pharmaceutics. 2022;14(10):2066.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T, et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci. 2015;18(11):1584–93.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bilousova T, Simmons BJ, Knapp RR, Elias CJ, Campagna J, Melnik M, et al. Dual neutral sphingomyelinase-2/acetylcholinesterase inhibitors for the treatment of Alzheimer’s disease. ACS Chem Biol. 2020;15:1671–84.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rojas C, Sala M, Thomas AG, Datta Chaudhuri A, Yoo SW, Li Z, et al. A novel and potent brain penetrant inhibitor of extracellular vesicle release. Br J Pharmacol. 2019;176(19):3857–70.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sala M, Hollinger KR, Thomas AG, Dash RP, Tallon C, Veeravalli V, et al. Novel human neutral sphingomyelinase 2 inhibitors as potential therapeutics for Alzheimer disease. J Med Chem. 2020;63(11):6028–56.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tallon C, Picciolini S, Yoo S-W, Thomas AG, Pal A, Alt J, et al. Inhibition of neutral sphingomyelinase 2 reduces extracellular vesicle release from neurons, oligodendrocytes, and activated microglial cells following acute brain injury. Biochem Pharmacol. 2021;194:114796.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Filippov V, Song MA, Zhang K, Vinters HV, Tung S, Kirsch WM, et al. Increased ceramide in brains with Alzheimer’s and other neurodegenerative diseases. J Alzheimers Dis. 2012;29(3):537–47.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Teitsdottir UD, Halldorsson S, Rolfsson O, Lund SH, Jonsdottir MK, Snaedal J, et al. Cerebrospinal fluid C18 ceramide associates with markers of Alzheimer’s disease and inflammation at the pre- and early stages of dementia. J Alzheimers Dis. 2021;81(1):231–44.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mielke MM, Haughey NJ, Ratnam Bandaru VV, Schech S, Carrick R, Carlson MC, et al. Plasma ceramides are altered in mild cognitive impairment and predict cognitive decline and hippocampal volume loss. Alzheimers Dement. 2010;6(5):378–85.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mielke MM, Haughey NJ, Han D, An Y, Bandaru VVR, Lyketsos CG, et al. The association between plasma ceramides and sphingomyelins and risk of Alzheimer’s disease differs by sex and APOE in the Baltimore longitudinal study of aging. J Alzheimers Dis. 2017;60(3):819–28.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Satoi H, Tomimoto H, Ohtani R, Kitano T, Kondo T, Watanabe M, et al. Astroglial expression of ceramide in Alzheimer’s disease brains: a role during neuronal apoptosis. Neuroscience. 2005;130(3):657–66.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cutler RG, Pedersen WA, Camandola S, Rothstein JD, Mattson MP. Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in amyotrophic lateral sclerosis. Ann Neurol. 2002;52(4):448–57.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, et al. Physical basis of cognitive alterations in alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment. Ann Neuro. 1991;30(4):572–80.

    Article 
    CAS 

    Google Scholar
     

  • West MJ, Coleman PD, Flood DG, Troncoso JC. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet. 1994;344(8925):769–72.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gemmell E, Bosomworth H, Allan L, Hall R, Khundakar A, Oakley AE, et al. Hippocampal neuronal atrophy and cognitive function in delayed poststroke and aging-related dementias. Stroke. 2012;43(3):808–14.

    Article 
    PubMed 

    Google Scholar
     

  • Gao R-D, Maeda M, Tallon C, Feinberg AP, Slusher BS, Tsukamoto T. Effects of 6-aminonicotinic acid esters on the reprogrammed epigenetic state of distant metastatic pancreatic carcinoma. ACS Med Chem Lett. 2022;13(12):1892–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yoo SW, Bae M, Tovar-Y-Romo LB, Haughey NJ. Hippocampal encoding of interoceptive context during fear conditioning. Transl Psychiatry. 2017;7(1):e991.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wheeler D, Knapp E, Bandaru VV, Wang Y, Knorr D, Poirier C, et al. Tumor necrosis factor-alpha-induced neutral sphingomyelinase-2 modulates synaptic plasticity by controlling the membrane insertion of NMDA receptors. J Neurochem. 2009;109(5):1237–49.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Koller EJ, de la Cruz EG, Machula T, Ibanez KR, Lin W-L, Williams T, et al. Combining P301L and S320F tau variants produces a novel accelerated model of tauopathy. Hum Mol Genet. 2019;28(19):3255–69.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 2007;53(3):337–51.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Figuera-Losada M, Stathis M, Dorskind JM, Thomas AG, Bandaru VV, Yoo SW, et al. Cambinol, a novel inhibitor of neutral sphingomyelinase 2 shows neuroprotective properties. PLOS ONE. 2015;10(5):e0124481.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhu X, Hollinger KR, Huang Y, Borjabad A, Kim BH, Arab T, et al. Neutral sphingomyelinase 2 inhibition attenuates extracellular vesicle release and improves neurobehavioral deficits in murine HIV. Neurobiol Dis. 2022;169:105734.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Haughey NJ, Cutler RG, Tamara A, McArthur JC, Vargas DL, Pardo CA, et al. Perturbation of sphingolipid metabolism and ceramide production in HIV-dementia. Ann Neurol. 2004;55(2):257–67.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bandaru VV, McArthur JC, Sacktor N, Cutler RG, Knapp EL, Mattson MP, et al. Associative and predictive biomarkers of dementia in HIV-1-infected patients. Neurology. 2007;68(18):1481–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sahara N, Kimura T. Biochemical properties of pathology-related tau species in tauopathy brains: an extraction protocol for tau oligomers and aggregates. In: Sigurdsson EM, Calero M, Gasset M, editors. Amyloid Proteins: Methods and Protocols. New York: Springer; 2018. p. 435–45.

    Chapter 

    Google Scholar
     

  • Hollinger KR, Sharma A, Tallon C, Lovell L, Thomas AG, Zhu X, et al. Dendrimer-2PMPA selectively blocks upregulated microglial GCPII activity and improves cognition in a mouse model of multiple sclerosis. Nanotheranostics. 2022;6(2):126–42.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gratuze M, Leyns CEG, Sauerbeck AD, St-Pierre M-K, Xiong M, Kim N, et al. Impact of TREM2R47H variant on tau pathology–induced gliosis and neurodegeneration. J Clin Invest. 2020;130(9):4954–68.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Delgado-Peraza F, Nogueras-Ortiz CJ, Volpert O, Liu D, Goetzl EJ, Mattson MP, et al. Neuronal and astrocytic extracellular vesicle biomarkers in blood reflect brain pathology in mouse models of Alzheimer’s disease. Cells. 2021;10(5):993.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gomes PA, Bodo C, Nogueras-Ortiz C, Samiotaki M, Chen M, Soares-Cunha C, et al. A novel isolation method for spontaneously released extracellular vesicles from brain tissue and its implications for stress-driven brain pathology. Cell Commun Signal. 2023;21(1):35.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Patel H, Martinez P, Perkins A, Taylor X, Jury N, McKinzie D, et al. Pathological tau and reactive astrogliosis are associated with distinct functional deficits in a mouse model of tauopathy. Neurobiol Aging. 2022;109:52–63.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Simon MM, Greenaway S, White JK, Fuchs H, Gailus-Durner V, Wells S, et al. A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genom Biol. 2013;14(7):R82.

    Article 

    Google Scholar
     

  • Otto GP, Rathkolb B, Oestereicher MA, Lengger CJ, Moerth C, Micklich K, et al. Clinical chemistry reference intervals for C57BL/6J, C57BL/6N, and C3HeB/FeJ mice (Mus musculus). J Am Assoc Lab Anim Sci. 2016;55(4):375–86.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laboratory TJ. Physiological data summary—C57BL/6J (000664). Available from: https://jackson.jax.org/rs/444-BUH-304/images/physiological_data_000664.pdf

  • Charles River Larboratories International I. C57BL/6 Mice Datasheet 2019. Available from: https://www.criver.com/sites/default/files/resources/C57BL6MouseModelInformationSheet.pdf

  • Taconic Biosciences I. Automated Clinical Chemistry Analysis (ACCA) 2011 [updated 12/19/2011. 12/19/2011. Available from: https://www.taconic.com/phenotypic-data/automated-clinical-chemistry-analysis/

  • Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, et al. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimers Dement. 2015;11(6):600–7.

    Article 
    PubMed 

    Google Scholar
     

  • Kapogiannis D, Mustapic M, Shardell MD, Berkowitz ST, Diehl TC, Spangler RD, et al. Association of extracellular vesicle biomarkers with Alzheimer disease in the Baltimore Longitudinal Study of Aging. JAMA Neurol. 2019;76(11):1340–51.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bell BJ, Malvankar MM, Tallon C, Slusher BS. Sowing the seeds of discovery: tau-propagation models of Alzheimer’s disease. ACS Chem Neurosci. 2020;11(21):3499–509.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kapogiannis D, Mustapic M, Shardell MD, Berkowitz ST, Diehl TC, Spangler RD, et al. Association of extracellular vesicle biomarkers with Alzheimer disease in the Baltimore Longitudinal Study of Aging. JAMA Neurol. 2019;76(11):1340–51.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eren E, Hunt JFV, Shardell M, Chawla S, Tran J, Gu J, et al. Extracellular vesicle biomarkers of Alzheimer’s disease associated with sub-clinical cognitive decline in late middle age. Alzheimers Dement. 2020;16(9):1293–304.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319(5867):1244–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chowdhury MR, Jin HK, Bae JS. Diverse roles of ceramide in the progression and pathogenesis of Alzheimer’s disease. Biomedicines. 2022;10(8):1956.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, et al. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci U S A. 2004;101(7):2070–5.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • de Wit NM, den Hoedt S, Martinez-Martinez P, Rozemuller AJ, Mulder MT, de Vries HE. Astrocytic ceramide as possible indicator of neuroinflammation. J Neuroinflammation. 2019;16(1):48.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowe VJ, Wiste HJ, Senjem ML, Weigand SD, Therneau TM, Boeve BF, et al. Widespread brain tau and its association with ageing, Braak stage and Alzheimer’s dementia. Brain. 2018;141(1):271–87.

    Article 
    PubMed 

    Google Scholar
     

  • Ossenkoppele R, Schonhaut DR, Scholl M, Lockhart SN, Ayakta N, Baker SL, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain. 2016;139(Pt 5):1551–67.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meisl G, Hidari E, Allinson K, Rittman T, DeVos SL, Sanchez JS, et al. In vivo rate-determining steps of tau seed accumulation in Alzheimer’s disease. Sci Adv. 2021;7(44):eabh1448.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li TR, Yao YX, Jiang XY, Dong QY, Yu XF, Wang T, et al. β-Amyloid in blood neuronal-derived extracellular vesicles is elevated in cognitively normal adults at risk of Alzheimer’s disease and predicts cerebral amyloidosis. Alzheimers Res Ther. 2022;14(1):66.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Eitan E, Hutchison ER, Marosi K, Comotto J, Mustapic M, Nigam SM, et al. Extracellular vesicle-associated abeta mediates trans-neuronal bioenergetic and Ca(2+)-handling deficits in Alzheimer’s disease models. NPJ Aging Mech Dis. 2016;2:16019.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sowade RF, Jahn TR. Seed-induced acceleration of amyloid-β mediated neurotoxicity in vivo. Nat Commun. 2017;8(1):512.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeVos SL, Miller RL, Schoch KM, Holmes BB, Kebodeaux CS, Wegener AJ, et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med. 2017;9(374):eaag0481.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leyns CEG, Ulrich JD, Finn MB, Stewart FR, Koscal LJ, Remolina Serrano J, et al. TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci U S A. 2017;114(43):11524–9.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Oakley DH, Klickstein N, Commins C, Chung M, Dujardin S, Bennett RE, et al. Continuous monitoring of tau-induced neurotoxicity in patient-derived iPSC-neurons. J Neurosci. 2021;41(19):4335.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Henstridge CM, Hyman BT, Spires-Jones TL. Beyond the neuron-cellular interactions early in Alzheimer disease pathogenesis. Nat Rev Neurosci. 2019;20(2):94–108.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Goetzl EJ, Mustapic M, Kapogiannis D, Eitan E, Lobach IV, Goetzl L, et al. Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer’s disease. FASEB J. 2016;30(11):3853–9.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Serrano-Pozo A, Mielke ML, Gómez-Isla T, Betensky RA, Growdon JH, Frosch MP, et al. Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am J Pathol. 2011;179(3):1373–84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fowler CD. NeuroEVs: characterizing extracellular vesicles generated in the neural domain. J Neurosci. 2019;39(47):9262–8.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gomes DE, Witwer KW. L1CAM-associated extracellular vesicles: A systematic review of nomenclature, sources, separation, and characterization. J Extracell Biol. 2022;1(3):e35.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hill AF. Extracellular vesicles and neurodegenerative diseases. J Neurosci. 2019;39(47):9269–73.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Norman M, Ter-Ovanesyan D, Trieu W, Lazarovits R, Kowal EJK, Lee JH, et al. L1CAM is not associated with extracellular vesicles in human cerebrospinal fluid or plasma. Nat Methods. 2021;18(6):631–4.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Blommer J, Pitcher T, Mustapic M, Eren E, Yao PJ, Vreones MP, et al. Extracellular vesicle biomarkers for cognitive impairment in Parkinson’s disease. Brain. 2023;146(1):195–208.

    Article 
    PubMed 

    Google Scholar
     

  • Fu Y, Jiang C, Tofaris GK, Davis JJ. Facile impedimetric analysis of neuronal exosome markers in Parkinson’s disease diagnostics. Anal Chem. 2020;92(20):13647–51.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jiang C, Hopfner F, Katsikoudi A, Hein R, Catli C, Evetts S, et al. Serum neuronal exosomes predict and differentiate Parkinson’s disease from atypical parkinsonism. J Neurol Neurosurg Psychiatry. 2020;91(7):720–9.

    Article 
    PubMed 

    Google Scholar
     

  • Mustapic M, Eitan E, Werner JK Jr, Berkowitz ST, Lazaropoulos MP, Tran J, et al. Plasma extracellular vesicles enriched for neuronal origin: a potential window into brain pathologic processes. Front Neurosci. 2017;11:278.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niu M, Li Y, Li G, Zhou L, Luo N, Yao M, et al. A longitudinal study on alpha-synuclein in plasma neuronal exosomes as a biomarker for Parkinson’s disease development and progression. Eur J Neurol. 2020;27(6):967–74.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nogueras-Ortiz CJ, Mahairaki V, Delgado-Peraza F, Das D, Avgerinos K, Eren E, et al. Astrocyte- and neuron-derived extracellular vesicles from Alzheimer’s disease patients effect complement-mediated neurotoxicity. Cells. 2020;9(7):1618.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pulliam L, Liston M, Sun B, Narvid J. Using neuronal extracellular vesicles and machine learning to predict cognitive deficits in HIV. J Neurovirol. 2020;26(6):880–7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pulliam L, Sun B, Mustapic M, Chawla S, Kapogiannis D. Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer’s disease. J Neurovirol. 2019;25(5):702–9.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Vreones M, Mustapic M, Moaddel R, Pucha KA, Lovett J, Seals DR, et al. Oral nicotinamide riboside raises NAD+ and lowers biomarkers of neurodegenerative pathology in plasma extracellular vesicles enriched for neuronal origin. Aging Cell. 2023;22(1):e13754.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Vella LJ, Scicluna BJ, Cheng L, Bawden EG, Masters CL, Ang CS, et al. A rigorous method to enrich for exosomes from brain tissue. J Extracell Vesicles. 2017;6(1):1348885.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You Y, Muraoka S, Jedrychowski MP, Hu J, McQuade AK, Young-Pearse T, et al. Human neural cell type-specific extracellular vesicle proteome defines disease-related molecules associated with activated astrocytes in Alzheimer’s disease brain. J Extracell Vesicles. 2022;11(1):e12183.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Anastasi F, Masciandaro SM, Carratore RD, Dell’Anno MT, Signore G, Falleni A, et al. Proteomics profiling of neuron-derived small extracellular vesicles from human plasma: enabling single-subject analysis. Int J Mol Sci. 2021;22(6):2951.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     



  • Source link