Scientific Papers

How to explore what is hidden? A review of techniques for vascular tissue expression profile analysis | Plant Methods

Description of Image

  • Ye ZH. Vascular tissue differentiation and pattern formation in plants. Annu Rev Plant Biol. 2002;53:183–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y, He XQ, Fukuda H, Kang J, Brady SM, Patrick JW, Sperry J, Yoshida A, Lopez-Millan AF, Grusak MA, Kachroo P. The plant vascular system: evolution, development and functions. J Integr Plant Biol. 2013;55(4):294–388.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heo JO, Blob B, Helariutta Y. Differentiation of conductive cells: a matter of life and death. Curr Opin Plant Biol. 2017;35:23–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu B, Ohtani M, Yamaguchi M, Toyooka K, Wakazaki M, Sato M, Kubo M, Nakano Y, Sano R, Hiwatashi Y, Murata T, Kurata T, Yoneda A, Kato K, Hasebe M, Demura T. Contribution of NAC transcription factors to plant adaptation to land. Science. 2014;343(6178):1505–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Evert RF. Esau’s plant anatomy. New York: Wiley; 2006.

    Book 

    Google Scholar
     

  • Bagniewska-Zadworna A, Stelmasik A. Root heterogeneity and developmental stage determine the pattern of cellulose synthase and cinnamyl alcohol dehydrogenase gene expression profiles during xylogenesis in Populus trichocarpa (Torr. Et Gray). Int J Plant Sci. 2015;176(5):458–67.

    Article 

    Google Scholar
     

  • Brandt SP. Microgenomics: gene expression analysis at the tissue-specific and single-cell levels. J Exp Bot. 2005;56(412):495–505.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou WD, Coukos G, Geho DH, Petricoin EF, Liotta LA. Laser-capture microdissection. Nat Protoc. 2006;1(2):586–603.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu YD, Li H, Bhatti S, Zhou SP, Yang Y, Fish T, Thannhauser TW. Development of a laser capture microscope-based single-cell-type proteomics tool for studying proteomes of individual cell layers of plant roots. Hortic Res. 2016;3:8.

    Article 

    Google Scholar
     

  • Asano T, Masumura T, Kusano H, Kikuchi S, Kurita A, Shimada H, Kadowaki K. Construction of a specialized cDNA library from plant cells isolated by laser capture microdissection: toward comprehensive analysis of the genes expressed in the rice phloem. Plant J. 2002;32(3):401–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goue N, Noel-Boizot N, Vallance M, Magel E, Label P. Microdissection to isolate vascular cambium cells in poplar. Silva Fenn. 2012;46(1):5–16.

    Article 

    Google Scholar
     

  • Berkowitz O, Xu Y, Liew LC, Wang Y, Zhu YQ, Hurgobin B, Lewsey MG, Whelan J. RNA-seq analysis of laser microdissected Arabidopsis thaliana leaf epidermis, mesophyll and vasculature defines tissue-specific transcriptional responses to multiple stress treatments. Plant J. 2021;107(3):938–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin T, Lashbrook CC, Cho SK, Butler NM, Sharma P, Muppirala U, Severin AJ, Hannapel DJ. Transcriptional analysis of phloem-associated cells of potato. BMC Genom. 2015;16(665):1–24.


    Google Scholar
     

  • Tung CC, Kuo SC, Yang CL, Yu JH, Huang CE, Liou PC, Sun YH, Shuai P, Su JC, Ku C, Lin YCJ. Single-cell transcriptomics unveils xylem cell development and evolution. Genome Biol. 2023;24(1):37.

    Article 

    Google Scholar
     

  • Olsen S, Krause K. A rapid preparation procedure for laser microdissection-mediated harvest of plant tissues for gene expression analysis. Plant Methods. 2019;15(88):1–10.

    CAS 

    Google Scholar
     

  • Horneffer V, Linz N, Vogel A. Principles of laser-induced separation and transport of living cells. J Biomed Opt. 2007;12(5):13.

    Article 

    Google Scholar
     

  • Abbott E, Hall D, Hamberger B, Bohlmann J. Laser microdissection of conifer stem tissues: isolation and analysis of high quality RNA, terpene synthase enzyme activity and terpenoid metabolites from resin ducts and cambial zone tissue of white spruce (Picea glauca). BMC Plant Biol. 2010;10(106):1–16.


    Google Scholar
     

  • Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R, Mliki A, Nagamura Y, Tsutsumi N, Nishizawa NK, Nakazono M. Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytol. 2011;190(2):351–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shiono K, Yamauchi T, Yamazaki S, Mohanty B, Malik AI, Nagamura Y, Nishizawa NK, Tsutsumi N, Colmer TD, Nakazono M. Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin in the outer part of roots during formation of a barrier to radial oxygen loss in rice (Oryza sativa). J Exp Bot. 2014;65(17):4795–806.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang YH, Blancaflor EB, Udvardi MK, Harrison MJ. Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol. 2009;9:1–19.

    Article 

    Google Scholar
     

  • Hogekamp C, Arndt D, Pereira PA, Becker JD, Hohnjec N, Kuster H. Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread. Plant Physiol. 2011;157(4):2023–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson T, Tausta SL, Gandotra N, Liu T. Laser microdissection of plant tissue: what you see is what you get. Annu Rev Plant Biol. 2006;57:181–201.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gautam V, Sarkar AK. Laser assisted microdissection, an efficient technique to understand tissue specific gene expression patterns and functional genomics in plants. Mol Biotechnol. 2015;57(4):299–308.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blokhina O, Valerio C, Sokolowska K, Zhao L, Karkonen A, Niittyla T, Fagerstedt K. Laser capture microdissection protocol for xylem tissues of woody plants. Front Plant Sci. 2017;7:1965.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar M, Yadav P, Manjunatha L. LCM-based xylem-specific RNA extraction from Fusarium oxysporum infected Cicer arietinum roots. J Plant Pathol. 2022;104(2):749–60.

    Article 

    Google Scholar
     

  • Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science. 2007;318(5851):801–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Denyer T, Ma X, Klesen S, Scacchi E, Nieselt K, Timmermans MCP. Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA sequencing. Dev Cell. 2019;48(6):840-852.e5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang TQ, Xu ZG, Shang GD, Wang JW. A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root. Mol Plant. 2019;12(5):648–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ryu KH, Huang L, Kang HM, Schiefelbein J. Single-cell RNA sequencing resolves molecular relationships among individual plant cells. Plant Physiol. 2019;179(4):1444–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jean-Baptiste K, McFaline-Figueroa JL, Alexandre CM, Dorrity MW, Saunders L, Bubb KL, Trapnell C, Fields S, Queitsch C, Cuperus JT. Dynamics of gene expression in single root cells of Arabidopsis thaliana. Plant Cell. 2019;31(5):993–1011.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Dai X, Huang X, Xu M, Wang Q, Yan X, Sederoff RR, Li Q. Single-cell RNA sequencing reveals a high-resolution cell atlas of xylem in Populus. J Integr Plant Biol. 2021;63(11):1906–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Q, Liang Z, Feng D, Jiang SJ, Wang YF, Du ZY, Li RX, Hu GH, Zhang PX, Ma YF, Lohmann JU, Gu XF. Transcriptional landscape of rice roots at the single-cell resolution. Mol Plant. 2021;14(3):384–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Satterlee JW, Strable J, Scanlon MJ. Plant stem-cell organization and differentiation at single-cell resolution. Proc Natl Acad Sci USA. 2020;117(52):33689–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu JB, Majeed A, Mukhtar MS. Rooting through single-cell sequencing in phloem Pole cells. Commun Biol. 2022;5(1):1194.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fukuda H, Komamine A. Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyl of Zinnia elegans. Plant Physiol. 1980;65(1):57–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung JH, Kim SG, Seo PJ, Park CM. Molecular mechanisms underlying vascular development. In: Kader JC, Delseny M, editors. Advances in botanical research, vol. 48. London: Academic Press Ltd-Elsevier Science Ltd; 2008. p. 1–68.


    Google Scholar
     

  • Obara K, Kuriyama H, Fukuda H. Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia. Plant Physiol. 2001;125(2):615–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Demura T, Tashiro G, Horiguchi G, Kishimoto N, Kubo M, Matsuoka N, Minami A, Nagata-Hiwatashi M, Nakamura K, Okamura Y, Sassa N, Suzuki S, Yazaki J, Kikuchi S, Fukuda H. Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells. Proc Natl Acad Sci USA. 2002;99(24):15794–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Endo S, Pesquet E, Yamaguchi M, Tashiro G, Sato M, Toyooka K, Nishikubo N, Udagawa-Motose M, Kubo M, Fukuda H, Demura T. Identifying new components participating in the secondary cell wall formation of vessel elements in Zinnia and Arabidopsis. Plant Cell. 2009;21(4):1155–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuriyama H, Fukuda H. Regulation of tracheary element differentiation. J Plant Growth Regul. 2001;20(1):35–51.

    Article 
    CAS 

    Google Scholar
     

  • Turner S, Gallois P, Brown D. Tracheary element differentiation. Annu Rev Plant Biol. 2007;58:407–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohashi-Ito K, Fukuda H. HD-Zip III homeobox genes that include a novel member, ZeHB-13 (Zinnia)/ATHB-15 (Arabidopsis), are involved in procambium and xylem cell differentiation. Plant Cell Physiol. 2003;44(12):1350–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carlsbecker A, Helariutta Y. Phloem and xylem specification: pieces of the puzzle emerge. Curr Opin Plant Biol. 2005;8(5):512–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Motose H, Fukuda H, Sugiyama M. Involvement of local intercellular communication in the differentiation of zinnia mesophyll cells into tracheary elements. Planta. 2001;213(1):121–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whitford R, Fernandez A, De Groodt R, Ortega E, Hilson P. Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. Proc Natl Acad Sci USA. 2008;105(47):18625–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci USA. 2008;105(39):15208–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ito J, Fukuda H. ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements. Plant Cell. 2002;14(12):3201–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thelen MP, Northcote DH. Identification and purification of a nuclease from Zinnia elegans L.—a potential molecular marker for xylogenesis. Planta. 1989;179(2):181–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato Y, Watanabe T, Komamine A, Hibino T, Shibata D, Sugiyama M, Fukuda H. Changes in the activity and mRNA of cinnamyl alcohol dehydrogenase during tracheary element differentiation in Zinnia. Plant Physiol. 1997;113(2):425–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato Y, Demura T, Yamawaki K, Inoue Y, Sato S, Sugiyama M, Fukuda H. Isolation and characterization of a novel peroxidase gene ZPO-C whose expression and function are closely associated with lignification during tracheary element differentiation. Plant Cell Physiol. 2006;47(4):493–503.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshimura T, Demura T, Igarashi M, Fukuda H. Differential expression of three genes for different beta-tubulin isotypes during the initial culture of zinnia mesophyll cells that divide and differentiate into tracheary elements. Plant Cell Physiol. 1996;37(8):1167–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demura T, Fukuda H. Molecular-cloning and characterization of CDNAs associated with tracheary element differentiation in cultured zinnia cells. Plant Physiol. 1993;103(3):815–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Demura T, Fukuda H. Novel vascular cell-specific genes whose expression is regulated temporally and spatially during vascular system-development. Plant Cell. 1994;6(7):967–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Igarashi M, Demura T, Fukuda H. Expression of the ZinniaTED3 promoter in developing tracheary elements of transgenic Arabidopsis. Plant Mol Biol. 1998;36(6):917–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshida S, Iwamoto K, Demura T, Fukuda H. Comprehensive analysis of the regulatory roles of auxin in early transdifferentiation into xylem cells. Plant Mol Biol. 2009;70(4):457–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamamoto R, Fujioka S, Demura T, Takatsuto S, Yoshida S, Fukuda H. Brassinosteroid levels increase drastically prior to morphogenesis of tracheary elements. Plant Physiol. 2001;125(2):556–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pesquet E, Ranocha P, Legay S, Digonnet C, Barbier O, Pichon M, Goffner D. Novel markers of xylogenesis in zinnia are differentially regulated by auxin and cytokinin. Plant Physiol. 2005;139(4):1821–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oda Y, Mimura T, Hasezawa S. Regulation of secondary cell wall development by cortical microtubules during tracheary element differentiation in Arabidopsis cell suspensions. Plant Physiol. 2005;137(3):1027–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pesquet E, Korolev AV, Calder G, Lloyd CW. The microtubule-associated protein AtMAP70-5 regulates secondary wall patterning in Arabidopsis wood cells. Curr Biol. 2010;20(8):744–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong RQ, Demura T, Ye ZH. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell. 2006;18(11):3158–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T. Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 2005;19(16):1855–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kondo Y, Nurani AM, Saito C, Ichihashi Y, Saito M, Yamazaki K, Mitsuda N, Ohme-Takagi M, Fukuda H. Vascular cell induction culture system using Arabidopsis leaves (VISUAL) reveals the sequential differentiation of sieve element-like cells. Plant Cell. 2016;28(6):1250–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kondo Y, Ito T, Nakagami H, Hirakawa Y, Saito M, Tamaki T, Shirasu K, Fukuda H. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling. Nat Commun. 2014;5:1–11.

    Article 

    Google Scholar
     

  • Saito M, Kondo Y, Fukuda H. BES1 and BZR1 redundantly promote phloem and xylem differentiation. Plant Cell Physiol. 2018;59(3):590–600.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL. Radial patterning of Arabidopsis shoots by class IIIHD-ZIP and KANADI genes. Curr Biol. 2003;13(20):1768–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonke M, Thitamadee S, Mahonen AP, Hauser MT, Helariutta Y. APL regulates vascular tissue identity in Arabidopsis. Nature. 2003;426(6963):181–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR. Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA. 2003;100(3):1450–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wallner ES, Lopez-Salmeron V, Belevich I, Poschet G, Jung I, Grunwald K, Sevilem I, Jokitalo E, Hell R, Helariutta Y, Agusti J, Lebovka I, Greb T. Strigolactone- and karrikin-independent SMXL proteins are central regulators of phloem formation. Curr Biol. 2017;27(8):1241–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scacchi E, Salinas P, Gujas B, Santuari L, Krogan N, Ragni L, Berleth T, Hardtke CS. Spatio-temporal sequence of cross-regulatory events in root meristem growth. Proc Natl Acad Sci USA. 2010;107(52):22734–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Truernit E, Baub H, Belcram K, Barthelemy J, Palauqui JC. OCTOPUS, a polarly localised membrane-associated protein, regulates phloem differentiation entry in Arabidopsis thaliana. Development. 2012;139(7):1306–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu C, Zhu YF, Cui YW, Zeng L, Li SJN, Meng FH, Huang ST, Wang WP, Kui H, Yi J, Li J, Wan DS, Gou XP. A CLE-BAM-CIK signalling module controls root protophloem differentiation in Arabidopsis. New Phytol. 2022;233(1):282–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jun J, Fiume E, Roeder AHK, Meng L, Sharma VK, Osmont KS, Baker C, Ha CM, Meyerowitz EM, Feldman LJ, Fletcher JC. Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis. Plant Physiol. 2010;154(4):1721–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moustafa K, Cross J. Genetic approaches to study plant responses to environmental stresses: an overview. Biology. 2016;5(20):1–18.


    Google Scholar
     

  • Knudsen S. Guide to analysis of DNA microarray data. Hoboken: Wiley; 2004.

    Book 

    Google Scholar
     

  • Moreau C, Aksenov N, Lorenzo MG, Segerman B, Funk C, Nilsson P, Jansson S, Tuominen H. A genomic approach to investigate developmental cell death in woody tissues of Populus trees. Genome Biol. 2005;6(4):14.

    Article 

    Google Scholar
     

  • Chano V, Collada C, Soto A. Transcriptomic analysis of wound xylem formation in Pinus canariensis. BMC Plant Biol. 2017;17(234):1–16.


    Google Scholar
     

  • Marzec-Schmidt K, Ludwikow A, Wojciechowska N, Kasprowicz-Maluski A, Mucha J, Bagniewska-Zadworna A. Xylem cell wall formation in pioneer roots and stems of Populus trichocarpa (Torr. & Gray). Front Plant Sci. 2019;10:1–23.

    Article 

    Google Scholar
     

  • Zhang H. The review of transcriptome sequencing: principles, history and advances. IOP Conf Ser Earth Dev Sci. 2019;332(4):1–6.


    Google Scholar
     

  • Ohashi-Ito K, Oda Y, Fukuda H. Arabidopsis vascular-related NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. Plant Cell. 2010;22(10):3461–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kondo Y, Fujita T, Sugiyama M, Fukuda H. A novel system for xylem cell differentiation in Arabidopsis thaliana. Mol Plant. 2015;8(4):612–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao CS, Johnson BJ, Kositsup B, Beers EP. Exploiting secondary growth in Arabidopsis. Construction of xylem and bark cDNA libraries and cloning of three xylem endopeptidases. Plant Physiol. 2000;123(3):1185–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohtani M, Nishikubo N, Xu B, Yamaguchi M, Mitsuda N, Goue N, Shi F, Ohme-Takagi M, Demura T. A NAC domain protein family contributing to the regulation of wood formation in poplar. Plant J. 2011;67(3):499–512.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roach MJ, Deyholos MK. Microarray analysis of developing flax hypocotyls identifies novel transcripts correlated with specific stages of phloem fibre differentiation. Ann Bot. 2008;102(3):317–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roach MJ, Deyholos MK. Microarray analysis of flax (Linum usitatissimum L.) stems identifies transcripts enriched in fibre-bearing phloem tissues. Mol Genet Genom. 2007;278(2):149–65.

    Article 
    CAS 

    Google Scholar
     

  • Qian PP, Song W, Zaizen-Iida M, Kume S, Wang GD, Zhang Y, Kinoshita-Tsujimura K, Chai JJ, Kakimoto T. A Dof-CLE circuit controls phloem organization. Nat Plants. 2022;8(7):817.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Metzker ML. Applications of next-generation sequencing technologies—the next generation. Nat Rev Genet. 2010;11(1):31–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Behjati S, Tarpey PS. What is next generation sequencing? Arch Dis Childhood-Educ Pract. 2013;98(6):236–8.

    Article 

    Google Scholar
     

  • Lu TT, Lu GJ, Fan DL, Zhu CR, Li W, Zhao QA, Feng Q, Zhao Y, Guo YL, Li WJ, Huang XH, Han B. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Res. 2010;20(9):1238–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang GJ, Guo GW, Hu XD, Zhang Y, Li QY, Li RQ, Zhuang RH, Lu ZK, He ZQ, Fang XD, Chen L, Tian W, Tao Y, Kristiansen K, Zhang XQ, Li SG, Yang HM, Wang J, Wang J. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res. 2010;20(5):646–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zenoni S, Ferrarini A, Giacomelli E, Xumerle L, Fasoli M, Malerba G, Bellin D, Pezzotti M, Delledonne M. Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiol. 2010;152(4):1787–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen CB, Farmer AD, Langley RJ, Mudge J, Crow JA, May GD, Huntley J, Smith AG, Retzel EF. Meiosis-specific gene discovery in plants: RNA-seq applied to isolated Arabidopsis male meiocytes. BMC Plant Biol. 2010;10(280):1–13.

    CAS 

    Google Scholar
     

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang ZL, Zheng Y, Ham BK, Zhang SP, Fei ZJ, Lucas WJ. Plant lncRNAs are enriched in and move systemically through the phloem in response to phosphate deficiency. J Integr Plant Biol. 2019;61(4):492–508.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fukuda H, Ohashi-Ito K. Vascular tissue development in plants. In: Grossniklaus U, editor. Plant development and evolution, vol. 131. San Diego: Elsevier Academic Press Inc; 2019. p. 141–60.

    Chapter 

    Google Scholar
     

  • Bao H, Li EY, Mansfield SD, Cronk QCB, El-Kassaby YA, Douglas CJ. The developing xylem transcriptome and genome-wide analysis of alternative splicing in Populus trichocarpa (black cottonwood) populations. BMC Genom. 2013;14:1–13.

    Article 

    Google Scholar
     

  • Zhao JY, Li YQ, Ding L, Yan SS, Liu ML, Jiang L, Zhao WS, Wang Q, Yan LY, Liu RY, Zhang XL. Phloem transcriptome signatures underpin the physiological differentiation of the pedicel, stalk and fruit of cucumber (Cucumis sativus L.). Plant Cell Physiol. 2016;57(1):16.

    Article 

    Google Scholar
     

  • Sui XL, Nie J, Li X, Scanlon MJ, Zhang CK, Zheng Y, Ma S, Shan N, Fei ZJ, Turgeon R, Zhang ZX. Transcriptomic and functional analysis of cucumber (Cucumis sativus L.) fruit phloem during early development. Plant J. 2018;96(5):982–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol. 2006;7:14.

    Article 

    Google Scholar
     

  • Kukurba KR, Montgomery SB. RNA sequencing and analysis. Cold Spring Harb Protoc. 2015;2015:951–69.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plant Cell Atlas C, Jha SG, Borowsky AT, Cole BJ, Fahlgren N, Farmer A, Huang SC, Karia P, Libault M, Provart NJ, Rice SL, Saura-Sanchez M, Agarwal P, Ahkami AH, Anderton CR, Briggs SP, Brophy JA, Denolf P, Di Costanzo LF, Exposito-Alonso M, Giacomello S, Gomez-Cano F, Kaufmann K, Ko DK, Kumar S, Malkovskiy AV, Nakayama N, Obata T, Otegui MS, Palfalvi G, Quezada-Rodriguez EH, Singh R, Uhrig RG, Waese J, Van Wijk K, Wright RC, Ehrhardt DW, Birnbaum KD, Rhee SY. Vision, challenges and opportunities for a plant cell atlas. Elife. 2021;10:e66877.

    Article 

    Google Scholar
     

  • Shaw R, Tian X, Xu J. Single-cell transcriptome analysis in plants: advances and challenges. Mol Plant. 2021;14(1):115–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen G, Ning B, Shi T, Single-Cell. RNA-seq technologies and related computational data analysis. Front Genet. 2019;10(317):1–13.


    Google Scholar
     

  • Salomon R, Kaczorowski D, Valdes-Mora F, Nordon RE, Neild A, Farbehi N, Bartonicek N, Gallego-Ortega D. Droplet-based single cell RNAseq tools: a practical guide. Lab Chip. 2019;19(10):1706–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sant P, Rippe K, Mallm JP. Approaches for single-cell RNA sequencing across tissues and cell types. Transcription. 2023. https://doi.org/10.1080/21541264.2023.2200721.

    Article 
    PubMed 

    Google Scholar
     

  • Cervantes-Perez SA, Thibivillliers S, Tennant S, Libault M. Review: Challenges and perspectives in applying single nuclei RNA-seq technology in plant biology. Plant Sci. 2022;325: 111486.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Denyer T, Timmermans MCP. Crafting a blueprint for single-cell RNA sequencing. Trends Plant Sci. 2022;27(1):92–103.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shulse CN, Cole BJ, Ciobanu D, Lin J, Yoshinaga Y, Gouran M, Turco GM, Zhu Y, O’Malley RC, Brady SM, Dickel DE. High-throughput single-cell transcriptome profiling of plant cell types. Cell Rep. 2019;27(7):2241-2247.e4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turco GM, Rodriguez-Medina J, Siebert S, Han D, Valderrama-Gomez MA, Vahldick H, Shulse CN, Cole BJ, Juliano CE, Dickel DE, Savageau MA, Brady SM. Molecular mechanisms driving switch behavior in xylem cell differentiation. Cell Rep. 2019;28(2):342-351.e4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng J, Li X, Ge Q, Dong Z, Luo L, Tian Z, Zhao Z. Endogenous stress-related signal directs shoot stem cell fate in Arabidopsis thaliana. Nat Plants. 2021;7(9):1276–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang B, Minne M, Brunoni F, Plackova L, Petrik I, Sun Y, Nolf J, Smet W, Verstaen K, Wendrich JR, Eekhout T, Hoyerova K, Van Isterdael G, Haustraete J, Bishopp A, Farcot E, Novak O, Saeys Y, De Rybel B. Non-cell autonomous and spatiotemporal signalling from a tissue organizer orchestrates root vascular development. Nat Plants. 2021;7(11):1485–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wendrich JR, Yang BJ, Vandamme N, Verstaen K, Smet W, Van de Velde C, Minne M, Wybouw B, Mor E, Arents HE, Nolf J, Van Duyse J, Van Isterdael G, Maere S, Saeys Y, De Rybel B. Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions. Science. 2020;370:eaay4970.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez-Anido CB, Vaten A, Smoot NK, Sharma N, Guo V, Gong Y, Anleu Gil MX, Weimer AK, Bergmann DC. Single-cell resolution of lineage trajectories in the Arabidopsis stomatal lineage and developing leaf. Dev Cell. 2021;56(7):1043–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Huan Q, Li K, Qian W. Single-cell transcriptome atlas of the leaf and root of rice seedlings. J Genet Genom. 2021;48(10):881–98.

    Article 
    CAS 

    Google Scholar
     

  • Liu Z, Guo C, Wu R, Wang J, Zhou Y, Yu X, Zhang Y, Zhao Z, Liu H, Sun S, Hu M, Qin A, Liu Y, Yang J, Bawa G, Sun X. Identification of the regulators of epidermis development under drought- and salt-stressed conditions by single-cell RNA-Seq. Int J Mol Sci. 2022;23(5):1–17.

    Article 

    Google Scholar
     

  • Roszak P, Heo JO, Blob B, Toyokura K, Sugiyama Y, de Luis Balaguer MA, Lau WWY, Hamey F, Cirrone J, Madej E, Bouatta AM, Wang X, Guichard M, Ursache R, Tavares H, Verstaen K, Wendrich J, Melnyk CW, Oda Y, Shasha D, Ahnert SE, Saeys Y, De Rybel B, Heidstra R, Scheres B, Grossmann G, Mahonen AP, Denninger P, Gottgens B, Sozzani R, Birnbaum KD, Helariutta Y. Cell-by-cell dissection of phloem development links a maturation gradient to cell specialization. Science. 2021;374:eaba5531.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otero S, Gildea I, Roszak P, Lu Y, Di Vittori V, Bourdon M, Kalmbach L, Blob B, Heo JO, Peruzzo F, Laux T, Fernie AR, Tavares H, Helariutta Y. A root phloem Pole cell atlas reveals common transcriptional states in protophloem-adjacent cells. Nat Plants. 2022;8(8):954–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim JY, Symeonidi E, Pang TY, Denyer T, Weidauer D, Bezrutczyk M, Miras M, Zollner N, Hartwig T, Wudick MM, Lercher M, Chen LQ, Timmermans MCP, Frommer WB. Distinct identities of leaf phloem cells revealed by single cell transcriptomics. Plant Cell. 2021;33(3):511–30.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Z, Wang J, Zhou Y, Zhang Y, Qin A, Yu X, Zhao Z, Wu R, Guo C, Bawa G, Rochaix JD, Sun X. Identification of novel regulators required for early development of vein pattern in the cotyledons by single-cell RNA-sequencing. Plant J. 2022;110(1):7–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Tong S, Jiang Y, Ai F, Feng Y, Zhang J, Gong J, Qin J, Zhang Y, Zhu Y, Liu J, Ma T. Transcriptional landscape of highly lignified poplar stems at single-cell resolution. Genome Biol. 2021;1–22(1):319.

    Article 

    Google Scholar
     

  • Conde D, Triozzi PM, Pereira WJ, Schmidt HW, Balmant KM, Knaack SA, Redondo-Lopez A, Roy S, Dervinis C, Kirst M. Single-nuclei transcriptome analysis of the shoot apex vascular system differentiation in Populus. Development. 2022;149(21):dev200632.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tung CC, Kuo SC, Yang CL, Yu JH, Huang CE, Liou PC, Sun YH, Shuai P, Su JC, Ku C, Lin YJ. Single-cell transcriptomics unveils xylem cell development and evolution. Genome Biol. 2023;24(3):1–37.


    Google Scholar
     

  • Flynn E, Almonte-Loya A, Fragiadakis GK. Single-cell multiomics. Annu Rev Biomed Data Sci. 2023;6:313–37.

    Article 
    PubMed 

    Google Scholar
     

  • Du J, Wang Y, Chen W, Xu M, Zhou R, Shou H, Chen J. High-resolution anatomical and spatial transcriptome analyses reveal two types of meristematic cell pools within the secondary vascular tissue of poplar stem. Mol Plant. 2023;16(5):809–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang NY, Deyholos MK. RNASeq analysis of the shoot apex of flax (Linum usitatissimum) to identify phloem fiber specification genes. Front Plant Sci. 2016;7:5.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • You Y, Sawikowska A, Lee JE, Benstein RM, Neumann M, Krajewski P, Schmid M. Phloem companion cell-specific transcriptomic and epigenomic analyses identify MRF1, a regulator of flowering. Plant Cell. 2019;31(2):325–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu YT, Zhang G, Chen YK, Bai QQ, Gao CS, Zeng LB, Li ZM, Cheng Y, Chen J, Sun XP, Guo LT, Xu JP, Yan Z. Selection of reference genes for qPCR analyses of gene expression in ramie leaves and roots across eleven abiotic/biotic treatments. Sci Rep. 2019;9:1–13.

    Article 

    Google Scholar
     

  • Provart NJ, Alonso J, Assmann SM, Bergmann D, Brady SM, Brkljacic J, Browse J, Chapple C, Colot V, Cutler S, Dangl J, Ehrhardt D, Friesner JD, Frommer WB, Grotewold E, Meyerowitz E, Nemhauser J, Nordborg M, Pikaard C, Shanklin J, Somerville C, Stitt M, Torii KU, Waese J, Wagner D, McCourt P. 50 years of Arabidopsis research: highlights and future directions. New Phytol. 2016;209(3):921–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alonso JM. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science. 2003;301:653–6.

    Article 
    PubMed 

    Google Scholar
     

  • Xie B, Wang XM, Zhu MS, Zhang ZM, Hong ZL. CalS7 encodes a callose synthase responsible for callose deposition in the phloem. Plant J. 2011;65(1):1–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren SC, Song XF, Chen WQ, Lu R, Lucas WJ, Liu CM. CLE25 peptide regulates phloem initiation in Arabidopsis through a CLERK-CLV2 receptor complex. J Integr Plant Biol. 2019;61(10):1043–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang LZ, Tan QM, Lee R, Trethewy A, Lee YH, Tegeder M. Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis. Plant Cell. 2010;22(11):3603–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yokoyama R, Nishitani K. Identification and characterization of Arabidopsis thaliana genes involved in xylem secondary cell walls. J Plant Res. 2006;119(3):189–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han JY, Li H, Yin B, Zhang YZ, Liu YD, Cheng ZY, Liu D, Lu H. The papain-like cysteine protease CEP1 is involved in programmed cell death and secondary wall thickening during xylem development in Arabidopsis. J Exp Bot. 2019;70(1):205–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirakawa Y, Kondo Y, Fukuda H. TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell. 2010;22(8):2618–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Rybel B, Moller B, Yoshida S, Grabowicz I, de Reuille PB, Boeren S, Smith RS, Borst JW, Weijers D. A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis. Dev Cell. 2013;24(4):426–37.

    Article 
    PubMed 

    Google Scholar
     

  • Pichon X, Lagha M, Mueller F, Bertrand E. A growing toolbox to image gene expression in single cells: sensitive approaches for demanding challenges. Mol Cell. 2018;71(3):468–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solanki S, Ameen G, Zhao J, Flaten J, Borowicz P, Brueggeman RS. Visualization of spatial gene expression in plants by modified RNAscope fluorescent in situ hybridization. Plant Methods. 2020;16(1):1–9.

    Article 

    Google Scholar
     

  • Kramer S, Meyer-Natus E, Stigloher C, Thoma H, Schnaufer A, Engstler M. Parallel monitoring of RNA abundance, localization and compactness with correlative single molecule FISH on LR white embedded samples. Nucleic Acids Res. 2021;49(3):1–20.

    Article 

    Google Scholar
     

  • Kwon S. Single-molecule fluorescence in situ hybridization: quantitative imaging of single RNA molecules. BMB Rep. 2013;46(2):65–72.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang YS, Guo J. Multiplexed single-cell in situ RNA profiling. Front Mol Biosci. 2021;8:1–6.

    Article 

    Google Scholar
     

  • Pegg TJ, Gladish DK, Baker RL. Algae to angiosperms: autofluorescence for rapid visualization of plant anatomy among diverse taxa. Appl Plant Sci. 2021;9(6):8.

    Article 

    Google Scholar
     

  • Orjalo A, Johansson HE, Ruth JL. Stellaris™ fluorescence in situ hybridization (FISH) probes: a powerful tool for mRNA detection. Nat Methods. 2011;8(10):i–ii.

    Article 

    Google Scholar
     

  • Kubota K. CARD-FISH for environmental microorganisms: technical advancement and future applications. Microbes Environ. 2013;28(1):3–12.

    Article 
    PubMed 

    Google Scholar
     

  • Faget L, Hnasko TS. Tyramide signal amplification for immunofluorescent enhancement. Methods Mol Biol. 2015;1318:161–72.

    Article 
    PubMed 

    Google Scholar
     

  • Yamauchi K, Okamoto S, Ishida Y, Konno K, Hoshino K, Furuta T, Takahashi M, Koike M, Isa K, Watanabe M, Isa T, Hioki H. Fluorochromized tyramide-glucose oxidase as a multiplex fluorescent tyramide signal amplification system for histochemical analysis. Sci Rep. 2022;12(1):12.

    Article 

    Google Scholar
     

  • Zaidi AU, Enomoto H, Milbrandt J, Roth KA. Dual fluorescent in situ hybridization and immunohistochemical detection with tyramide signal amplification. J Histochem Cytochem. 2000;48(10):1369–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, Wu XY, Vo HT, Ma XJ, Luo YL. RNAscope a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2012;14(1):22–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Biase D, Prisco F, Piegari G, Ilsami A, D’Aquino I, Baldassarre V, Marino FZ, Franco R, Papparella S, Paciello O. RNAScope in situ hybridization as a novel technique for the assessment of c-KIT mRNA expression in canine mast cell tumor. Front Vet Sci. 2021;8:1–9.

    Article 

    Google Scholar
     

  • Barrieu F, Chaumont F, Chrispeels MJ. High expression of the tonoplast aquaporin ZmTIP1 in epidermal and conducting tissues of maize. Plant Physiol. 1998;117(4):1153–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dinant S, Clark AM, Zhu YM, Vilaine F, Palauqui JC, Kusiak C, Thompson GA. Diversity of the superfamily of phloem lectins (phloem protein 2) in angiosperms. Plant Physiol. 2003;131(1):114–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urbanek MO, Nawrocka AU, Krzyzosiak WJ. Small RNA detection by in situ hybridization methods. Int J Mol Sci. 2015;16(6):13259–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pfankuche VM, Hahn K, Bodewes R, Hansmann F, Habierski A, Haverkamp AK, Pfaender S, Walter S, Baechlein C, Postel A, Steinmann E, Becher P, Osterhaus A, Baumgartner W, Puff C. Comparison of different in situ hybridization techniques for the detection of various RNA and DNA viruses. Viruses. 2018;10(384):1–16.


    Google Scholar
     

  • Wojciechowska N, Smugarzewska I, Marzec-Schmidt K, Zarzynska-Nowak A, Bagniewska-Zadworna A. Occurrence of autophagy during pioneer root and stem development in Populus trichocarpa. Planta. 2019;250(6):1789–801.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bagniewska-Zadworna A, Byczyk J, Eissenstat DM, Oleksyn J, Zadworny M. Avoiding transport bottlenecks in an expanding root system: xylem vessel development in fibrous and pioneer roots under field conditions. Am J Bot. 2012;99(9):1417–26.

    Article 
    PubMed 

    Google Scholar
     

  • Tang FC, Barbacioru C, Wang YZ, Nordman E, Lee C, Xu NL, Wang XH, Bodeau J, Tuch BB, Siddiqui A, Lao KQ, Surani MA. mRNA-seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6:377–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu XJ, Yang B, Udo-Inyang I, Ji SY, Ozog D, Zhou L, Mi QS. Research techniques made simple: single-cell RNA sequencing and its applications in dermatology. J Invest Dermatol. 2018;138(5):1004–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denyer T, Ma XL, Klesen S, Scacchi E, Nieselt K, Timmermans MCP. Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA sequencing. Dev Cell. 2019;48(6):840–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gala HP, Lanctot A, Jean-Baptiste K, Guiziou S, Chu JC, Zemke JE, George W, Queitsch C, Cuperus JT, Nemhauser JL. A single-cell view of the transcriptome during lateral root initiation in Arabidopsis thaliana. Plant Cell. 2021;33(7):2197–220.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie J, Li M, Zeng J, Li X, Zhang D. Single-cell RNA sequencing profiles of stem-differentiating xylem in poplar. Plant Biotechnol J. 2022;20(3):417–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Description of Image

    Source link