Scientific Papers

Multi-omics study identifies that PICK1 deficiency causes male infertility by inhibiting vesicle trafficking in Sertoli cells | Reproductive Biology and Endocrinology


  • Jiao SY, Yang YH, Chen SR. Molecular genetics of infertility: loss-of-function mutations in humans and corresponding knockout/mutated mice. Hum Reprod Update. 2021;27(1):154–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krausz C. Male infertility: pathogenesis and clinical diagnosis. Best Pract Res Clin Endocrinol Metab. 2011;25(2):271–85.

    Article 
    PubMed 

    Google Scholar
     

  • Menkveld R. Clinical significance of the low normal sperm morphology value as proposed in the fifth edition of the WHO Laboratory Manual for the examination and Processing of Human Semen. Asian J Androl. 2010;12(1):47–58.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bieniek JM, Lo KC. Recent advances in understanding & managing male infertility. F1000Res. 2016;5:2756.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin RH. Cytogenetic determinants of male fertility. Hum Reprod Update. 2008;14(4):379–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krausz C, Riera-Escamilla A. Genetics of male infertility. Nat Rev Urol. 2018;15(6):369–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Homsy J, Zaidi S, Shen Y, Ware JS, Samocha KE, Karczewski KJ, et al. De novo mutations in congenital Heart Disease with neurodevelopmental and other congenital anomalies. Science. 2015;350(6265):1262–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Starokadomskyy P, Gemelli T, Rios JJ, Xing C, Wang RC, Li H, et al. DNA polymerase-alpha regulates the activation of type I interferons through cytosolic RNA:DNA synthesis. Nat Immunol. 2016;17(5):495–504.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li YH, Zhang N, Wang YN, Shen Y, Wang Y. Multiple faces of protein interacting with C kinase 1 (PICK1): structure, function, and Diseases. Neurochem Int. 2016;98:115–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang B, Cao W, Zhang F, Zhang L, Niu R, Niu Y, et al. Protein interacting with C alpha kinase 1 (PICK1) is involved in promoting Tumor growth and correlates with poor prognosis of human Breast cancer. Cancer Sci. 2010;101(6):1536–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Widagdo J, Guntupalli S, Jang SE, Anggono V. Regulation of AMPA receptor trafficking by protein ubiquitination. Front Mol Neurosci. 2017;10:347.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin W, Ge WP, Xu J, Cao M, Peng L, Yung W, et al. Lipid binding regulates synaptic targeting of PICK1, AMPA receptor trafficking, and synaptic plasticity. J Neurosci. 2006;26(9):2380–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuo TH, Wang KK, Carlock L, Diglio C, Tsang W. Phorbol Ester induces both gene expression and phosphorylation of the plasma membrane Ca2 + pump. J Biol Chem. 1991;266(4):2520–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao N, Kam C, Shen C, Jin W, Wang J, Lee KM, et al. PICK1 deficiency causes male infertility in mice by disrupting acrosome formation. J Clin Invest. 2009;119(4):802–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He J, Xia M, Tsang WH, Chow KL, Xia J. ICA1L forms BAR-domain complexes with PICK1 and is crucial for acrosome formation in spermiogenesis. J Cell Sci. 2015;128(20):3822–36.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu C, Song Z, Wang L, Yu H, Liu W, Shang Y, et al. Sirt1 regulates acrosome biogenesis by modulating autophagic flux during spermiogenesis in mice. Development. 2017;144(3):441–51.

    CAS 
    PubMed 

    Google Scholar
     

  • Hai Y, Hou J, Liu Y, Liu Y, Yang H, Li Z, et al. The roles and regulation of sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis. Semin Cell Dev Biol. 2014;29:66–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma M, Yang S, Zhang Z, Li P, Gong Y, Liu L, et al. Sertoli cells from non-obstructive azoospermia and obstructive azoospermia patients show distinct morphology, Raman spectrum and biochemical phenotype. Hum Reprod. 2013;28(7):1863–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soffientini U, Rebourcet D, Abel MH, Lee S, Hamilton G, Fowler PA, et al. Identification of sertoli cell-specific transcripts in the mouse testis and the role of FSH and androgen in the control of sertoli cell activity. BMC Genomics. 2017;18(1):972.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ni FD, Hao SL, Yang WX. Molecular insights into hormone regulation via signaling pathways in sertoli cells: with discussion on infertility and testicular Tumor. Gene. 2020;753:144812.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao L, Yao C, Xing X, Jing T, Li P, Zhu Z, et al. Single-cell analysis of developing and azoospermia human testicles reveals central role of sertoli cells. Nat Commun. 2020;11(1):5683.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonarriba CR, Burgues JP, Vidana V, Ruiz X, Piza P. Predictive factors of successful sperm retrieval in azoospermia. Actas Urol Esp. 2013;37(5):266–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Safian D, Bogerd J, Schulz RW. Regulation of spermatogonial development by Fsh: the complementary roles of locally produced Igf and wnt signaling molecules in adult zebrafish testis. Gen Comp Endocrinol. 2019;284:113244.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oud MS, Volozonoka L, Smits RM, Vissers L, Ramos L, Veltman JA. A systematic review and standardized clinical validity assessment of male infertility genes. Hum Reprod. 2019;34(5):932–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strausbaugh SD, Davis PB. Cystic fibrosis: a review of epidemiology and pathobiology. Clin Chest Med. 2007;28(2):279–88.

    Article 
    PubMed 

    Google Scholar
     

  • Yu J, Chen Z, Ni Y, Li Z. CFTR mutations in men with congenital bilateral absence of the vas deferens (CBAVD): a systemic review and meta-analysis. Hum Reprod. 2012;27(1):25–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boehm U, Bouloux PM, Dattani MT, de Roux N, Dode C, Dunkel L, et al. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism–pathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 2015;11(9):547–64.

    Article 
    PubMed 

    Google Scholar
     

  • Ferlin A, Rocca MS, Vinanzi C, Ghezzi M, Di Nisio A, Foresta C. Mutational screening of NR5A1 gene encoding steroidogenic factor 1 in cryptorchidism and male factor infertility and functional analysis of seven undescribed mutations. Fertil Steril. 2015;104(1):163–169e161.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zariwala MA, Leigh MW, Ceppa F, Kennedy MP, Noone PG, Carson JL, et al. Mutations of DNAI1 in primary ciliary dyskinesia: evidence of founder effect in a common mutation. Am J Respir Crit Care Med. 2006;174(8):858–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hornef N, Olbrich H, Horvath J, Zariwala MA, Fliegauf M, Loges NT, et al. DNAH5 mutations are a common cause of primary ciliary dyskinesia with outer dynein arm defects. Am J Respir Crit Care Med. 2006;174(2):120–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwabe GC, Hoffmann K, Loges NT, Birker D, Rossier C, de Santi MM, et al. Primary ciliary dyskinesia associated with normal axoneme ultrastructure is caused by DNAH11 mutations. Hum Mutat. 2008;29(2):289–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumanov P, Nandipati K, Tomova A, Agarwal A. Inhibin B is a better marker of spermatogenesis than other hormones in the evaluation of male factor infertility. Fertil Steril. 2006;86(2):332–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao M, Mao Z, Kam C, Xiao N, Cao X, Shen C, et al. PICK1 and ICA69 control insulin granule trafficking and their deficiencies lead to impaired glucose tolerance. PLoS Biol. 2013;11(4):e1001541.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Mao Z, Huang J, Xia J. PICK1 is essential for insulin production and the maintenance of glucose homeostasis. Mol Biol Cell. 2018;29(5):587–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holst B, Madsen KL, Jansen AM, Jin C, Rickhag M, Lund VK, et al. PICK1 deficiency impairs secretory vesicle biogenesis and leads to growth retardation and decreased glucose tolerance. PLoS Biol. 2013;11(4):e1001542.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gholami D, Amirmahani F, Yazdi RS, Hasheminia T, Teimori H. MiR-182-5p, MiR-192-5p, and MiR-493-5p constitute a Regulatory Network with CRISP3 in seminal plasma fluid of Teratozoospermia patients. Reprod Sci. 2021;28(7):2060–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhat-Nakshatri P, Wang G, Collins NR, Thomson MJ, Geistlinger TR, Carroll JS, et al. Estradiol-regulated microRNAs control estradiol response in Breast cancer cells. Nucleic Acids Res. 2009;37(14):4850–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu W, Hu Z, Qin Y, Dong J, Dai J, Lu C, et al. Seminal plasma microRNAs: potential biomarkers for spermatogenesis status. Mol Hum Reprod. 2012;18(10):489–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Segall ML, Dhanasekaran P, Baldwin F, Anantharamaiah GM, Weisgraber KH, Phillips MC, et al. Influence of apoE domain structure and polymorphism on the kinetics of phospholipid vesicle solubilization. J Lipid Res. 2002;43(10):1688–700.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song K, Yang X, An G, Xia X, Zhao J, Xu X, et al. Targeting APLN/APJ restores blood-testis barrier and improves spermatogenesis in murine and human diabetic models. Nat Commun. 2022;13(1):7335.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernard P, Harley VR. Wnt4 action in gonadal development and sex determination. Int J Biochem Cell Biol. 2007;39(1):31–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Hu M, Meng F, Sun X, Xu H, Zhang J, et al. Metformin ameliorates uterine defects in a rat model of polycystic ovary syndrome. EBioMedicine. 2017;18:157–70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu L, Monteiro A, Johnston H, King P, O’Shaughnessy PJ. Expression of Cyp21a1 and Cyp11b1 in the fetal mouse testis. Reproduction. 2007;134(4):585–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rajamanickam GD, Kastelic JP, Thundathil JC. The ubiquitous isoform of Na/K-ATPase (ATP1A1) regulates junctional proteins, connexin 43 and claudin 11 via Src-EGFR-ERK1/2-CREB pathway in rat sertoli cells. Biol Reprod. 2017;96(2):456–68.

    Article 
    PubMed 

    Google Scholar
     

  • Kierszenbaum AL, Rivkin E, Tres LL. Cytoskeletal track selection during cargo transport in spermatids is relevant to male fertility. Spermatogenesis. 2011;1(3):221–30.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yokonishi T, McKey J, Ide S, Capel B. Sertoli cell ablation and replacement of the spermatogonial niche in mouse. Nat Commun. 2020;11(1):40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng Q, Zhang J, Wang Z, Zhang S, Zhi F, Liang H. Vesicle-Associated membrane Protein-Associated protein A is involved in androgen receptor trafficking in mouse sertoli cells. Int J Endocrinol. 2018;2018:4537214.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovac JR, Pastuszak AW, Lamb DJ. The use of genomics, proteomics, and metabolomics in identifying biomarkers of male infertility. Fertil Steril. 2013;99(4):998–1007.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinha A, Singh V, Yadav S. Multi-omics and male infertility: status, integration and future prospects. Front Biosci (Schol Ed). 2017;9(3):375–94.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang T, Sun P, Geng Q, Fan H, Gong Y, Hu Y, et al. Disrupted spermatogenesis in a metabolic syndrome model: the role of vitamin A metabolism in the gut-testis axis. Gut. 2022;71(1):78–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaiser GR, Monteiro SC, Gelain DP, Souza LF, Perry ML, Bernard EA. Metabolism of amino acids by cultured rat sertoli cells. Metabolism. 2005;54(4):515–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Zhang Y, Liu C, Zhao M, Yang Y, Wu H et al. Serum metabolomic profiling identifies characterization of non-obstructive azoospermic men. Int J Mol Sci 2017;18(2).

  • Skakkebaek NE, Rajpert-De Meyts E, Buck Louis GM, Toppari J, Andersson AM, Eisenberg ML, et al. Male Reproductive disorders and Fertility trends: influences of Environment and genetic susceptibility. Physiol Rev. 2016;96(1):55–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link