Scientific Papers

Mechanisms of hyponatremia and diabetes insipidus after acute spinal cord injury: a critical review | Chinese Neurosurgical Journal

Description of Image

  • Sharma HS, Chopp M, Chen L, Sarnowska A, Xue MZ, Ao Q, et al. The 2021 yearbook of neurorestoratology. J Neurorestoratology. 2022;10:612–32. https://doi.org/10.1016/j.jnrt.2022.100008.

    Article 
    CAS 

    Google Scholar
     

  • Spasovski G, Vanholder R, Allolio B, Annane D, Ball S, Bichet D, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Intensive Care Med. 2014;40:320–31. https://doi.org/10.1007/s00134-014-3210-2.

    Article 
    PubMed 

    Google Scholar
     

  • Peruzzi WT, Shapiro BA, Meyer PR, Krumlovsky F, Seo BW. Hyponatremia in acute spinal cord injury. Crit Care Med. 1994;22:252–8. https://doi.org/10.1097/00003246-199402000-00016.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakao Y, Suda K, Shimokawa N, Fu Y. Risk factor analysis for low blood pressure and hyponatremia in acutely and subacutely spinal cord injured patients. Spinal Cord. 2012;50:285–8. https://doi.org/10.1038/sc.2011.142.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kriz J, Schuck O, Horackova M. Hyponatremia in spinal cord injury patients: new insight into differentiating between the dilution and depletion forms. Spinal Cord. 2015;53:291–6. https://doi.org/10.1038/sc.2014.240.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leng YX, Nie CY, Yao ZY, Zhu X. Analysis of the risk factors for early death in acute severe traumatic cervical spinal cord injury. Chin Critical Care Med. 2013;5:294–7. https://doi.org/10.3760/cma.j.issn.2095-4352.2013.05.014.

    Article 

    Google Scholar
     

  • Kogawa R, Kinoshita K, Tanjoh K. Increase in urinary sodium excretion in spinal cord injury patients in the emergency department. Eur J Trauma Emerg Surg. 2016;42:61–6. https://doi.org/10.1007/s00068-015-0503-2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Refardt J, Winzeler B, Christ-Crain M. Diabetes insipidus: an update. Endocrinol Metab Clin North Am. 2020;49:517–31. https://doi.org/10.1016/j.ecl.2020.05.012.

    Article 
    PubMed 

    Google Scholar
     

  • Lin KX. Analysis of hyponatremia after cervical spinal cord injury (a report of 17 cases). Ortho J Chin. 2007;15:1425–7. https://doi.org/10.3969/j.issn.1005-8478.2007.18.023.

    Article 
    CAS 

    Google Scholar
     

  • Sun XJ, Dong BH, Zhao X, Zhang J, Xiao L. Clinical analysis of 15 cases of diabetes insipidus and hyponatremia caused by severe cervical spinal cord injury. J Trauma Surg. 2009;11:560. https://doi.org/10.3969/j.issn.1009-4237.2009.06.029.

    Article 

    Google Scholar
     

  • Li SB, Lu HX. Clinical analysis on diabetes insipidus and hyponatremia caused by cervical spinal cord injury. Sichuan J Anat. 2008;16:22–4. https://doi.org/10.3969/j.issn.1005-1457.2008.02.009.

    Article 
    CAS 

    Google Scholar
     

  • Huang ZZ. Clinical analysis of 22 cases of diabetes insipidus caused by cervical spinal cord injury. Chongqing Med. 2011;4:375–6. https://doi.org/10.3969/j.issn.1671-8348.2011.04.029.

    Article 

    Google Scholar
     

  • Han LL, Wang FY, Sun QZ, Xu LH, Li LY, Deng JH. Retrospective analysis of hyponatremia secondary to acute cervical spinal cord injury. Chin J Spine Spinal Cord. 2009;19:19–21. https://doi.org/10.3969/j.issn.1004-406X.2009.01.004.

    Article 
    CAS 

    Google Scholar
     

  • Frisbie JH. Salt wasting, hypotension, polydipsia, and hyponatremia and the level of spinal cord injury. Spinal Cord. 2007;45:563–8. https://doi.org/10.1038/sj.sc.3102144.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohbe H, Koakutsu T, Kushimoto S. Analysis of risk factors for hyponatremia in patients with acute spinal cord injury: a retrospective single-institution study in Japan. Spinal Cord. 2019;57:240–6. https://doi.org/10.1038/s41393-018-0208-6.

    Article 
    PubMed 

    Google Scholar
     

  • Silver JR. A study of predictors for hyponatraemia in patients with cervical spinal cord injury. Spinal Cord. 2018;56:621–2. https://doi.org/10.1038/sc.2017.103.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peters JP, Welt LG, Sims EA, Orloff J, Needham J. A salt-wasting syndrome associated with cerebral disease. Trans Assoc Am Physicians. 1950;63:57–64. PMID: 14855556.

    CAS 
    PubMed 

    Google Scholar
     

  • Schwartz WB, Bennett W, Curelop S, Bartter FC. A syndrome of renal sodium loss and hyponatremia probably resulting from inappropriate secretion of antidiuretic hormone. Am J Med. 1957;23:529–42. https://doi.org/10.1016/0002-9343(57)90224-3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nelson PB, Seif SM, Maroon JC, Robinson AG. Hyponatremia in intracranial disease: perhaps not the syndrome of inappropriate secretion of antidiuretic hormone (SIADH). J Neurosurg. 1981;55:938–41. https://doi.org/10.3171/jns.1981.55.6.0938.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Misra UK, Kalita J, Bhoi SK, Singh RK. A study of hyponatremia in tuberculous meningitis. J Neurol Sci. 2016;367:152–7. https://doi.org/10.1016/j.jns.2016.06.004.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui H, He G, Yang S, Lv Y, Jiang ZM, Gang XK, et al. Inappropriate antidiuretic hormone secretion and cerebral salt-wasting syndromes in neurological patients. Front Neurosci. 2019;13:1170. https://doi.org/10.3389/fnins.2019.01170.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartoli WP, Davis JM, Pate RR, Ward DS, Watson PD. Weekly variability in total body water using 2H2O dilution in college-age males. Med Sci Sports Exerc. 1993;25:1422–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nigro N, Winzeler B, Suter-Widmer I, Schuetz P, Arici B, Bally M, et al. Evaluation of copeptin and commonly used laboratory parameters for the differential diagnosis of profound hyponatraemia in hospitalized patients: “The Co-MED Study.” Clin Endocrinol (Oxf). 2017;86:456–62. https://doi.org/10.1111/cen.13243.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fenske W, Störk S, Blechschmidt A, Maier SG, Morgenthaler NG, Allolio B. Copeptin in the differential diagnosis of hyponatremia. J Clin Endocrinol Metab. 2009;94:123–9. https://doi.org/10.1210/jc.2008-1426.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tobin G, Chacko AG, Simon R. Evaluation of NT-ProBNP as a marker of the volume status of neurosurgical patients developing hyponatremia and natriuresis: a pilot study. Neurol India. 2018;66:1383–8. https://doi.org/10.4103/0028-3886.241401.

    Article 
    PubMed 

    Google Scholar
     

  • Das SR, Drazner MH, Dries DL, Vega GL, Stanek HG, Abdullah SM, et al. Impact of body mass and body composition on circulating levels of natriuretic peptides: results from the Dallas Heart Study. Circulation. 2005;112:2163–8. https://doi.org/10.1161/CIRCULATIONAHA.105.555573.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Upadhyay UM, Gormley WB. Etiology and management of hyponatremia in neurosurgical patients. J Intensive Care Med. 2012;27:139–44. https://doi.org/10.1177/0885066610395489.

    Article 
    PubMed 

    Google Scholar
     

  • Daia C, Munteanu C, Andone I, Spinu A, Popescu C, Toader C, et al. Polydipsia-polyuria syndrome associated with traumatic spinal cord injury. Signa Vitae. 2021;17:74–81. https://doi.org/10.22514/sv.2021.104.

    Article 
    CAS 

    Google Scholar
     

  • Bourque CW, Oliet SH, Richard D. Osmoreceptors, osmoreception, and osmoregulation. Front Neuroendocrinol. 1994;15:231–74. https://doi.org/10.1006/frne.1994.1010.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McKinley MJ, Mathai ML, McAllen RM, McClear RC, Miselis RR, Pennington GL, et al. Vasopressin secretion: osmotic and hormonal regulation by the lamina terminalis. J Neuroendocrinol. 2004;16:340–7. https://doi.org/10.1111/j.0953-8194.2004.01184.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim SW. Hypernatemia : successful treatment. Electrolyte Blood Press. 2006;4:66–71. https://doi.org/10.5049/EBP.2006.4.2.66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boone M, Deen PM. Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pflugers Arch. 2008;456:1005–24. https://doi.org/10.1007/s00424-008-0498-1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bichet DG. Central vasopressin: dendritic and axonal secretion and renal actions. Clin Kidney J. 2014;7:242–7. https://doi.org/10.1093/ckj/sfu050.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Gastel MDA. Polycystic kidney disease and the vasopressin pathway. Ann Nutr Metab. 2017;70(Suppl):43–50. https://doi.org/10.1159/000463063.

    Article 
    PubMed 

    Google Scholar
     

  • Koshimizu TA, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A. Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev. 2012;92:1813–64. https://doi.org/10.1152/physrev.00035.2011.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishikawa SE. Hyponatremia associated with heart failure: pathological role of vasopressin-dependent impaired water excretion. J Clin Med. 2015;4:933–47. https://doi.org/10.3390/jcm4050933.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leroy C, Karrouz W, Douillard C, Cao CD, Cortet C, Wémeau JL, et al. Diabetes insipidus. Ann Endocrinol (Paris). 2013;74:496–507. https://doi.org/10.1016/j.ando.2013.10.002.

    Article 
    PubMed 

    Google Scholar
     

  • Macciocchi S, Seel RT, Thompson N, Byams R, Bowman B. Spinal cord injury and co-occurring traumatic brain injury: assessment and incidence. Arch Phys Med Rehabil. 2008;89:1350–7. https://doi.org/10.1016/j.apmr.2007.11.055.

    Article 
    PubMed 

    Google Scholar
     

  • Edate S, Albanese A. Management of electrolyte and fluid disorders after brain surgery for pituitary/suprasellar tumours. Horm Res Paediatr. 2015;83:293–301. https://doi.org/10.1159/000370065.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zomp A, Alexander E. Syndrome of inappropriate antidiuretic hormone and cerebral salt wasting in critically ill patients. AACN Adv Crit Care. 2012;23:233–9. https://doi.org/10.1097/NCI.0b013e31824ebd1b. quiz 240–31.

    Article 
    PubMed 

    Google Scholar
     

  • Cuesta M, Thompson CJ. The syndrome of inappropriate antidiuresis (SIAD). Best Pract Res Clin Endocrinol Metab. 2016;30:175–87. https://doi.org/10.1016/j.beem.2016.02.009.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thajudeen B, Salahudeen AK. Role of tolvaptan in the management of hyponatremia in patients with lung and other cancers: current data and future perspectives. Cancer Manag Res. 2016;8:105–14. https://doi.org/10.2147/CMAR.S90169.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zahra M, Samdani A, Piggott K, Gonzalez-Brito M, Solano J, Santo RDL, et al. Acute changes in systemic hemodynamics and serum vasopressin after complete cervical spinal cord injury in piglets. Neurocrit Care. 2010;13:132–40. https://doi.org/10.1007/s12028-010-9364-z.

    Article 
    PubMed 

    Google Scholar
     

  • Gumbel JH, Yang CB, Hubscher CH. Timeline of changes in biomarkers associated with spinal cord injury-induced polyuria. Neurotrauma Rep. 2021;2:462–75. https://doi.org/10.1089/neur.2021.0046.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montgomery LR, Hubscher CH. Altered vasopressin and natriuretic peptide levels in a rat model of spinal cord injury: implications for the development of polyuria. Am J Physiol Renal Physiol. 2018;314:F58–66. https://doi.org/10.1152/ajprenal.00229.2017.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu J, Zhao Z, Sabirzhanov B, Stoica BA, Kumar A, Luo T, et al. Spinal cord injury causes brain inflammation associated with cognitive and affective changes: role of cell cycle pathways. J Neurosci. 2014;34:10989–1006. https://doi.org/10.1523/JNEUROSCI.5110-13.2014.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Description of Image

    Source link