Scientific Papers

Sulfate limitation increases specific plasmid DNA yield and productivity in E. coli fed-batch processes | Microbial Cell Factories


  • Mairhofer J, Lara AR. Advances in host and vector development for the production of plasmid DNA vaccines, cancer vaccines. Berlin: Springer; 2014. p. 505–41.


    Google Scholar
     

  • European Medicines Agency. 2020. Comirnaty assessment report, https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf. Accessed 28 Jul 2022.

  • Schmidt A, Helgers H, Vetter FL, Juckers A, Strube J. Fast and flexible mRNA vaccine manufacturing as a solution to pandemic situations by adopting chemical engineering good practice-continuous autonomous operation in stainless steel equipment concepts. Processes. 2021;9:1874.

    Article 
    CAS 

    Google Scholar
     

  • Ramamoorth M, Narvekar A. Non viral vectors in gene therapy-an overview. J Clin Diagnostic Res JCDR. 2015;9(1):GE01.


    Google Scholar
     

  • Cherng J-Y, Schuurmans-Nieuwenbroek N, Jiskoot W, Talsma H, Zuidam N, Hennink W, Crommelin D. Effect of DNA topology on the transfection efficiency of poly ((2-dimethylamino) ethyl methacrylate)-plasmid complexes. J Controll Release. 1999;60:343–53.

    Article 
    CAS 

    Google Scholar
     

  • Cupillard L, Juillard V, Latour S, Colombet G, Cachet N, Richard S, Blanchard S, Fischer L. Impact of plasmid supercoiling on the efficacy of a rabies DNA vaccine to protect cats. Vaccine. 2005;23:1910–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cunningham DS, Koepsel RR, Ataai MM, Domach MM. Factors affecting plasmid production in Escherichia coli from a resource allocation standpoint. Microb Cell Factories. 2009;8:1–17.

    Article 

    Google Scholar
     

  • Mairhofer J, Cserjan-Puschmann M, Striedner G, Nöbauer K, Razzazi-Fazeli E, Grabherr R. Marker-free plasmids for gene therapeutic applications-lack of antibiotic resistance gene substantially improves the manufacturing process. J Biotechnol. 2010;146:130–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bower DM, Prather KL. Engineering of bacterial strains and vectors for the production of plasmid DNA. Appl Microbiol Biotechnol. 2009;82:805–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wunderlich M, Taymaz-Nikerel H, Gosset G, Ramírez OT, Lara AR. Effect of growth rate on plasmid DNA production and metabolic performance of engineered Escherichia coli strains. J Biosci Bioeng. 2014;117:336–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Galindo J, Barrón BL, Lara AR. Improved production of large plasmid DNA by enzyme-controlled glucose release. Ann Microbiol. 2016;66:1337–42.

    Article 
    CAS 

    Google Scholar
     

  • Soto R, Caspeta L, Barrón B, Gosset G, Ramírez OT, Lara AR. High cell-density cultivation in batch mode for plasmid DNA production by a metabolically engineered e, coli strain minimized overflow metabolism,. Biochem Eng J. 2011;56:165–71.

    Article 
    CAS 

    Google Scholar
     

  • Jaén KE, Velazquez D, Delvigne F, Sigala JC, Lara AR. Engineering e. coli for improved microaerobic PDNA production. Bioprocess Biosyst Eng. 2019;42:1457–66.

    Article 
    PubMed 

    Google Scholar
     

  • Lara AR, Jaén KE, Folarin O, Keshavarz-Moore E, Büchs J. Effect of the oxygen transfer rate on oxygen-limited production of plasmid DNA by Escherichia coli. Biochem Eng J. 2019;150: 107303.

    Article 
    CAS 

    Google Scholar
     

  • Cunningham DS, Liu Z, Domagalski N, Koepsel RR, Ataai MM, Domach MM. Pyruvate kinase-deficient Escherichia coli exhibits increased plasmid copy number and cyclic amp levels. J Bacteriol. 2009;191:3041–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonçalves GA, Prazeres DM, Monteiro GA, Prather KL. De novo creation of mg1655-derived e. coli strains specifically designed for plasmid DNA production. Appl Microbiol Biotechnol. 2013;97:611–20.

    Article 
    PubMed 

    Google Scholar
     

  • Wang Z, Le G, Shi Y, Wegrzyn G. Medium design for plasmid DNA production based on stoichiometric model. Process Biochem. 2001;36:1085–93.

    Article 
    CAS 

    Google Scholar
     

  • Martins L, Pedro A, Oppolzer D, Sousa F, Queiroz J, Passarinha L. Enhanced biosynthesis of plasmid DNA from Escherichia coli vh33 using box-Behnken design associated to aromatic amino acids pathway. Biochem Eng J. 2015;98:117–26.

    Article 
    CAS 

    Google Scholar
     

  • Islas-Lugo F, Vega-Estrada J, Alvis CA, Ortega-Lopez J, del Carmen Montes-Horcasitas M. Developing strategies to increase plasmid DNA production in Eescherichia coli dh5\(\alpha\) using batch culture. J Biotechnol. 2016;233:66–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Danquah MK, Forde GM. Growth medium selection and its economic impact on plasmid DNA production. J Biosci Bioeng. 2007;104:490–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kay A, O’Kennedy R, Ward J, Keshavarz-Moore E. Impact of plasmid size on cellular oxygen demand in Escherichia coli. Biotechnol Appl Biochem. 2003;38:1–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Folarin O, Nesbeth D, Ward JM, Keshavarz-Moore E. Application of plasmid engineering to enhance yield and quality of plasmid for vaccine and gene therapy. Bioengineering. 2019;6:54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaén KE, Velázquez D, Sigala J-C, Lara AR. Design of a microaerobically inducible replicon for high-yield plasmid DNA production. Biotechnol Bioeng. 2019;116:2514–25.

    Article 
    PubMed 

    Google Scholar
     

  • Williams JA, Luke J, Langtry S, Anderson S, Hodgson CP, Carnes AE. Generic plasmid DNA production platform incorporating low metabolic burden seed-stock and fed-batch fermentation processes. Biotechnol Bioeng. 2009;103:1129–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carnes AE, Luke JM, Vincent JM, Schukar A, Anderson S, Hodgson CP, Williams JA. Plasmid DNA fermentation strain and process-specific effects on vector yield, quality, and transgene expression. Biotechnol Bioeng. 2011;108:354–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaén KE, Lara AR, Ramírez OT. Effect of heating rate on PDNA production by e. coli. Biochem Eng J. 2013;79:230–8.

    Article 

    Google Scholar
     

  • Monteiro G, Duarte S, Martins M, Andrade S, Prazeres D. High copy number plasmid engineering for biopharmaceutical-grade PDNA production in Lactococcus lactis. J Biotechnol. 2019;305:S23–4.

    Article 

    Google Scholar
     

  • Duarte SO, Monteiro GA. Plasmid replicons for the production of pharmaceutical-grade PDNA, proteins and antigens by Lactococcus lactis cell factories. Int J Mol Sci. 2021;22:1379.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monk JM, Lloyd CJ, Brunk E, Mih N, Sastry A, King Z, Takeuchi R, Nomura W, Zhang Z, Mori H, et al. I ml1515, a knowledgebase that computes Escherichia coli traits. Nat Biotechnol. 2017;35:904–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebrahim A, Lerman JA, Palsson BO, Hyduke DR. Cobrapy: constraints-based reconstruction and analysis for python. BMC Syst Biol. 2013;7:1–6.

    Article 

    Google Scholar
     

  • Neidhardt FC, Ingraham JL, Schaechter M. Physiology of the bacterial cell; a molecular approach, 589.901 N397, Sinauer associates, 1990.

  • Sun Y, Fleming RM, Thiele I, Saunders MA. Robust flux balance analysis of multiscale biochemical reaction networks. BMC Bioinformatics. 2013;14:1–6.

    Article 
    CAS 

    Google Scholar
     

  • Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD, Adkins JN, Schramm G, Purvine SO, Lopez-Ferrer D, et al. Omic data from evolved e. coli are consistent with computed optimal growth from genome-scale models. Mol Syst Biol. 2010;6:390.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahadevan R, Edwards JS, Doyle FJ III. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J. 2002;83:1331–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Höffner K, Harwood SM, Barton PI. A reliable simulator for dynamic flux balance analysis. Biotechnol Bioeng. 2013;110:792–802.

    Article 
    PubMed 

    Google Scholar
     

  • Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, et al. Scipy 1.0: fundamental algorithms for scientific computing in python. Nat Methods. 2020;17:261–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yanisch-Perron C, Vieira J, Messing J. Improved m13 phage cloning vectors and host strains: nucleotide sequences of the m13mpl8 and puc19 vectors. Gene. 1985;33:103–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bimboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl Acids Res. 1979;7:1513–23.

    Article 

    Google Scholar
     

  • Dahlgren B., Čertík O. finitediff, 2021. https://github.com/bjodah/finitediff. 10.5281/zenodo.5168369.

  • Fornberg B. Classroom note: calculation of weights in finite difference formulas. SIAM Review. 1998;40:685–91.

    Article 

    Google Scholar
     

  • Lange HC, Heijnen JJ. Statistical reconciliation of the elemental and molecular biomass composition of Saccharomyces cerevisiae. Biotechnol Bioeng. 2001;75:334–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klamt S, Mahadevan R, Hädicke O. When do two-stage processes outperform one-stage processes? Biotechnol J. 2018;13:1700539.

    Article 

    Google Scholar
     

  • Masuda A, Toya Y, Shimizu H. Metabolic impact of nutrient starvation in mevalonate-producing Escherichia coli. Bioresour Technol. 2017;245:1634–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Willrodt C, Hoschek A, Bühler B, Schmid A, Julsing MK. Decoupling production from growth by magnesium sulfate limitation boosts de novo limonene production. Biotechnol Bioeng. 2016;113:1305–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tokuyama K, Toya Y, Matsuda F, Cress BF, Koffas MA, Shimizu H. Magnesium starvation improves production of malonyl-coa-derived metabolites in Escherichia coli. Metabol Eng. 2019;52:215–23.

    Article 
    CAS 

    Google Scholar
     

  • Stargardt P, Feuchtenhofer L, Cserjan-Puschmann M, Striedner G, Mairhofer J. Bacteriophage inspired growth-decoupled recombinant protein production in Escherichia coli. ACS Synth Biol. 2020;9:1336–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hartline CJ, Schmitz AC, Han Y, Zhang F. Dynamic control in metabolic engineering: theories, tools, and applications. Metabol Eng. 2021;63:126–40.

    Article 
    CAS 

    Google Scholar
     

  • Venayak N, von Kamp A, Klamt S, Mahadevan R. MoVE identifies metabolic valves to switch between phenotypic states. Nat Commun. 2018;9:5332.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maret W, Blower P. Teaching the chemical elements in biochemistry: elemental biology and metallomics. Biochem Mol Biol Education. 2022;50:283–9.

    Article 
    CAS 

    Google Scholar
     

  • N. R. C. U. C. O. D. A. Health. 1989. Trace Elements, in: Diet and Health: Implications for Reducing Chronic Disease Risk. Washington (DC): National Academies Press. 301.

  • Markovich D. Physiological roles and regulation of mammalian sulfate transporters. Physiol Rev. 2001;81:1499–533.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • St John A, Goldberg A. Effects of starvation for potassium and other inorganic ions on protein degradation and ribonucleic acid synthesis in Escherichia coli. J Bacteriol. 1980;143:1223–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milo R, Jorgensen P, Moran U, Weber G, Springer M. Bionumbers-the database of key numbers in molecular and cell biology. Nucl Acids Res. 2010;38:D750–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Z-N, Shen W-H, Chen H, Cen P-L. Effects of medium composition on the production of plasmid DNA vector potentially for human gene therapy. J Zhejiang Univ Sci B. 2005;6:396.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pablos TE, Soto R, Mora EM, Le Borgne S, Ramírez OT, Gosset G, Lara AR. Enhanced production of plasmid DNA by engineered Escherichia coli strains. J Biotechnol. 2012;158:211–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cortés JT, Flores N, Bolívar F, Lara AR, Ramírez OT. Physiological effects of ph gradients on Escherichia coli during plasmid DNA production. Biotechnol Bioeng. 2016;113:598–611.

    Article 
    PubMed 

    Google Scholar
     

  • Dorward A, O’Kennedy RD, Folarin O, Ward JM, Keshavarz-Moore E. The role of amino acids in the amplification and quality of DNA vectors for industrial applications. Biotechnol Progress. 2019;35: e2883.

    Article 
    CAS 

    Google Scholar
     

  • García-Rendón A, Munguía-Soto R, Montesinos-Cisneros RM, Guzman R, Tejeda-Mansir A. Performance analysis of exponential-fed perfusion cultures for PDNA vaccines production. J Chem Technol Biotechnol. 2017;92:342–9.

    Article 

    Google Scholar
     

  • de la Cruz M, Ramírez EA, Sigala J-C, Utrilla J, Lara AR. Plasmid DNA production in proteome-reduced Escherichia coli. Microorganisms. 2020;8:1444.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Kennedy RD, Ward JM, Keshavarz-Moore E. Effects of fermentation strategy on the characteristics of plasmid DNA production. Biotechnol Appl Biochem. 2003;37:83–90.

    Article 
    PubMed 

    Google Scholar
     

  • O’Mahony K, Freitag R, Hilbrig F, Müller P, Schumacher I. Strategies for high titre plasmid DNA production in Escherichia coli dh5\(\alpha\). Process Biochem. 2007;42:1039–49.

    Article 

    Google Scholar
     

  • Goncalves GA, Prather KL, Monteiro GA, Carnes AE, Prazeres DM. Plasmid DNA production with Escherichia coli galg20, a pgi-gene knockout strain: Fermentation strategies and impact on downstream processing. J Biotechnol. 2014;186:119–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phue J-N, Lee SJ, Trinh L, Shiloach J. Modified Escherichia coli b (bl21), a superior producer of plasmid DNA compared with Escherichia coli k (dh5\(\alpha\)). Biotechnol Bioeng. 2008;101:831–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grijalva-Hernández F, Vega-Estrada J, Escobar-Rosales M, Ortega-López J, Aguilar-López R, Lara AR, Montes-Horcasitas MDC. High kanamycin concentration as another stress factor additional to temperature to increase PDNA production in e coli dh5\(\alpha\) batch and fed-batch cultures. Microorganisms. 2019;7:711.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson J, Rodriguez S, Finlayson N, Williams J, Carnes A. Antibiotic-free production of a herpes simplex virus 2 DNA vaccine in a high yield cgmp process. Human Vaccines Immunother. 2013;9:2211–5.

    Article 
    CAS 

    Google Scholar
     

  • Darzi Y, Letunic I, Bork P, Yamada T. Ipath3. 0: interactive pathways explorer v3. Nucl Acids Res. 2018;46:W510–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chubukov V, Sauer U. Environmental dependence of stationary-phase metabolism in bacillus subtilis and Escherichia coli. Appl Environ Microbiol. 2014;80:2901–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Mansi E, Holms W. Control of carbon flux to acetate excretion during growth of Escherichia coli in batch and continuous cultures. Microbiology. 1989;135:2875–83.

    Article 
    CAS 

    Google Scholar
     

  • Oftadeh O, Hatzimanikatis V. Application of genome-scale models of metabolism and expression to the simulation and design of recombinant organisms. bioRxiv. 2023:2023–09.

  • Castan A, Enfors S-O. Characteristics of a do-controlled fed-batch culture of Escherichia coli. Bioprocess Eng. 2000;22:509–15.

    Article 
    CAS 

    Google Scholar
     

  • Prather KJ, Sagar S, Murphy J, Chartrain M. Industrial scale production of plasmid DNA for vaccine and gene therapy: plasmid design, production, and purification. Enzyme Microbial Technol. 2003;33:865–83.

    Article 
    CAS 

    Google Scholar
     

  • Williams JA, Carnes AE, Hodgson CP. Plasmid DNA vaccine vector design: impact on efficacy, safety and upstream production. Biotechnol Adv. 2009;27:353–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong P, Gladney S, Keasling JD. Mathematical model of the lac operon: inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose. Biotechnol Progress. 1997;13:132–43.

    Article 
    CAS 

    Google Scholar
     

  • Varma A, Palsson BO. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli w3110. Appl Environ Microbiol. 1994;60:3724–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • King ZA, Lu J, Dräger A, Miller P, Federowicz S, Lerman JA, Ebrahim A, Palsson BO, Lewis NE. Bigg models: a platform for integrating, standardizing and sharing genome-scale models. Nucl Acids Res. 2016;44:D515–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link