Scientific Papers

ELF5 drives angiogenesis suppression though stabilizing WDTC1 in renal cell carcinoma | Molecular Cancer

Description of Image

  • Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet. 2009;373:1119–32.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article 
    PubMed 

    Google Scholar
     

  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

    Article 
    PubMed 

    Google Scholar
     

  • Capitanio U, Montorsi F. Renal cancer. Lancet. 2016;387:894–906.

    Article 
    PubMed 

    Google Scholar
     

  • Li T, Kang G, Wang T, Huang H. Tumor angiogenesis and anti-angiogenic gene therapy for cancer. Oncol Lett. 2018;16:687–702.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi S, Deng S, Lian Z, Yu K. Novel drugs with high efficacy against Tumor Angiogenesis. Int J Mol Sci 2022, 23.

  • Zheng W, Zhang S, Guo H, Chen X, Huang Z, Jiang S, Li M. Multi-omics analysis of tumor angiogenesis characteristics and potential epigenetic regulation mechanisms in renal clear cell carcinoma. Cell Commun Signal. 2021;19:39.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bhat TA, Singh RP. Tumor angiogenesis–a potential target in cancer chemoprevention. Food Chem Toxicol. 2008;46:1334–45.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shibuya M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem. 2013;153:13–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen Y, Lu Z, Qi C, Yu C, Li Y, Huan W, Wang R, Luo W, Shen D, Ding L, et al. N(6)-methyladenosine-modified TRAF1 promotes sunitinib resistance by regulating apoptosis and angiogenesis in a METTL14-dependent manner in renal cell carcinoma. Mol Cancer. 2022;21:111.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Guo F, Liu J, Han X, Zhang X, Lin T, Wang Y, Bai J, Han J. FBXO22 suppresses metastasis in human renal cell Carcinoma via Inhibiting MMP-9-Mediated Migration and Invasion and VEGF-Mediated angiogenesis. Int J Biol Sci. 2019;15:647–56.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xu HF, Chen L, Liu XD, Zhan YH, Zhang HH, Li Q, Wu B. Targeting EGFL7 expression through RNA interference suppresses renal cell carcinoma growth by inhibiting angiogenesis. Asian Pac J Cancer Prev. 2014;15:3045–50.

    Article 
    PubMed 

    Google Scholar
     

  • Suzuki M, Saito-Adachi M, Arai Y, Fujiwara Y, Takai E, Shibata S, Seki M, Rokutan H, Maeda D, Horie M, et al. E74-Like factor 3 is a Key Regulator of Epithelial Integrity and Immune Response genes in biliary Tract Cancer. Cancer Res. 2021;81:489–500.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhou M, Ni J, Huang P, Liu X. Generation of a doxycycline-inducible ETV2 expression cell line using PiggyBac transposase system. Stem Cell Res. 2023;66:102985.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Oliver JR, Kushwah R, Hu J. Multiple roles of the epithelium-specific ETS transcription factor, ESE-1, in development and disease. Lab Invest. 2012;92:320–30.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yao B, Zhao J, Li Y, Li H, Hu Z, Pan P, Zhang Y, Du E, Liu R, Xu Y. Elf5 inhibits TGF-β-driven epithelial-mesenchymal transition in prostate cancer by repressing SMAD3 activation. Prostate. 2015;75:872–82.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Singh S, Kumar S, Srivastava RK, Nandi A, Thacker G, Murali H, Kim S, Baldeon M, Tobias J, Blanco MA, et al. Loss of ELF5-FBXW7 stabilizes IFNGR1 to promote the growth and metastasis of triple-negative breast cancer through interferon-γ signalling. Nat Cell Biol. 2020;22:591–602.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang X, Lin J, Ma Y, Zhao J. Overexpression of E74-Like factor 5 (ELF5) inhibits Migration and Invasion of Ovarian Cancer cells. Med Sci Monit. 2019;25:856–65.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lapinskas EJ, Svobodova S, Davis ID, Cebon J, Hertzog PJ, Pritchard MA. The ets transcription factor ELF5 functions as a tumor suppressor in the kidney. Twin Res Hum Genet. 2011;14:316–22.

    Article 
    PubMed 

    Google Scholar
     

  • Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150:12–27.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Meng H, Cao Y, Qin J, Song X, Zhang Q, Shi Y, Cao L. DNA methylation, its mediators and genome integrity. Int J Biol Sci. 2015;11:604–17.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li Y, Liang J, Hou P. Hypermethylation in gastric cancer. Clin Chim Acta. 2015;448:124–32.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Del Castillo Falconi VM, Torres-Arciga K, Matus-Ortega G, Díaz-Chávez J, Herrera LA. DNA methyltransferases: from evolution to clinical applications. Int J Mol Sci 2022, 23.

  • Putri JF, Widodo N, Sakamoto K, Kaul SC, Wadhwa R. Induction of senescence in cancer cells by 5’-Aza-2’-deoxycytidine: Bioinformatics and experimental insights to its targets. Comput Biol Chem. 2017;70:49–55.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu B, Cao X, Liang X, Zhang X, Zhang W, Sun G, Wang D. Epigenetic regulation of Elf5 is associated with epithelial-mesenchymal transition in urothelial cancer. PLoS ONE. 2015;10:e0117510.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med. 1991;324:1–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38:23–38.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Qian Y, Gong Y, Fan Z, Luo G, Huang Q, Deng S, Cheng H, Jin K, Ni Q, Yu X, Liu C. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma. J Hematol Oncol. 2020;13:130.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Castro MG, Candolfi M, Kroeger K, King GD, Curtin JF, Yagiz K, Mineharu Y, Assi H, Wibowo M, Ghulam Muhammad AK, et al. Gene therapy and targeted toxins for glioma. Curr Gene Ther. 2011;11:155–80.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mao W, Wang K, Xu B, Zhang H, Sun S, Hu Q, Zhang L, Liu C, Chen S, Wu J, et al. ciRS-7 is a prognostic biomarker and potential gene therapy target for renal cell carcinoma. Mol Cancer. 2021;20:142.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Qu X, Li Q, Tu S, Yang X, Wen W. ELF5 inhibits the proliferation and invasion of breast cancer cells by regulating CD24. Mol Biol Rep. 2021;48:5023–32.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Piggin CL, Roden DL, Gallego-Ortega D, Lee HJ, Oakes SR, Ormandy CJ. ELF5 isoform expression is tissue-specific and significantly altered in cancer. Breast Cancer Res. 2016;18:4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viallard C, Larrivée B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis. 2017;20:409–26.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Claesson-Welsh L, Welsh M. VEGFA and tumour angiogenesis. J Intern Med. 2013;273:114–27.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mahmood N, Rabbani SA. Targeting DNA hypomethylation in malignancy by epigenetic therapies. Adv Exp Med Biol. 2019;1164:179–96.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Joosten SC, Smits KM, Aarts MJ, Melotte V, Koch A, Tjan-Heijnen VC, van Engeland M. Epigenetics in renal cell cancer: mechanisms and clinical applications. Nat Rev Urol. 2018;15:430–51.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018;19:81–92.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hashimoto H, Vertino PM, Cheng X. Molecular coupling of DNA methylation and histone methylation. Epigenomics. 2010;2:657–69.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen C, Wang Z, Ding Y, Wang L, Wang S, Wang H, Qin Y. DNA methylation: from Cancer Biology to Clinical Perspectives. Front Biosci (Landmark Ed). 2022;27:326.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ng RK, Dean W, Dawson C, Lucifero D, Madeja Z, Reik W, Hemberger M. Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat Cell Biol. 2008;10:1280–90.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Miyano M, Sayaman RW, Shalabi SF, Senapati P, Lopez JC, Angarola BL, Hinz S, Zirbes A, Anczukow O, Yee LD, et al. Breast-specific molecular Clocks comprised of ELF5 expression and promoter methylation identify individuals susceptible to Cancer initiation. Cancer Prev Res (Phila). 2021;14:779–94.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014;20:1242–53.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer. 2020;19:146.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han S, Wang R, Zhang Y, Li X, Gan Y, Gao F, Rong P, Wang W, Li W. The role of ubiquitination and deubiquitination in tumor invasion and metastasis. Int J Biol Sci. 2022;18:2292–303.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mevissen TET, Komander D. Mechanisms of Deubiquitinase specificity and regulation. Annu Rev Biochem. 2017;86:159–92.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fu S, Shao S, Wang L, Liu H, Hou H, Wang Y, Wang H, Huang X, Lv R. USP3 stabilizes p53 protein through its deubiquitinase activity. Biochem Biophys Res Commun. 2017;492:178–83.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang Z, Yang J, Di J, Cui M, Xing J, Wu F, Wu W, Yang H, Zhang C, Yao Z, et al. Downregulated USP3 mRNA functions as a competitive endogenous RNA of SMAD4 by sponging miR-224 and promotes metastasis in colorectal cancer. Sci Rep. 2017;7:4281.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu X, Wang H, Zhu D, Chai Y, Wang J, Dai W, Xiao Y, Tang W, Li J, Hong L, et al. USP3 promotes gastric cancer progression and metastasis by deubiquitination-dependent COL9A3/COL6A5 stabilisation. Cell Death Dis. 2021;13:10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lancini C, Gargiulo G, van den Berk PC, Citterio E. Quantitative analysis by next generation sequencing of hematopoietic stem and progenitor cells (LSK) and of splenic B cells transcriptomes from wild-type and Usp3-knockout mice. Data Brief. 2016;6:556–61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lancini C, van den Berk PC, Vissers JH, Gargiulo G, Song JY, Hulsman D, Serresi M, Tanger E, Blom M, Vens C, et al. Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells. J Exp Med. 2014;211:1759–77.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tu Y, Chen Z, Zhao P, Sun G, Bao Z, Chao H, Fan L, Li C, You Y, Qu Y, et al. Smoothened promotes Glioblastoma Radiation Resistance Via activating USP3-Mediated Claspin Deubiquitination. Clin Cancer Res. 2020;26:1749–62.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu Y, Qin J, Li F, Yang C, Li Z, Zhou Z, Zhang H, Li Y, Wang X, Liu R, et al. USP3 promotes breast cancer cell proliferation by deubiquitinating KLF5. J Biol Chem. 2019;294:17837–47.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Shi K, Zhang JZ, Yang L, Li NN, Yue Y, Du XH, Zhang XZ, Lu YC, Guo D. Protein deubiquitylase USP3 stabilizes Aurora A to promote proliferation and metastasis of esophageal squamous cell carcinoma. BMC Cancer. 2021;21:1196.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Groh BS, Yan F, Smith MD, Yu Y, Chen X, Xiong Y. The antiobesity factor WDTC1 suppresses adipogenesis via the CRL4WDTC1 E3 ligase. EMBO Rep. 2016;17:638–47.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Häder T, Müller S, Aguilera M, Eulenberg KG, Steuernagel A, Ciossek T, Kühnlein RP, Lemaire L, Fritsch R, Dohrmann C, et al. Control of triglyceride storage by a WD40/TPR-domain protein. EMBO Rep. 2003;4:511–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Cai Q, Ping J, Diaz-Zabala H, Xia Y, Guo X. The putative oncogenic role of WDTC1 in colorectal cancer. Carcinogenesis. 2022;43:594–600.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Description of Image

    Source link