Scientific Papers

Captive ERVWE1 triggers impairment of 5-HT neuronal plasticity in the first-episode schizophrenia by post-transcriptional activation of HTR1B in ALKBH5-m6A dependent epigenetic mechanisms | Cell & Bioscience


  • Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016;388:86–97.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saha S, Chant D, Welham J, McGrath J. A systematic review of the prevalence of schizophrenia. PLoS Med. 2005;2:e141.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marwaha S, Johnson S. Schizophrenia and employment—a review. Soc Psychiatry Psychiatr Epidemiol. 2004;39:337–49.

    Article 
    PubMed 

    Google Scholar
     

  • Hall J, Trent S, Thomas KL, O’Donovan MC, Owen MJ. Genetic risk for schizophrenia: convergence on synapticpathways involved in plasticity. Biol Psychiatry. 2015;77:52–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    Article 
    PubMed Central 

    Google Scholar
     

  • Lopez-Figueroa AL, Norton CS, Lopez-Figueroa MO, Armellini-Dodel D, Burke S, Akil H, et al. Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia. Biol Psychiatry. 2004;55:225–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohammadi A, Rashidi E, Amooeian VG. Brain, blood, cerebrospinal fluid, and serum biomarkers in schizophrenia. Psychiatry Res. 2018;265:25–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao L, Xu CB, Zhang Y, Cao YX, Edvinsson L. Secondhand cigarette smoke exposure causes upregulation of cerebrovascular 5-HT(1) (B) receptors via the Raf/ERK/MAPK pathway in rats. Acta Physiol. 2013;207:183–93.

    Article 
    CAS 

    Google Scholar
     

  • Lin SL, Setya S, Johnson-Farley NN, Cowen DS. Differential coupling of 5-HT(1) receptors to G proteins of the G(i) family. Br J Pharmacol. 2002;136:1072–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendez J, Kadia TM, Somayazula RK, El-Badawi KI, Cowen DS. Differential coupling of serotonin 5-HT1A and 5-HT1B receptors to activation of ERK2 and inhibition of adenylyl cyclase in transfected CHO cells. J Neurochem. 1999;73:162–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nikolaienko O, Eriksen MS, Patil S, Bito H, Bramham CR. Stimulus-evoked ERK-dependent phosphorylation of activity-regulated cytoskeleton-associated protein (Arc) regulates its neuronal subcellular localization. Neuroscience. 2017;360:68–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Panja D, Dagyte G, Bidinosti M, Wibrand K, Kristiansen AM, Sonenberg N, et al. Novel translational control in Arc-dependent long term potentiation consolidation in vivo. J Biol Chem. 2009;284:31498–511.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang F, Chotiner JK, Steward O. Actin polymerization and ERK phosphorylation are required for Arc/Arg3.1 mRNA targeting to activated synaptic sites on dendrites. J Neurosci. 2007;27:9054–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Jia B, Araki Y, Liu B, Ye F, Huganir R, et al. Arc weakens synapses by dispersing AMPA receptors from postsynaptic density via modulating PSD phase separation. Cell Res. 2022;32:914–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goo B, Sanstrum BJ, Holden D, Yu Y, James NG. Arc/Arg3.1 has an activity-regulated interaction with PICK1 that results in altered spatial dynamics. Sci Rep. 2018;8:14675.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moyer CE, Shelton MA, Sweet RA. Dendritic spine alterations in schizophrenia. Neurosci Lett. 2015;601:46–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wysokinski A, Kozlowska E, Szczepocka E, Lucka A, Agier J, Brzezinska-Blaszczyk E, et al. Expression of dopamine D(1–4) and serotonin 5-HT(1A–3A) receptors in blood mononuclear cells in schizophrenia. Front Psychiatry. 2021;12:645081.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu X, Yan Q, Liu L, Xue X, Yao W, Li X, et al. Domesticated HERV-W env contributes to the activation of the small conductance Ca(2+)-activated K(+) type 2 channels via decreased 5-HT4 receptor in recent-onset schizophrenia. Virol Sin. 2023;38:9–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki T, Iwata N, Kitamura Y, Kitajima T, Yamanouchi Y, Ikeda M, et al. Association of a haplotype in the serotonin 5-HT4 receptor gene (HTR4) with Japanese schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2003;121B:7–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Bruin NM, Kruse CG. 5-HT6 receptor antagonists: potential efficacy for the treatment of cognitive impairment in schizophrenia. Curr Pharm Des. 2015;21:3739–59.

    Article 
    PubMed 

    Google Scholar
     

  • Bannert N, Kurth R. Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci USA. 2004;101(Suppl 2):14572–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jakobsson J, Vincendeau M. SnapShot: Human endogenous retroviruses. Cell. 2022;185:400.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao J, Zhang Q, Cong YS. Human endogenous retroviruses in development and disease. Comput Struct Biotechnol J. 2021;19:5978–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larsson E, Andersson G. Beneficial role of human endogenous retroviruses: facts and hypotheses. Scand J Immunol. 1998;48:329–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Canli T. A model of human endogenous retrovirus (HERV) activation in mental health and illness. Med Hypotheses. 2019;133:109404.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu C, Liu L, Wang X, Liu Y, Wang M, Zhu F. HBV X Protein induces overexpression of HERV-W env through NF-kappaB in HepG2 cells. Virus Genes. 2017;53:797–806.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Kuyl AC. HIV infection and HERV expression: a review. Retrovirology. 2012;9:6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu C, Chen Y, Li S, Yu H, Zeng J, Wang X, et al. Activation of elements in HERV-W family by caffeine and aspirin. Virus Genes. 2013;47:219–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao Y, Yu XF, Chen T. Human endogenous retroviruses in cancer: expression, regulation and function. Oncol Lett. 2021;21:121.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature. 2000;403:785–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, Liu L, Liu Y, Zhou P, Yan Q, Yu H, et al. Implication of human endogenous retrovirus W family envelope in hepatocellular carcinoma promotes MEK/ERK-mediated metastatic invasiveness and doxorubicin resistance. Cell Death Discov. 2021;7:177.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu HL, Zhao ZK, Zhu F. The role of human endogenous retroviral long terminal repeat sequences in human cancer (Review). Int J Mol Med. 2013;32:755–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perron H, Lazarini F, Ruprecht K, Pechoux-Longin C, Seilhean D, Sazdovitch V, et al. Human endogenous retrovirus (HERV)-W ENV and GAG proteins: physiological expression in human brain and pathophysiological modulation in multiple sclerosis lesions. J Neurovirol. 2005;11:23–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perron H, Mekaoui L, Bernard C, Veas F, Stefas I, Leboyer M. Endogenous retrovirus type W GAG and envelope protein antigenemia in serum of schizophrenic patients. Biol Psychiatry. 2008;64:1019–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang W, Li S, Hu Y, Yu H, Luo F, Zhang Q, et al. Implication of the env gene of the human endogenous retrovirus W family in the expression of BDNF and DRD3 and development of recent-onset schizophrenia. Schizophr Bull. 2011;37:988–1000.

    Article 
    PubMed 

    Google Scholar
     

  • Xia YR, Wei XC, Li WS, Yan QJ, Wu XL, Yao W, et al. CPEB1, a novel risk gene in recent-onset schizophrenia, contributes to mitochondrial complex I defect caused by a defective provirus ERVWE1. World J Psychiatry. 2021;11:1075–94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao W, Zhou P, Yan Q, Wu X, Xia Y, Li W, et al. ERVWE1 reduces hippocampal neuron density and impairs dendritic spine morphology through inhibiting Wnt/JNK non-canonical pathway via miR-141-3p in schizophrenia. Viruses. 2023;15:168.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan Q, Wu X, Zhou P, Zhou Y, Li X, Liu Z, et al. HERV-W envelope triggers abnormal dopaminergic neuron process through DRD2/PP2A/AKT1/GSK3 for schizophrenia risk. Viruses. 2022;14:145.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Wu X, Li W, Yan Q, Zhou P, Xia Y, et al. HERV-W ENV induces innate immune activation and neuronal apoptosis via linc01930/cGAS axis in recent-onset schizophrenia. Int J Mol Sci. 2023;24:3000.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Liu Z, Wang P, Li S, Zeng J, Tu X, et al. Syncytin-1, an endogenous retroviral protein, triggers the activation of CRP via TLR3 signal cascade in glial cells. Brain Behav Immun. 2018;67:324–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Huang J, Zhu F. Human endogenous retroviral envelope protein syncytin-1 and inflammatory abnormalities in neuropsychological diseases. Front Psychiatry. 2018;9:422.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tu X, Li S, Zhao L, Xiao R, Wang X, Zhu F. Human leukemia antigen-A*0201-restricted epitopes of human endogenous retrovirus W family envelope (HERV-W env) induce strong cytotoxic T lymphocyte responses. Virol Sin. 2017;32:280–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu YF, Zhu JJ, Yu TX, Liu H, Zhang T, Zhang YP, et al. Hypermethylation of mitochondrial DNA in vascular smooth muscle cells impairs cell contractility. Cell Death Dis. 2020;11:35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi SH, Flamand MN, Liu B, Zhu H, Hu M, Wang M, et al. RBM45 is an m(6)A-binding protein that affects neuronal differentiation and the splicing of a subset of mRNAs. Cell Rep. 2022;40:111293.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee MY, Lee J, Hyeon SJ, Cho H, Hwang YJ, Shin JY, et al. Epigenome signatures landscaped by histone H3K9me3 are associated with the synaptic dysfunction in Alzheimer’s disease. Aging Cell. 2020;19:e13153.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Q, Zhang Y, Wang B, Zhou W, Bi Y, Huai W, et al. KDM2B promotes IL-6 production and inflammatory responses through Brg1-mediated chromatin remodeling. Cell Mol Immunol. 2020;17:834–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richetto J, Meyer U. Epigenetic modifications in schizophrenia and related disorders: molecular scars of environmental exposures and source of phenotypic variability. Biol Psychiatry. 2021;89:215–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frye M, Harada BT, Behm M, He C. RNA modifications modulate gene expression during development. Science. 2018;361:1346–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yen YP, Chen JA. The m(6)A epitranscriptome on neural development and degeneration. J Biomed Sci. 2021;28:40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu J, Yan H, Hou Y, Cao W, Liu Y, Zhang E, et al. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential. J Hematol Oncol. 2022;15:8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathoux J, Henshall DC, Brennan GP. Regulatory mechanisms of the RNA modification m(6)A and significance in brain function in health and disease. Front Cell Neurosci. 2021;15:671932.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uno Y, Coyle JT. Glutamate hypothesis in schizophrenia. Psychiatry Clin Neurosci. 2019;73:204–15.

    Article 
    PubMed 

    Google Scholar
     

  • Hrovatin K, Kunej T, Dolzan V. Genetic variability of serotonin pathway associated with schizophrenia onset, progression, and treatment. Am J Med Genet B Neuropsychiatr Genet. 2020;183:113–27.

    Article 
    PubMed 

    Google Scholar
     

  • Sharp T, Barnes NM. Central 5-HT receptors and their function; present and future. Neuropharmacology. 2020;177:108155.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hwang EK, Chung JM. 5HT(1B) receptor-mediated pre-synaptic depression of excitatory inputs to the rat lateral habenula. Neuropharmacology. 2014;81:153–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong Z, Li J, Zhong J, Huang Y, Hu J, Zhang P, et al. MAPKAPK2, a potential dynamic network biomarker of alpha-synuclein prior to its aggregation in PD patients. NPJ Parkinsons Dis. 2023;9:41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyford GL, Yamagata K, Kaufmann WE, Barnes CA, Sanders LK, Copeland NG, et al. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron. 1995;14:433–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waung MW, Pfeiffer BE, Nosyreva ED, Ronesi JA, Huber KM. Rapid translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate. Neuron. 2008;59:84–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci. 2011;14:285–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–20.

    Article 
    PubMed 

    Google Scholar
     

  • Qin C, Li S, Yan Q, Wang X, Chen Y, Zhou P, et al. Elevation of Ser9 phosphorylation of GSK3beta is required for HERV-W env-mediated BDNF signaling in human U251 cells. Neurosci Lett. 2016;627:84–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Yan Q, Zhou P, Li S, Zhu F. HERV-W env regulates calcium influx via activating TRPC3 channel together with depressing DISC1 in human neuroblastoma cells. J Neurovirol. 2019;25:101–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li S, Liu ZC, Yin SJ, Chen YT, Yu HL, Zeng J, et al. Human endogenous retrovirus W family envelope gene activates the small conductance Ca2+-activated K+ channel in human neuroblastoma cells through CREB. Neuroscience. 2013;247:164–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao R, Li S, Cao Q, Wang X, Yan Q, Tu X, et al. Human endogenous retrovirus W env increases nitric oxide production and enhances the migration ability of microglia by regulating the expression of inducible nitric oxide synthase. Virol Sin. 2017;32:216–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Wu X, Huang J, Li H, Yan Q, Zhu F. Human endogenous retrovirus W family envelope protein (HERV-W env) facilitates the production of TNF-alpha and IL-10 by inhibiting MyD88s in glial cells. Arch Virol. 2021;166:1035–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lanz TA, Reinhart V, Sheehan MJ, Rizzo S, Bove SE, James LC, et al. Postmortem transcriptional profiling reveals widespread increase in inflammation in schizophrenia: a comparison of prefrontal cortex, striatum, and hippocampus among matched tetrads of controls with subjects diagnosed with schizophrenia, bipolar or major depressive disorder. Transl Psychiatry. 2019;9:151.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnes MR, Huxley-Jones J, Maycox PR, Lennon M, Thornber A, Kelly F, et al. Transcription and pathway analysis of the superior temporal cortex and anterior prefrontal cortex in schizophrenia. J Neurosci Res. 2011;89:1218–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selvaraj S, Arnone D, Cappai A, Howes O. Alterations in the serotonin system in schizophrenia: a systematic review and meta-analysis of postmortem and molecular imaging studies. Neurosci Biobehav Rev. 2014;45:233–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garcia-Gutierrez MS, Navarrete F, Sala F, Gasparyan A, Austrich-Olivares A, Manzanares J. Biomarkers in psychiatry: concept, definition, types and relevance to the clinical reality. Front Psychiatry. 2020;11:432.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loureiro CM, Shuhama R, Fachim HA, Menezes PR, Del-Ben CM, Louzada-Junior P. Low plasma concentrations of N-methyl-d-aspartate receptor subunits as a possible biomarker for psychosis. Schizophr Res. 2018;202:55–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang G, Hu C, Jiang T, Luo J, Hu J, Ling S, et al. Overexpression of serotonin receptor and transporter mRNA in blood leukocytes of antipsychotic-free and antipsychotic-naive schizophrenic patients: gender differences. Schizophr Res. 2010;121:160–71.

    Article 
    PubMed 

    Google Scholar
     

  • Tosato S, Bellani M, Bonetto C, Ruggeri M, Perlini C, Lasalvia A, et al. Is neuregulin 1 involved in determining cerebral volumes in schizophrenia? Preliminary results showing a decrease in superior temporal gyrus volume. Neuropsychobiology. 2012;65:119–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin H, Hong H, Yin P, Lu W, Niu S, Chen X, et al. Increased levels of N6-methyladenosine in peripheral blood RNA: a perspective diagnostic biomarker and therapeutic target for non-small cell lung cancer. Clin Chem Lab Med. 2023;61:473–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang Y, Wu X, Gu Y, Shi R, Yu T, Pan Y, et al. LINC00659 cooperated with ALKBH5 to accelerate gastric cancer progression by stabilising JAK1 mRNA in an m(6) A-YTHDF2-dependent manner. Clin Transl Med. 2023;13:e1205.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li N, Kang Y, Wang L, Huff S, Tang R, Hui H, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci USA. 2020;117:20159–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samuels IS, Saitta SC, Landreth GE. MAP’ing CNS development and cognition: an ERKsome process. Neuron. 2009;61:160–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stornetta RL, Zhu JJ. Ras and Rap signaling in synaptic plasticity and mental disorders. Neuroscientist. 2011;17:54–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xing L, Larsen RS, Bjorklund GR, Li X, Wu Y, Philpot BD, et al. Layer specific and general requirements for ERK/MAPK signaling in the developing neocortex. Elife. 2016;5:e11123.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu W, Fang H, Zhang L, Hu M, He S, Li H, et al. Reversible changes in BDNF expression in MK-801-induced hippocampal astrocytes through NMDAR/PI3K/ERK signaling. Front Cell Neurosci. 2021;15:672136.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newpher TM, Harris S, Pringle J, Hamilton C, Soderling S. Regulation of spine structural plasticity by Arc/Arg3.1. Semin Cell Dev Biol. 2018;77:25–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nikolaienko O, Patil S, Eriksen MS, Bramham CR. Arc protein: a flexible hub for synaptic plasticity and cognition. Semin Cell Dev Biol. 2018;77:33–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang W, Wu J, Ward MD, Yang S, Chuang YA, Xiao M, et al. Structural basis of arc binding to synaptic proteins: implications for cognitive disease. Neuron. 2015;86:490–500.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bennett MR. Synapse formation and regression in the cortex during adolescence and in schizophrenia. Med J Aust. 2009;190:S14–6.

    Article 
    PubMed 

    Google Scholar
     

  • Copf T. Impairments in dendrite morphogenesis as etiology for neurodevelopmental disorders and implications for therapeutic treatments. Neurosci Biobehav Rev. 2016;68:946–78.

    Article 
    PubMed 

    Google Scholar
     

  • Wu XL, Yan QJ, Zhu F. Abnormal synaptic plasticity and impaired cognition in schizophrenia. World J Psychiatry. 2022;12:541–57.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pierri JN, Volk CL, Auh S, Sampson A, Lewis DA. Decreased somal size of deep layer 3 pyramidal neurons in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry. 2001;58:466–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM, et al. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry. 1998;65:446–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • MacDonald ML, Alhassan J, Newman JT, Richard M, Gu H, Kelly RM, et al. Selective loss of smaller spines in schizophrenia. Am J Psychiatry. 2017;174:586–94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou MH, Sun FF, Xu C, Chen HB, Qiao H, Cai X, et al. Modulation of Kalirin-7 expression by hippocampal CA1 5-HT(1B) receptors in spatial memory consolidation. Behav Brain Res. 2019;356:148–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agrawal L, Vimal SK, Shiga T. Corrigendum to “Role of serotonin 4 receptor in the growth of hippocampal neurons during the embryonic development in mice.” Neuropharmacology. 2020;165:107916.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chelmicki T, Roger E, Teissandier A, Dura M, Bonneville L, Rucli S, et al. m(6)A RNA methylation regulates the fate of endogenous retroviruses. Nature. 2021;591:312–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu M, Hu X, Pan Z, Du C, Jiang J, Zheng W, et al. Endogenous retrovirus-derived enhancers confer the transcriptional regulation of human trophoblast syncytialization. Nucleic Acids Res. 2023;51:4745–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsieh FK, Ji F, Damle M, Sadreyev RI, Kingston RE. HERVH-derived lncRNAs negatively regulate chromatin targeting and remodeling mediated by CHD7. Life Sci Alliance. 2022;5:e202101127.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat Rev Genet. 2014;15:293–306.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaid R, Mendez A, Thombare K, Burgos-Panadero R, Robinot R, Fonseca BF, et al. Global loss of cellular m(6)A RNA methylation following infection with different SARS-CoV-2 variants. Genome Res. 2023;33:299–313.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gokhale NS, McIntyre A, Mattocks MD, Holley CL, Lazear HM, Mason CE, et al. Altered m(6)A modification of specific cellular transcripts affects flaviviridae infection. Mol Cell. 2020;77:542–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim GW, Siddiqui A. Hepatitis B virus X protein recruits methyltransferases to affect cotranscriptional N6-methyladenosine modification of viral/host RNAs. Proc Natl Acad Sci USA. 2021;118:e2019455118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tirumuru N, Wu L. HIV-1 envelope proteins up-regulate N(6)-methyladenosine levels of cellular RNA independently of viral replication. J Biol Chem. 2019;294:3249–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer KD, Jaffrey SR. Rethinking m(6)A readers, writers, and erasers. Annu Rev Cell Dev Biol. 2017;33:319–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49:18–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lan Q, Liu PY, Bell JL, Wang JY, Huttelmaier S, Zhang XD, et al. The emerging roles of RNA m(6)A methylation and demethylation as critical regulators of tumorigenesis, drug sensitivity, and resistance. Cancer Res. 2021;81:3431–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han Z, Xu Z, Yu Y, Cao Y, Bao Z, Gao X, et al. ALKBH5-mediated m(6)A mRNA methylation governs human embryonic stem cell cardiac commitment. Mol Ther Nucleic Acids. 2021;26:22–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu B, Liu N, Zhu X, Yang L, Ye B, Li H, et al. Circular RNA circZbtb20 maintains ILC3 homeostasis and function via Alkbh5-dependent m(6)A demethylation of Nr4a1 mRNA. Cell Mol Immunol. 2021;18:1412–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen W, Pu J, Zuo Z, Gu S, Sun J, Tan B, et al. The RNA demethylase ALKBH5 promotes the progression and angiogenesis of lung cancer by regulating the stability of the LncRNA PVT1. Cancer Cell Int. 2022;22:353.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Y, Gong C, Li Z, Liu J, Chen Y, Huang Y, et al. Demethylase ALKBH5 suppresses invasion of gastric cancer via PKMYT1 m6A modification. Mol Cancer. 2022;21:34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia MD, Formoso K, Aparicio GI, Frasch A, Scorticati C. The membrane glycoprotein M6a endocytic/recycling pathway involves clathrin-mediated endocytosis and affects neuronal synapses. Front Mol Neurosci. 2017;10:296.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castro-Hernandez R, Berulava T, Metelova M, Epple R, Pena CT, Richter J, et al. Conserved reduction of m(6)A RNA modifications during aging and neurodegeneration is linked to changes in synaptic transcripts. Proc Natl Acad Sci USA. 2023;120:e2090034176.

    Article 

    Google Scholar
     

  • Martinez DLCB, Markus R, Malla S, Haig MI, Gell C, Sang F, et al. Modifying the m(6)A brain methylome by ALKBH5-mediated demethylation: a new contender for synaptic tagging. Mol Psychiatry. 2021;26:7141–53.

    Article 

    Google Scholar
     

  • Merkurjev D, Hong WT, Iida K, Oomoto I, Goldie BJ, Yamaguti H, et al. Synaptic N(6)-methyladenosine (m(6)A) epitranscriptome reveals functional partitioning of localized transcripts. Nat Neurosci. 2018;21:1004–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spark DL, Fornito A, Langmead CJ, Stewart GD. Beyond antipsychotics: a twenty-first century update for preclinical development of schizophrenia therapeutics. Transl Psychiatry. 2022;12:147.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gruber L, Bunse T, Weidinger E, Reichard H, Muller N. Adjunctive recombinant human interferon gamma-1b for treatment-resistant schizophrenia in 2 patients. J Clin Psychiatry. 2014;75:1266–7.

    Article 
    PubMed 

    Google Scholar
     

  • Miller BJ, Dias JK, Lemos HP, Buckley PF. An open-label, pilot trial of adjunctive tocilizumab in schizophrenia. J Clin Psychiatry. 2016;77:275–6.

    Article 
    PubMed 

    Google Scholar
     

  • Xue X, Wu X, Liu L, Liu L, Zhu F. ERVW-1 activates ATF6-mediated unfolded protein response by decreasing GANAB in recent-onset schizophrenia. Viruses. 2023;15:1298.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Curtin F, Perron H, Kromminga A, Porchet H, Lang AB. Preclinical and early clinical development of GNbAC1, a humanized IgG4 monoclonal antibody targeting endogenous retroviral MSRV-Env protein. MAbs. 2015;7:265–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Curtin F, Bernard C, Levet S, Perron H, Porchet H, Medina J, et al. A new therapeutic approach for type 1 diabetes: rationale for GNbAC1, an anti-HERV-W-Env monoclonal antibody. Diabetes Obes Metab. 2018;20:2075–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link