Scientific Papers

Roles of peripheral lipoproteins and cholesteryl ester transfer protein in the vascular contributions to cognitive impairment and dementia | Molecular Neurodegeneration

Description of Image

  • Iadecola C, Smith EE, Anrather J, Gu C, Mishra A, Misra S, et al. The neurovasculome: key roles in brain health and cognitive impairment: a scientific statement from the American Heart Association/American Stroke Association. Stroke. 2023;54:e251.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fisher RA, Miners JS, Love S. Pathological changes within the cerebral vasculature in Alzheimer’s disease: new perspectives. Brain Pathol. 2022;32(6):e13061.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, et al. Clearance systems in the brain—implications for Alzheimer disease. Nat Rev Neurol. 2015;11(8):457–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siegel GJ, Agranoff BW, Albers RW, et al., editors. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th edition. Philadelphia: Lippincott-Raven; 1999.

  • Gottesman RF, Albert MS, Alonso A, Coker LH, Coresh J, Davis SM, et al. Associations between midlife vascular risk factors and 25-year incident dementia in the Atherosclerosis Risk in Communities (ARIC) Cohort. JAMA Neurol. 2017;74(10):1246–54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosconi L, Walters M, Sterling J, Quinn C, McHugh P, Andrews RE, et al. Lifestyle and vascular risk effects on MRI-based biomarkers of Alzheimer’s disease: a cross-sectional study of middle-aged adults from the broader New York City area. BMJ Open. 2018;8(3): e019362.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014;13(8):788–94.

    Article 
    PubMed 

    Google Scholar
     

  • Vu TT, Zhao L, Liu L, Schiman C, Lloyd-Jones DM, Daviglus ML, et al. Favorable cardiovascular health at young and middle ages and dementia in older age-The CHA study. J Am Heart Assoc. 2019;8(1): e009730.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan ECK, Qiu C, Liang Y, Wang R, Bell JS, Fastbom J, et al. Antihypertensive medication regimen intensity and incident dementia in an older population. J Am Med Dir Assoc. 2018;19(7):577–83.

    Article 
    PubMed 

    Google Scholar
     

  • Solomon A, Kivipelto M, Soininen H. Prevention of Alzheimer’s disease: moving backward through the lifespan. J Alzheimer’s Dis : JAD. 2013;33(Suppl 1):S465–9.

    PubMed 

    Google Scholar
     

  • Sweeney MD, Montagne A, Sagare AP, Nation DA, Schneider LS, Chui HC, et al. Vascular dysfunction-The disregarded partner of Alzheimer’s disease. Alzheimer’s Dementia. 2019;15(1):158–67.

    Article 
    PubMed 

    Google Scholar
     

  • Hassler O. Vascular changes in senile brains. A Micro-Angiograph Study Acta Neuropathol. 1965;5(1):40–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bell MA, Ball MJ. Morphometric comparison of hippocampal microvasculature in ageing and demented people: diameters and densities. Acta Neuropathol. 1981;53(4):299–318.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fischer VW, Siddiqi A, Yusufaly Y. Altered angioarchitecture in selected areas of brains with Alzheimer’s disease. Acta Neuropathol. 1990;79(6):672–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalaria RN, Hedera P. Differential degeneration of the cerebral microvasculature in Alzheimer’s disease. NeuroReport. 1995;6(3):477–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zipser BD, Johanson CE, Gonzalez L, Berzin TM, Tavares R, Hulette CM, et al. Microvascular injury and blood-brain barrier leakage in Alzheimer’s disease. Neurobiol Aging. 2007;28(7):977–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Challa VR, Thore CR, Moody DM, Anstrom JA, Brown WR. Increase of white matter string vessels in Alzheimer’s disease. J Alzheimer’s Dis: JAD. 2004;6(4):379–83.

    Article 
    PubMed 

    Google Scholar
     

  • Kuhn J, Sharman T. Cerebral Amyloid Angiopathy. [Updated 2023 Jun 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. https://www.ncbi.nlm.nih.gov/books/NBK556105/.

  • Toledo JB, Arnold SE, Raible K, Brettschneider J, Xie SX, Grossman M, et al. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s coordinating centre. Brain : A J Neurol. 2013;136(Pt 9):2697–706.

    Article 

    Google Scholar
     

  • Arvanitakis Z, Capuano AW, Leurgans SE, Bennett DA, Schneider JA. Relation of cerebral vessel disease to Alzheimer’s disease dementia and cognitive function in elderly people: a cross-sectional study. Lancet Neurol. 2016;15(9):934–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biffi A, Greenberg SM. Cerebral amyloid angiopathy: a systematic review. J Clin Neurol (Seoul, Korea). 2011;7(1):1–9.

    Article 

    Google Scholar
     

  • Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, et al. Clearance of Alzheimer’s amyloid-β1-40 peptide from brain by LDL receptor–related protein-1 at the blood-brain barrier. J Clin Investig. 2000;106(12):1489–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lam FC, Liu R, Lu P, Shapiro AB, Renoir JM, Sharom FJ, et al. β-Amyloid efflux mediated by p-glycoprotein. J Neurochem. 2001;76(4):1121–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim J, Castellano JM, Jiang H, Basak JM, Parsadanian M, Pham V, et al. Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular Aβ clearance. Neuron. 2009;64(5):632–44.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prior R, Wihl G, Urmoneit B. Apolipoprotein E, Smooth Muscle Cells and the Pathogenesis of Cerebral Amyloid Angiopathy: the Potential Role of Impaired Cerebrovascular Abeta Clearance. Annals of the New York Academy of Sciences. 2000;903(1 Vascular fact):180–6.

  • Hawkes CA, Jayakody N, Johnston DA, Bechmann I, Carare RO. Failure of perivascular drainage of β-amyloid in cerebral amyloid angiopathy. Brain Pathol. 2014;24(4):396–403.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2020 Alzheimer’s disease facts and figures. Alzheimers Dement. 2020;16(3):391–460. https://doi.org/10.1002/alz.12068.

  • van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2022;388(1):9–21.

    Article 
    PubMed 

    Google Scholar
     

  • Mintun MA, Lo AC, Duggan Evans C, Wessels AM, Ardayfio PA, Andersen SW, et al. Donanemab in early Alzheimer’s disease. N Engl J Med. 2021;384(18):1691–704.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sims JR, Zimmer JA, Evans CD, Lu M, Ardayfio P, Sparks J, et al. Donanemab in early symptomatic Alzheimer disease: The TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA. 2023;330(6):512–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Budd Haeberlein S, Aisen PS, Barkhof F, Chalkias S, Chen T, Cohen S, et al. Two randomized phase 3 studies of Aducanumab in early Alzheimer’s disease. J Prev Alzheimer’s Dis. 2022;9:197.

    CAS 

    Google Scholar
     

  • Ostrowitzki S, Deptula D, Thurfjell L, Barkhof F, Bohrmann B, Brooks DJ, et al. Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch Neurol. 2012;69(2):198–207.

    Article 
    PubMed 

    Google Scholar
     

  • Boche D, Zotova E, Weller RO, Love S, Neal JW, Pickering RM, et al. Consequence of Abeta immunization on the vasculature of human Alzheimer’s disease brain. Brain : A J Neurol. 2008;131(Pt 12):3299–310.

    Article 
    CAS 

    Google Scholar
     

  • Eng JA, Frosch MP, Choi K, Rebeck GW, Greenberg SM. Clinical manifestations of cerebral amyloid angiopathy-related inflammation. Ann Neurol. 2004;55(2):250–6.

    Article 
    PubMed 

    Google Scholar
     

  • Scolding NJ, Joseph F, Kirby PA, Mazanti I, Gray F, Mikol J, et al. Aβ-related angiitis: primary angiitis of the central nervous system associated with cerebral amyloid angiopathy. Brain. 2005;128(3):500–15.

    Article 
    PubMed 

    Google Scholar
     

  • Antolini L, DiFrancesco JC, Zedde M, Basso G, Arighi A, Shima A, et al. Spontaneous ARIA-like events in cerebral amyloid angiopathy-related inflammation. A Multicenter Prospect Longitudinal Cohort Study. 2021;97(18):e1809–22.

    CAS 

    Google Scholar
     

  • Sperling RA, Jack CR Jr, Black SE, Frosch MP, Greenberg SM, Hyman BT, et al. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer’s association research roundtable workgroup. Alzheimers Dement. 2011;7(4):367–85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science (New York, NY). 1993;261(5123):921–3.

    Article 
    CAS 

    Google Scholar
     

  • Castellano JM, Deane R, Gottesdiener AJ, Verghese PB, Stewart FR, West T, et al. Low-density lipoprotein receptor overexpression enhances the rate of brain-to-blood Aβ clearance in a mouse model of β-amyloidosis. Proc Natl Acad Sci U S A. 2012;109(38):15502–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB, et al. apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest. 2008;118(12):4002–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature. 2017;549(7673):523–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montagne A, Nation DA, Sagare AP, Barisano G, Sweeney MD, Chakhoyan A, et al. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature. 2020;581(7806):71–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barisano G, Kisler K, Wilkinson B, Nikolakopoulou AM, Sagare AP, Wang Y, et al. A “multi-omics” analysis of blood–brain barrier and synaptic dysfunction in APOE4 mice. J Exp Med. 2022;219(11):20221137.

    Article 

    Google Scholar
     

  • Sheline YI, Morris JC, Snyder AZ, Price JL, Yan Z, D’Angelo G, et al. APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Aβ42. J Neurosci. 2010;30(50):17035–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynch JR, Tang W, Wang H, Vitek MP, Bennett ER, Sullivan PM, et al. APOE genotype and an ApoE-mimetic peptide modify the systemic and central nervous system inflammatory response*. J Biol Chem. 2003;278(49):48529–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vitek MP, Brown CM, Colton CA. APOE genotype-specific differences in the innate immune response. Neurobiol Aging. 2009;30(9):1350–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sacre SM, Stannard AK, Owen JS. Apolipoprotein E (apoE) isoforms differentially induce nitric oxide production in endothelial cells. FEBS Lett. 2003;540(1):181–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ulrich V, Konaniah ES, Herz J, Gerard RD, Jung E, Yuhanna IS, et al. Genetic variants of ApoE and ApoER2 differentially modulate endothelial function. Proc Natl Acad Sci. 2014;111(37):13493–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu L, Zhang X, Zhao L. Human ApoE isoforms differentially modulate brain glucose and ketone body metabolism: implications for Alzheimer’s disease risk reduction and early intervention. J Neurosci. 2018;38(30):6665–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouchareychas L, Raffai RL. Apolipoprotein E and atherosclerosis: from lipoprotein metabolism to MicroRNA control of inflammation. J Cardiovasc Dev Dis. 2018;5(2):30.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linton MF, Gish R, Hubl ST, Bütler E, Esquivel C, Bry WI, et al. Phenotypes of apolipoprotein B and apolipoprotein E after liver transplantation. J Clin Invest. 1991;88(1):270–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu M, Kuhel DG, Shen L, Hui DY, Woods SC. Apolipoprotein E does not cross the blood-cerebrospinal fluid barrier, as revealed by an improved technique for sampling CSF from mice. Am J Physiol Regul Integr Comp Physiol. 2012;303(9):R903–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonaterra-Pastra A, Fernández-De-Retana S, Rivas-Urbina A, Puig N, Benítez S, Pancorbo O, et al. Comparison of plasma lipoprotein composition and function in cerebral amyloid angiopathy and Alzheimer’s disease. Biomedicines. 2021;9(1):72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Valkenburgh J, Meuret C, Martinez AE, Kodancha V, Solomon V, Chen K, et al. Understanding the exchange of systemic HDL particles into the brain and vascular cells has diagnostic and therapeutic implications for neurodegenerative diseases. Front Physiol. 2021;12: 700847.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang T, Wang X, Yao Y, Zhao C, Yang C, Han Y, et al. Association of plasma apolipoproteins and levels of inflammation-related factors with different stages of Alzheimer’s disease: a cross-sectional study. BMJ Open. 2022;12(4): e054347.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giannisis A, Al-Grety A, Carlsson H, Patra K, Twohig D, Sando SB, et al. Plasma apolipoprotein E levels in longitudinally followed patients with mild cognitive impairment and Alzheimer’s disease. Alzheimer’s Res Ther. 2022;14(1):115.

    Article 
    CAS 

    Google Scholar
     

  • Liu C-C, Zhao J, Fu Y, Inoue Y, Ren Y, Chen Y, et al. Peripheral apoE4 enhances Alzheimer’s pathology and impairs cognition by compromising cerebrovascular function. Nat Neurosci. 2022;25(8):1020–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diffenderfer MR, Schaefer EJ. The composition and metabolism of large and small LDL. Curr Opin Lipidol. 2014;25(3):221–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krauss RM. Lipoprotein subfractions and cardiovascular disease risk. Curr Opin Lipidol. 2010;21(4):305–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krauss RM, Burke DJ. Identification of multiple subclasses of plasma low density lipoproteins in normal humans. J Lipid Res. 1982;23(1):97–104.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Griffin BA, Caslake MJ, Yip B, Tait GW, Packard CJ, Shepherd J. Rapid isolation of low density lipoprotein (LDL) subfractions from plasma by density gradient ultracentrifugation. Atherosclerosis. 1990;83(1):59–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic epidemiologic, and clinical studies. A consensus statement from the European atherosclerosis society consensus panel. Eur Heart J. 2017;38(32):2459–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: the task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur Heart J. 2019;41(1):111–88.

    Article 

    Google Scholar
     

  • Mundi S, Massaro M, Scoditti E, Carluccio MA, van Hinsbergh VWM, Iruela-Arispe ML, et al. Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review. Cardiovasc Res. 2018;114(1):35–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borén J, Olin K, Lee I, Chait A, Wight TN, Innerarity TL. Identification of the principal proteoglycan-binding site in LDL. A single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding. J Clin Invest. 1998;101(12):2658–64.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vink H, Constantinescu AA, Spaan JA. Oxidized lipoproteins degrade the endothelial surface layer : implications for platelet-endothelial cell adhesion. Circulation. 2000;101(13):1500–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li W, Wang C, Zhang D, Zeng K, Xiao S, Chen F, et al. Azilsartan ameliorates ox-LDL-induced endothelial dysfunction via promoting the expression of KLF2. Aging (Albany NY). 2021;13(9):12996–3005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghaffari S, Naderi Nabi F, Sugiyama MG, Lee WL. Estrogen inhibits LDL (Low-Density Lipoprotein) transcytosis by human coronary artery endothelial cells via GPER (G-Protein-Coupled Estrogen Receptor) and SR-BI (Scavenger Receptor Class B Type 1). Arterioscler Thromb Vasc Biol. 2018;38(10):2283–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sáiz-Vazquez O, Puente-Martínez A, Ubillos-Landa S, Pacheco-Bonrostro J, Santabárbara J. Cholesterol and Alzheimer’s disease risk: a meta-meta-analysis. Brain Sci. 2020;10(6):386.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iwagami M, Qizilbash N, Gregson J, Douglas I, Johnson M, Pearce N, et al. Blood cholesterol and risk of dementia in more than 1·8 million people over two decades: a retrospective cohort study. Lancet Healthy Longev. 2021;2(8):e498–506.

    Article 
    PubMed 

    Google Scholar
     

  • Wee J, Sukudom S, Bhat S, Marklund M, Peiris NJ, Hoyos CM, et al. The relationship between midlife dyslipidemia and lifetime incidence of dementia: A systematic review and meta-analysis of cohort studies. Alzheimer’s Dementia: Diagn, Assess Dis Monitor. 2023;15(1): e12395.

    Article 

    Google Scholar
     

  • Mineo C, Shaul PW. Novel biological functions of high-density lipoprotein cholesterol. Circ Res. 2012;111(8):1079–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michell DL, Vickers KC. Lipoprotein carriers of microRNAs. Biochimica et Biophysica Acta (BBA) – Mol Cell Biol Lipids. 2016;1861(12):2069–74.

    Article 
    CAS 

    Google Scholar
     

  • Davidson WS, Shah AS, Sexmith H, Gordon SM. The HDL proteome watch: compilation of studies leads to new insights on HDL function. Biochim Biophys Acta Mol Cell Biol Lipids. 2022;1867(2): 159072.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boyce G, Button E, Soo S, Wellington C. The pleiotropic vasoprotective functions of high density lipoproteins (HDL). J Biomed Res. 2017;32(3):164–82.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah AS, Tan L, Long JL, Davidson WS. Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond. J Lipid Res. 2013;54(10):2575–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toth PP, Barter PJ, Rosenson RS, Boden WE, Chapman MJ, Cuchel M, et al. High-density lipoproteins: a consensus statement from the national lipid association. J Clin Lipidol. 2013;7(5):484–525.

    Article 
    PubMed 

    Google Scholar
     

  • Chiesa ST, Charakida M. High-density lipoprotein function and dysfunction in health and disease. Cardiovasc Drugs Ther. 2019;33(2):207–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El Khoudary SR, Ceponiene I, Samargandy S, Stein JH, Li D, Tattersall MC, et al. HDL (High-Density Lipoprotein) metrics and atherosclerotic risk in women. Arterioscler Thromb Vasc Biol. 2018;38(9):2236–44.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furtado JD, Yamamoto R, Melchior JT, Andraski AB, Gamez-Guerrero M, Mulcahy P, et al. Distinct proteomic signatures in 16 HDL (High-Density Lipoprotein) subspecies. Arterioscler Thromb Vasc Biol. 2018;38(12):2827–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morton AM, Koch M, Mendivil CO, Furtado JD, Tjønneland A, Overvad K, et al. Apolipoproteins E and CIII interact to regulate HDL metabolism and coronary heart disease risk. JCI Insight. 2018;3(4):e98045.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Button EB, Robert J, Caffrey TM, Fan J, Zhao W, Wellington CL. HDL from an Alzheimer’s disease perspective. Curr Opin Lipidol. 2019;30(3):224–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soppert J, Lehrke M, Marx N, Jankowski J, Noels H. Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv Drug Deliv Rev. 2020;159:4–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kontush A. HDL and Reverse Remnant-Cholesterol Transport (RRT): relevance to cardiovascular disease. Trends Mol Med. 2020;26(12):1086–100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zuliani G, Cavalieri M, Galvani M, Volpato S, Cherubini A, Bandinelli S, et al. Relationship between low levels of high-density lipoprotein cholesterol and dementia in the elderly. The InChianti study. J Gerontol A Biol Sci Med Sci. 2010;65(5):559–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shih YH, Tsai KJ, Lee CW, Shiesh SC, Chen WT, Pai MC, et al. Apolipoprotein C-III is an amyloid-β-binding protein and an early marker for Alzheimer’s disease. J Alzheimers Dis. 2014;41(3):855–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Merched A, Xia Y, Visvikis S, Serot JM, Siest G. Decreased high-density lipoprotein cholesterol and serum apolipoprotein AI concentrations are highly correlated with the severity of Alzheimer’s disease. Neurobiol Aging. 2000;21(1):27–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reed B, Villeneuve S, Mack W, Decarli C, Chui HC, Jagust W. Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol. 2014;71(2):195.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saczynski JS, White L, Peila RL, Rodriguez BL, Launer LJ. The relation between apolipoprotein A-I and dementia: the Honolulu-Asia aging study. Am J Epidemiol. 2007;165(9):985–92.

    Article 
    PubMed 

    Google Scholar
     

  • Armstrong NM, An Y, Beason-Held L, Doshi J, Erus G, Ferrucci L, et al. Predictors of neurodegeneration differ between cognitively normal and subsequently impaired older adults. Neurobiol Aging. 2019;75:178–86.

    Article 
    PubMed 

    Google Scholar
     

  • Tan ZS, Seshadri S, Beiser A, Wilson PWF, Kiel DP, Tocco M, et al. Plasma total cholesterol level as a risk factor for Alzheimer disease. Arch Intern Med. 2003;163(9):1053.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Formiga F, Ferrer A, Chivite D, Pinto X, Cuerpo S, Pujol R. Serum high-density lipoprotein cholesterol levels, their relationship with baseline functional and cognitive status, and their utility in predicting mortality in nonagenarians. Geriatr Gerontol Int. 2011;11(3):358–64.

    Article 
    PubMed 

    Google Scholar
     

  • Marcum ZA, Walker R, Bobb JF, Sin MK, Gray SL, Bowen JD, et al. Serum cholesterol and incident Alzheimer’s disease: findings from the adult changes in thought study. J Am Geriatr Soc. 2018;66(12):2344–52.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li G, Shofer JB, Kukull WA, Peskind ER, Tsuang DW, Breitner JC, et al. Serum cholesterol and risk of Alzheimer disease: a community-based cohort study. Neurology. 2005;65(7):1045–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mielke MM, Xue QL, Zhou J, Chaves PH, Fried LP, Carlson MC. Baseline serum cholesterol is selectively associated with motor speed and not rates of cognitive decline: the women’s health and aging study II. J Gerontol A Biol Sci Med Sci. 2008;63(6):619–24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yaffe K, Barrett-Connor E, Lin F, Grady D. Serum lipoprotein levels, statin use, and cognitive function in older women. Arch Neurol. 2002;59(3):378.

    Article 
    PubMed 

    Google Scholar
     

  • Bates KA, Sohrabi HR, Rainey-Smith SR, Weinborn M, Bucks RS, Rodrigues M, et al. Serum high-density lipoprotein is associated with better cognitive function in a cross-sectional study of aging women. Int J Neurosci. 2017;127(3):243–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei S, Gao L, Jiang Y, Shang S, Chen C, Dang L, et al. The Apolipoprotein E ε4 Allele-dependent relationship between serum lipid levels and cognitive function: a population-based cross-sectional study. Front Aging Neurosci. 2020;12:44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo J, Thomassen JQ, Bellenguez C, Grenier-Boley B, De Rojas I, Castillo A, et al. Genetic associations between modifiable risk factors and Alzheimer disease. JAMA Netw Open. 2023;6(5): e2313734.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heeren J, Grewal T, Laatsch A, Rottke D, Rinninger F, Enrich C, et al. Recycling of apoprotein E is associated with cholesterol efflux and high density lipoprotein internalization. J Biol Chem. 2003;278(16):14370–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Annema W, Dikkers A, de Boer JF, Gautier T, Rensen PC, Rader DJ, et al. ApoE promotes hepatic selective uptake but not RCT due to increased ABCA1-mediated cholesterol efflux to plasma. J Lipid Res. 2012;53(5):929–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi Y, Liu J, Wang W, Wang M, Zhao F, Sun J, et al. Apolipoprotein E-containing high-density lipoprotein (HDL) modifies the impact of cholesterol-overloaded HDL on incident coronary heart disease risk: a community-based cohort study. J Clin Lipidol. 2018;12(1):89–98.e2.

    Article 
    PubMed 

    Google Scholar
     

  • Koch M, DeKosky ST, Goodman M, Sun J, Furtado JD, Fitzpatrick AL, et al. High density lipoprotein and its apolipoprotein-defined subspecies and risk of dementia. J Lipid Res. 2020;61(3):445–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koch M, DeKosky ST, Goodman M, Sun J, Furtado JD, Fitzpatrick AL, et al. Association of Apolipoprotein E in Lipoprotein subspecies with risk of dementia. JAMA Netw Open. 2020;3(7): e209250.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kothapalli D, Liu SL, Bae YH, Monslow J, Xu T, Hawthorne EA, et al. Cardiovascular protection by ApoE and ApoE-HDL linked to suppression of ECM gene expression and arterial stiffening. Cell Rep. 2012;2(5):1259–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robert J, Button EB, Yuen B, Gilmour M, Kang K, Bahrabadi A, et al. Clearance of beta-amyloid is facilitated by apolipoprotein E and circulating high-density lipoproteins in bioengineered human vessels. Elife. 2017;6:2e9595.

    Article 

    Google Scholar
     

  • Robert J, Button EB, Martin EM, McAlary L, Gidden Z, Gilmour M, et al. Cerebrovascular amyloid Angiopathy in bioengineered vessels is reduced by high-density lipoprotein particles enriched in Apolipoprotein E. Mol Neurodegenerat. 2020;15(1):23.

    Article 
    CAS 

    Google Scholar
     

  • Robert J, Weilinger NL, Cao L-P, Cataldi S, Button EB, Stukas S, et al. An in vitro bioengineered model of the human arterial neurovascular unit to study neurodegenerative diseases. Mol Neurodegenerat. 2020;15(1):70.

    Article 
    CAS 

    Google Scholar
     

  • Blanchard JW, Bula M, Davila-Velderrain J, Akay LA, Zhu L, Frank A, et al. Reconstruction of the human blood–brain barrier in vitro reveals a pathogenic mechanism of APOE4 in pericytes. Nat Med. 2020;26(6):952–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schaefer EJ, Lamon-Fava S, Cohn SD, Schaefer MM, Ordovas JM, Castelli WP, et al. Effects of age, gender, and menopausal status on plasma low density lipoprotein cholesterol and apolipoprotein B levels in the Framingham offspring study. J Lipid Res. 1994;35(5):779–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jensen J, Nilas L, Christiansen C. Influence of menopause on serum lipids and lipoproteins. Maturitas. 1990;12(4):321–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonithon-Kopp C, Scarabin PY, Darne B, Malmejac A, Guize L. Menopause-related changes in lipoproteins and some other cardiovascular risk factors. Int J Epidemiol. 1990;19(1):42–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cífková R, Krajčoviechová A. Dyslipidemia and cardiovascular disease in women. Curr Cardiol Rep. 2015;17(7):609.

    Article 
    PubMed 

    Google Scholar
     

  • Hunt NB, Emmens JE, Irawati S, de Vos S, Bos JHJ, Wilffert B, et al. Sex disparities in the effect of statins on lipid parameters: The pharmlines initiative. Medicine (Baltimore). 2022;101(2): e28394.

    Article 
    PubMed 

    Google Scholar
     

  • Olmastroni E, Boccalari MT, Tragni E, Rea F, Merlino L, Corrao G, et al. Sex-differences in factors and outcomes associated with adherence to statin therapy in primary care: need for customisation strategies. Pharmacol Res. 2020;155: 104514.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paquette M, Faubert S, Saint-Pierre N, Baass A, Bernard S. Sex differences in LDL-C response to PCSK9 inhibitors: a real world experience. J Clin Lipidol. 2023;17(1):142–9.

    Article 
    PubMed 

    Google Scholar
     

  • Drayna D, Jarnagin AS, McLean J, Henzel W, Kohr W, Fielding C, et al. Cloning and sequencing of human cholesteryl ester transfer protein cDNA. Nature. 1987;327(6123):632–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hesler CB, Swenson TL, Tall AR. Purification and characterization of a human plasma cholesteryl ester transfer protein. J Biol Chem. 1987;262(5):2275–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barter PJ, Hopkins GJ, Calvert GD. Transfers and exchanges of esterified cholesterol between plasma lipoproteins. Biochem J. 1982;208(1):1–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cannon CP, Shah S, Dansky HM, Davidson M, Brinton EA, Gotto AM, et al. Safety of Anacetrapib in patients with or at high risk for coronary heart disease. N Engl J Med. 2010;363(25):2406–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ha YC, Barter PJ. Differences in plasma cholesteryl ester transfer activity in sixteen vertebrate species. Comp Biochem Physiol B. 1982;71(2):265–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C, et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science. 2020;367(6482):eaay5947.

  • Human Protein Atlas. Available from: proteinatlas.org.

  • Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ference BA, Kastelein JJP, Ginsberg HN, Chapman MJ, Nicholls SJ, Ray KK, et al. Association of genetic variants related to CETP inhibitors and statins with Lipoprotein levels and cardiovascular risk. JAMA. 2017;318(10):947–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papp AC, Pinsonneault JK, Wang D, Newman LC, Gong Y, Johnson JA, et al. Cholesteryl Ester Transfer Protein (CETP) polymorphisms affect mRNA splicing, HDL levels, and sex-dependent cardiovascular risk. PLoS ONE. 2012;7(3): e31930.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suhy A, Hartmann K, Papp AC, Wang D, Sadee W. Regulation of cholesteryl ester transfer protein expression by upstream polymorphisms. Pharmacogenet Genomics. 2015;25(8):394–401.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piko P, Jenei T, Kosa Z, Sandor J, Kovacs N, Seres I, et al. Association of CETP gene Polymorphisms and Haplotypes with cardiovascular risk. Int J Mol Sci. 2023;24(12):10281.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semaev S, Shakhtshneider E, Shcherbakova L, Orlov P, Ivanoshchuk D, Malyutina S, et al. Association of common variants APOE, CETP, and the 9p21.3 of and the chromosomal region with the risk of myocardial infarction a prospective study. Int J Mol Sci. 2023;24(13):10908.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Q, Zhou SB, Wang LJ, Lei MM, Wang Y, Miao C, et al. Seven functional polymorphisms in the CETP gene and myocardial infarction risk: a meta-analysis and meta-regression. PLoS ONE. 2014;9(2): e88118.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thompson A, Di Angelantonio E, Sarwar N, Erqou S, Saleheen D, Dullaart RPF, et al. Association of Cholesteryl Ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA. 2008;299(23):2777–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson EC, Border R, Melroy-Greif WE, de Leeuw CA, Ehringer MA, Keller MC. No evidence that Schizophrenia candidate genes are more associated with Schizophrenia than noncandidate genes. Biol Psychiat. 2017;82(10):702–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boekholdt SM, Thompson JF. Natural genetic variation as a tool in understanding the role of CETP in lipid levels and disease. J Lipid Res. 2003;44(6):1080–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sundermann EE, Wang C, Katz M, Zimmerman ME, Derby CA, Hall CB, et al. Cholesteryl ester transfer protein genotype modifies the effect of apolipoprotein ε4 on memory decline in older adults. Neurobiol Aging. 2016;41:200.e7-.e12.

    Article 

    Google Scholar
     

  • Lythgoe C, Perkes A, Peterson M, Schmutz C, Leary M, Ebbert MT, et al. Population-based analysis of cholesteryl ester transfer protein identifies association between I405V and cognitive decline: the Cache county study. Neurobiol Aging. 2015;36(1):547.e1–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen JJ, Li YM, Zou WY, Fu JL. Relationships between CETP genetic polymorphisms and Alzheimer’s disease risk: a meta-analysis. DNA Cell Biol. 2014;33(11):807–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Izaks GJ, van der Knaap AM, Gansevoort RT, Navis G, Slaets JP, Dullaart RP. Cholesteryl Ester Transfer Protein (CETP) genotype and cognitive function in persons aged 35 years or older. Neurobiol Aging. 2012;33(8):1851.e7–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murphy EA, Roddey JC, McEvoy LK, Holland D, Hagler DJ Jr, Dale AM, et al. CETP polymorphisms associate with brain structure, atrophy rate, and Alzheimer’s disease risk in an APOE-dependent manner. Brain Imaging Behav. 2012;6(1):16–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warstadt NM, Dennis EL, Jahanshad N, Kohannim O, Nir TM, McMahon KL, et al. Serum cholesterol and variant in cholesterol-related gene CETP predict white matter microstructure. Neurobiol Aging. 2014;35(11):2504–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barzilai N, Atzmon G, Derby CA, Bauman JM, Lipton RB. A genotype of exceptional longevity is associated with preservation of cognitive function. Neurology. 2006;67(12):2170–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanders AE, Wang C, Katz M, Derby CA, Barzilai N, Ozelius L, et al. Association of a functional polymorphism in the cholesteryl ester transfer protein (CETP) gene with memory decline and incidence of dementia. JAMA. 2010;303(2):150–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu L, Shulman JM, Chibnik L, Leurgans S, Schneider JA, De Jager PL, et al. The CETP I405V polymorphism is associated with an increased risk of Alzheimer’s disease. Aging Cell. 2012;11(2):228–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arias-Vásquez A, Isaacs A, Aulchenko YS, Hofman A, Oostra BA, Breteler M, et al. The cholesteryl ester transfer protein (CETP) gene and the risk of Alzheimer’s disease. Neurogenetics. 2007;8(3):189–93.

    Article 
    PubMed 

    Google Scholar
     

  • Georgakis MK, Malik R, Anderson CD, Parhofer KG, Hopewell JC, Dichgans M. Genetic determinants of blood lipids and cerebral small vessel disease: role of high-density lipoprotein cholesterol. Brain. 2020;143(2):597–610.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marotti KR, Castle CK, Boyle TP, Lin AH, Murray RW, Melchior GW. Severe atherosclerosis in transgenic mice expressing simian cholesteryl ester transfer protein. Nature. 1993;364(6432):73–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Plump AS, Masucci-Magoulas L, Bruce C, Bisgaier CL, Breslow JL, Tall AR. Increased atherosclerosis in ApoE and LDL receptor gene knock-out mice as a result of human cholesteryl ester transfer protein transgene expression. Arterioscler Thromb Vasc Biol. 1999;19(4):1105–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Westerterp M, van der Hoogt CC, de Haan W, Offerman EH, Dallinga-Thie GM, Jukema JW, et al. Cholesteryl ester transfer protein decreases high-density lipoprotein and severely aggravates atherosclerosis in APOE*3-Leiden mice. Arterioscler Thromb Vasc Biol. 2006;26(11):2552–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herrera VL, Makrides SC, Xie HX, Adari H, Krauss RM, Ryan US, et al. Spontaneous combined hyperlipidemia, coronary heart disease and decreased survival in Dahl salt-sensitive hypertensive rats transgenic for human cholesteryl ester transfer protein. Nat Med. 1999;5(12):1383–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oestereich F, Yousefpour N, Yang E, Phénix J, Nezhad ZS, Nitu A, et al. The cholesteryl ester transfer protein (CETP) raises cholesterol levels in the brain. J Lipid Res. 2022;63(9): 100260.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benoit ME, Tenner AJ. Complement protein C1q-mediated neuroprotection is correlated with regulation of neuronal gene and microRNA expression. J Neurosci. 2011;31(9):3459–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silverman SM, Kim B-J, Howell GR, Miller J, John SWM, Wordinger RJ, et al. C1q propagates microglial activation and neurodegeneration in the visual axis following retinal ischemia/reperfusion injury. Mol Neurodegen. 2016;11(1):24.

    Article 

    Google Scholar
     

  • Tooyama I, Sato H, Yasuhara O, Kimura H, Konishi Y, Shen Y, et al. Correlation of the expression level of C1q mRNA and the number of C1q-positive plaques in the Alzheimer disease temporal cortex. Analysis of mrna and its protein using adjacent or nearby sections. Dement Geriatr Cogn Disord. 2001;12(4):237–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reichwald J, Danner S, Wiederhold KH, Staufenbiel M. Expression of complement system components during aging and amyloid deposition in APP transgenic mice. J Neuroinflammation. 2009;6:35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stephan AH, Madison DV, Mateos JM, Fraser DA, Lovelett EA, Coutellier L, et al. A dramatic increase of C1q protein in the CNS during normal aging. J Neurosci. 2013;33(33):13460–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dejanovic B, Wu T, Tsai M-C, Graykowski D, Gandham VD, Rose CM, et al. Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer’s disease mouse models. Nature Aging. 2022;2(9):837–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krance SH, Wu C-Y, Zou Y, Mao H, Toufighi S, He X, et al. The complement cascade in Alzheimer’s disease: a systematic review and meta-analysis. Mol Psychiatry. 2021;26(10):5532–41.

    Article 
    PubMed 

    Google Scholar
     

  • Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suico JG, Friedrich S, Krueger KA, Zhang W. Evacetrapib at a supratherapeutic steady state concentration does not prolong QT in a thorough QT/QTc study in healthy participants. J Cardiovasc Pharmacol Ther. 2014;19(3):283–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krishna R, Anderson MS, Bergman AJ, Jin B, Fallon M, Cote J, et al. Effect of the cholesteryl ester transfer protein inhibitor, anacetrapib, on lipoproteins in patients with dyslipidaemia and on 24-h ambulatory blood pressure in healthy individuals: two double-blind, randomised placebo-controlled phase I studies. Lancet. 2007;370(9603):1907–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hovingh GK, Kastelein JJ, van Deventer SJ, Round P, Ford J, Saleheen D, et al. Cholesterol ester transfer protein inhibition by TA-8995 in patients with mild dyslipidaemia (TULIP): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet. 2015;386(9992):452–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367(22):2089–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tall AR, Rader DJ. Trials and tribulations of CETP inhibitors. Circ Res. 2018;122(1):106–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bowman L, Hopewell JC, Chen F, Wallendszus K, Stevens W, Collins R, et al. Effects of Anacetrapib in patients with atherosclerotic vascular disease. N Engl J Med. 2017;377(13):1217–27.

    Article 
    PubMed 

    Google Scholar
     

  • Late-Breaking Science Abstracts and Featured Science Abstracts From the American Heart Association’s Scientific Sessions 2019 and Late-Breaking Abstracts in Resuscitation Science From the Resuscitation Science Symposium 2019. Circulation. 2019;140(25):e965–e1011.

  • Phénix J, Côté J, Dieme D, Recinto SJ, Oestereich F, Efrem S, et al. CETP inhibitor evacetrapib enters mouse brain tissue. Front Pharmacol. 2023;14:1171937.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicholls SJ, Ditmarsch M, Kastelein JJ, Rigby SP, Kling D, Curcio DL, et al. Lipid lowering effects of the CETP inhibitor obicetrapib in combination with high-intensity statins: a randomized phase 2 trial. Nat Med. 2022;28(8):1672–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cerneckis J, Bu G, Shi Y. Pushing the boundaries of brain organoids to study Alzheimer’s disease. Trends Mol Med. 2023;29(8):659–72.

    Article 
    PubMed 

    Google Scholar
     

  • Helman AM, Murphy MP. Vascular cognitive impairment: modeling a critical neurologic disease in vitro and in vivo. Biochimica et Biophysica Acta Mol Basis Dis. 2016;1862(5):975–82.

    Article 
    CAS 

    Google Scholar
     

  • Smith EN, Chen W, Kähönen M, Kettunen J, Lehtimäki T, Peltonen L, et al. Longitudinal genome-wide association of cardiovascular disease risk factors in the bogalusa heart study. PLoS Genet. 2010;6(9): e1001094.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iwanicka J, Iwanicki T, Niemiec P, Balcerzyk A, Krauze J, Górczyńska-Kosiorz S, et al. Relationship between CETP gene polymorphisms with coronary artery disease in Polish population. Mol Biol Rep. 2018;45(6):1929–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peloso GM, Lee SJ, Sims R, Lee SJ, Naj AC, Bellenguez C, et al. Genetically elevated high-density lipoprotein cholesterol through the cholesteryl ester transfer protein gene does not associate with risk of Alzheimer’s disease. Alzheimer’s Dementia: Diagn Assesst Dis Monitor. 2018;10(1):595–8.

    Article 

    Google Scholar
     

  • Webb TR, Erdmann J, Stirrups KE, Stitziel NO, Masca NGD, Jansen H, et al. Systematic evaluation of pleiotropy identifies 6 further loci associated with coronary artery disease. J Am Coll Cardiol. 2017;69(7):823–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johannsen TH, Frikke-Schmidt R, Schou J, Nordestgaard BG, Tybjærg-Hansen A. Genetic inhibition of CETP, ischemic vascular disease and mortality, and possible adverse effects. J Am Coll Cardiol. 2012;60(20):2041–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qureischie H, Heun R, Lütjohann D, Popp J, Jessen F, Ledschbor-Frahnert C, et al. CETP polymorphisms influence cholesterol metabolism but not Alzheimer’s disease risk. Brain Res. 2008;1232:1–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodríguez E, Mateo I, Infante J, Llorca J, Berciano J, Combarros O. Cholesteryl ester transfer protein (CETP) polymorphism modifies the Alzheimer’s disease risk associated with APOE ε4 allele. J Neurol. 2006;253(2):181–5.

    Article 
    PubMed 

    Google Scholar
     

  • Ridker PM, Paré G, Parker AN, Zee RY, Miletich JP, Chasman DI. Polymorphism in the CETP gene region, HDL cholesterol, and risk of future myocardial infarction: Genomewide analysis among 18 245 initially healthy women from the women’s genome health study. Circ Cardiovasc Genet. 2009;2(1):26–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao Z, Wang J, Chen W, Wang P, Zeng H, Chen W. Association studies of several cholesterol-related genes (ABCA1, CETP and LIPC) with serum lipids and risk of Alzheimer’s disease. Lipids Health Dis. 2012;11(1):163.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Q, Huang P, He Q-C, Lin Q-Z, Wu J, Yin R-X. Association between the CETP polymorphisms and the risk of Alzheimer’s disease, carotid atherosclerosis, longevity, and the efficacy of statin therapy. Neurobiol Aging. 2014;35(6):1513.e13-.e23.

    Article 

    Google Scholar
     

  • Yehya A, Irshaid Y, Saleh AA. Cholesteryl ester transfer protein rs1532624 gene polymorphism is associated with reduced response to statin therapy. Curr Mol Pharmacol. 2013;6(3):156–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adams LA, Marsh JA, Ayonrinde OT, Olynyk JK, Ang WQ, Beilin LJ, et al. Cholesteryl ester transfer protein gene polymorphisms increase the risk of fatty liver in females independent of adiposity. J Gastroenterol Hepatol. 2012;27(9):1520–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cyrus C, Vatte C, Al-Nafie A, Chathoth S, Al-Ali R, Al-Shehri A, et al. The impact of common polymorphisms in CETP and ABCA1 genes with the risk of coronary artery disease in Saudi Arabians. Human Genomics. 2016;10(1):8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peloso GM, Demissie S, Collins D, Mirel DB, Gabriel SB, Cupples LA, et al. Common genetic variation in multiple metabolic pathways influences susceptibility to low HDL-cholesterol and coronary heart disease. J Lipid Res. 2010;51(12):3524–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Description of Image

    Source link