Scientific Papers

Sequential host-bacteria and bacteria-bacteria interactions determine the microbiome establishment of Nematostella vectensis | Microbiome

Description of Image

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.

    Article 
    PubMed 

    Google Scholar
     

  • Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fraune S, Anton-Erxleben F, Augustin R, Franzenburg S, Knop M, Schroder K, et al. Bacteria-bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance. ISME J. 2015;9(7):1543–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B, Korasidis N, et al. Microbiome interactions shape host fitness. Proc Natl Acad Sci U S A. 2018;115(51):E11951–60.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264–76.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH. Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J. 2010;4(3):337–45.

    Article 
    PubMed 

    Google Scholar
     

  • Weiher E, Keddy PA. Assembly rules, null models, and trait dispersion: New questions from old patterns. Oikos. 1995Available from: https://www.sciencebase.gov/catalog/item/50538693e4b097cd4fce1b66. [cited 2021 May 14].

  • Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85(2):183–206.

    Article 
    PubMed 

    Google Scholar
     

  • Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77(3):342–56.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Fraune S, Forêt S, Reitzel AM. Using Nematostella vectensis to Study the Interactions between Genome, Epigenome, and Bacteria in a Changing Environment. Front Mar Sci. 2016;3(August):1–8.


    Google Scholar
     

  • Technau U, Rudd S, Maxwell P, Gordon PMK, Saina M, Grasso LC, et al. Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians. Trends Genet. 2005;21(12):633–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller DJ, Hemmrich G, Ball EE, Hayward DC, Khalturin K, Funayama N, et al. The innate immune repertoire in Cnidaria – Ancestral complexity and stochastic gene loss. Genome Biol. 2007;8(4):R59.

    Article 
    PubMed Central 

    Google Scholar
     

  • Lewandowska M, Hazan Y, Moran Y. Initial virome characterization of the common cnidarian lab model nematostella vectensis. Viruses. 2020;12(2):218.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Mortzfeld BM, Urbanski S, Reitzel AM, Kunzel S, Technau U, Fraune S. Response of bacterial colonization in Nematostella vectensis to development, environment and biogeography. Environ Microbiol. 2016;18(6):1764–81.

    Article 
    PubMed 

    Google Scholar
     

  • Bonacolta AM, Connelly MT, M Rosales S, Del Campo J, Traylor-Knowles N. The starlet sea anemone, Nematostella vectensis, possesses body region-specific bacterial associations with spirochetes dominating the capitulum. FEMS Microbiol Lett. 2021;368(3):fnab002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leach WB, Carrier TJ, Reitzel AM. Diel patterning in the bacterial community associated with the sea anemone Nematostella vectensis. Ecol Evol. 2019;9(17):9935–47.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Baldassarre L, Levy S, Bar-Shalom R, Steindler L, Lotan T, Fraune S. Contribution of Maternal and Paternal Transmission to Bacterial Colonization in Nematostella vectensis. Front Microbiol. 2021;11(12):2892.


    Google Scholar
     

  • Domin H, Zurita-Gutiérrez YH, Scotti M, Buttlar J, Humeida UH, Fraune S. Predicted bacterial interactions affect in vivo microbial colonization dynamics in Nematostella. Front Microbiol. 2018;9(APR):1–12.


    Google Scholar
     

  • Baldassarre L, Ying H, Reitzel AM, Franzenburg S, Fraune S. Microbiota mediated plasticity promotes thermal adaptation in the sea anemone Nematostella vectensis. Nat Commun. 2022;13(1):1–13.

    Article 

    Google Scholar
     

  • Hand C, Uhlinger KR. The Culture, Sexual and Asexual Reproduction, and Growth of the Sea Anemone Nematostella vectensis. Biol Bull. 1992;182(2):169.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fritzenwanker JH, Technau U. Induction of gametogenesis in the basal cnidarian Nematostella vectensis(Anthozoa). Dev Genes Evol. 2002;212(2):99–103.

    Article 
    PubMed 

    Google Scholar
     

  • Genikhovich G, Technau U. Induction of spawning in the starlet sea anemone Nematostella vectensis, in vitro fertilization of gametes, and dejellying of zygotes. Cold Spring Harb Protoc. 2009;2009(9):pdb.prot5281.

    Article 
    PubMed 

    Google Scholar
     

  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. 2018.


    Google Scholar
     

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Bokulich NA, Rideout JR, Dillon M, Bolyen E, Kaehler BD, Huttley GA, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6(1):1–17.

    Article 

    Google Scholar
     

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–3.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069–72.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. Watson M, editor. PLoS One. 2013;8(4):e61217.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Wickham H. ggplot2 – Elegant Graphics for Data Analysis. Springer-Verlag; 2009.

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.5–6. 2019.

  • Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–9.

  • Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–2.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H. Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s CT difference” formula. J Mol Med (Berl). 2006;84(11):901–10.

  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Fredman D, Schwaiger M, Rentzsch F, Technau U. Nematostella vectensis transcriptome and gene models v2.0. 2020. Available from: https://figshare.com/articles/dataset/Nematostella_vectensis_transcriptome_and_gene_models_v2_0/807696. [cited 2021 May 19].

  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–9.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Team RC. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. 2020.

  • Krueger F. TrimGalore: A wrapper around Cutadapt and FastQC to consistently apply adapter and quality trimming to FastQ files, with extra functionality for RRBS data. 2021. Available from: https://github.com/FelixKrueger/TrimGalore. [cited 2021 May 23].

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zimmermann J, Kaleta C, Waschina S. gapseq: Informed prediction of bacterial metabolic pathways and reconstruction of accurate metabolic models. bioRxiv. 2020 Mar;2020.03.20.000737.

  • Caspi R, Billington R, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 2018;46(D1):D633–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen L, Zheng D, Lio B, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res. 2016;44(D1):D694–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seemann T, Abricate, Github. https://github.com/tseemann/abricate.

  • Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nat. 2008;455(7216):1109–13.

    Article 
    CAS 

    Google Scholar
     

  • Franzenburg S, Fraune S, Kunzel S, Baines JF, Domazet-Loso T, Bosch TCG. MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers. Proc Natl Acad Sci U S A. 2012;109(47):19374–9.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjöberg J, Amir E, et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol. 2010;11(1):76–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franzenburg S, Walter J, Kunzel S, Wang J, Baines JF, Bosch TCG, et al. Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proc Natl Acad Sci U S A. 2013;110(39):E3730–8.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Babonis LS, Martindale MQ, Ryan JF. Do novel genes drive morphological novelty? An investigation of the nematosomes in the sea anemone Nematostella vectensis. BMC Evol Biol. 2016;16(1):114.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Brennan JJ, Messerschmidt JL, Williams LM, Matthews BJ, Reynoso M, Gilmore TD. Sea anemone model has a single Toll-like receptor that can function in pathogen detection, NF-κB signal transduction, and development. Proc Natl Acad Sci U S A. 2017;114(47):E10122–31.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Snyder GA, Eliachar S, Connelly MT, Talice S, Hadad U, Gershoni-Yahalom O, et al. Functional Characterization of Hexacorallia Phagocytic Cells. Front Immunol. 2021;26(12):2402.


    Google Scholar
     

  • Nyholm SV, Stewart JJ, Ruby EG, McFall-Ngai MJ. Recognition between symbiotic Vibrio fischeri and the haemocytes of Euprymna scolopes. Environ Microbiol. 2009;11(2):483–93.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Silver AC, Kikuchi Y, Fadl AA, Sha J, Chopra AK, Graf J. Interaction between innate immune cells and a bacterial type III secretion system in mutualistic and pathogenic associations. Proc Natl Acad Sci U S A. 2007;104(22):9481–6.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zakrzewski AC, Weigert A, Helm C, Adamski M, Adamska M, Bleidorn C, et al. Early divergence, broad distribution, and high diversity of animal chitin synthases. Genome Biol Evol. 2014;6(2):316–25.

    Article 
    PubMed Central 

    Google Scholar
     

  • Vandepas LE, Tassia MG, Halanych KM, Amemiya CT. Unexpected Distribution of Chitin and Chitin Synthase across Soft-Bodied Cnidarians. Biomolecules. 2023;13(5):777.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Beier S, Bertilsson S. Bacterial chitin degradation-mechanisms and ecophysiological strategies. Front Microbiol. 2013;4:149 Frontiers Research Foundation.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zou Y, Robbens J, Heyndrickx M, Debode J, Raes K. Quantification of Extracellular Proteases and Chitinases from Marine Bacteria. Curr Microbiol. 2020;77(12):3927–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Datta MS, Sliwerska E, Gore J, Polz MF, Cordero OX. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat Commun. 2016;7(1):1–7.

    Article 

    Google Scholar
     

  • Lee CG, Da Silva CA, Lee JY, Hartl D, Elias JA. Chitin regulation of immune responses: an old molecule with new roles. Curr Opin Immunol. 2008;20(6):684–9.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Nakashima K, Kimura S, Ogawa Y, Watanabe S, Soma S, Kaneko T, et al. Chitin-based barrier immunity and its loss predated mucus-colonization by indigenous gut microbiota. Nat Commun. 2018;9(1):3402.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Mandel MJ, Schaefer AL, Brennan CA, Heath-Heckman EAC, DeLoney-Marino CR, McFall-Ngai MJ, et al. Squid-Derived Chitin Oligosaccharides Are a Chemotactic Signal during Colonization by Vibrio fischeri. Appl Environ Microbiol. 2012;78(13):4620.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Davidson SK, Koropatnick TA, Kossmehl R, Sycuro L, McFall-Ngai MJ. NO means “yes” in the squid-vibrio symbiosis: Nitric oxide (NO) during the initial stages of a beneficial association. Cell Microbiol. 2004;6(12):1139–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nawroth JC, Guo H, Koch E, Heath-Heckman EAC, Hermanson JC, Ruby EG, et al. Motile cilia create fluid-mechanical microhabitats for the active recruitment of the host microbiome. Proc Natl Acad Sci U S A. 2017;114(36):9510–6.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–5.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Shao Y, Forster SC, Tsaliki E, Vervier K, Strang A, Simpson N, et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nat. 2019;574(7776):117–21.

    Article 
    CAS 

    Google Scholar
     

  • Trosvik P, de Muinck EJ. Ecology of bacteria in the human gastrointestinal tract–identification of keystone and foundation taxa. Microbiome. 2015;3(1):44.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Miller RJ, Lafferty KD, Lamy T, Kui L, Rassweiler A, Reed DC. Giant kelp, Macrocystis pyrifera, increases faunal diversity through physical engineering. Proc Biol Sci. 1874;2018(285):20172571.


    Google Scholar
     

  • Detmer AR, Miller RJ, Reed DC, Bell TW, Stier AC, Moeller HV. Variation in disturbance to a foundation species structures the dynamics of a benthic reef community. Ecology. 2021;102(5):e03304.

    Article 
    PubMed 

    Google Scholar
     

  • Liang Y, Liu C, Lu M, Dong Q, Wang Z, Wang Z, et al. Calorie restriction is the most reasonable anti-ageing intervention: a meta-analysis of survival curves. Sci Rep. 2018;8(1):5779.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Fontana L, Partridge L. Promoting Health and Longevity through Diet: From Model Organisms to Humans. Cell. 2015;161(1):106–18.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lee C, Longo V. Dietary restriction with and without caloric restriction for healthy aging. F1000Res. 2016;5:F1000 Faculty Rev-117.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Pryor R, Norvaisas P, Marinos G, Best L, Thingholm LB, Quintaneiro LM, et al. Host-Microbe-Drug-Nutrient Screen Identifies Bacterial Effectors of Metformin Therapy. Cell. 2019;178(6):1299-1312. e29.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Shashar N, Cohen Y, Loya Y. Extreme Diel Fluctuations of Oxygen in Diffusive Boundary Layers Surrounding Stony Corals. 1993;185(3):455–61. https://doi.org/10.2307/1542485.

  • Babbin AR, Tamasi T, Dumit D, Weber L, Rodríguez MVI, Schwartz SL, et al. Discovery and quantification of anaerobic nitrogen metabolisms among oxygenated tropical Cuban stony corals. ISME J. 2020;15(4):1222–35.

    Article 
    PubMed Central 

    Google Scholar
     

  • Wafar M, Wafar S, David JJ. Nitrification in reef corals. Limnol Oceanogr. 1990;35(3):725–30.

    Article 
    CAS 

    Google Scholar
     

  • Description of Image

    Source link