Scientific Papers

The divergent ER-mitochondria encounter structures (ERMES) are conserved in parabasalids but lost in several anaerobic lineages with hydrogenosomes | BMC Biology

Description of Image

  • Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS, et al. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science. 2009;325:477–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • AhYoung AP, Jiang J, Zhang J, Dang XK, Loo JA, Zhou ZH, et al. Conserved SMP domains of the ERMES complex bind phospholipids and mediate tether assembly. Proc Natl Acad Sci U S A. 2015;112(25):E3179–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong H, Park J, Jun Y, Lee C. Crystal structures of Mmm1 and Mdm12–Mmm1 reveal mechanistic insight into phospholipid trafficking at ER-mitochondria contact sites. Proc Natl Acad Sci U S A. 2017;114(45):E9502–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berger KH, Sogo LF, Yaffe MP. Mdm12p, a component required for mitochondrial inheritance that is conserved between budding and fission yeast. J Cell Biol. 1997;136(3):545–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murley A, Lackner LL, Osman C, West M, Voeltz GK, Walter P, et al. ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast. eLife. 2013;2:e00422.

  • Böckler S, Westermann B. Mitochondrial ER contacts are crucial for mitophagy in yeast. Dev Cell. 2014;28(4):450–8.

    Article 
    PubMed 

    Google Scholar
     

  • Wideman JG, Go NE, Klein A, Redmond E, Lackey SW, Tao T, et al. Roles of the Mdm10, Tom7, Mdm12, and Mmm1 proteins in the assembly of mitochondrial outer membrane proteins in Neurospora crassa. Mol Biol Cell. 2010;21(10):1725–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wideman JG, Lackey SWK, Srayko MA, Norton KA, Nargang FE. Analysis of mutations in Neurospora crassa ERMES components reveals specific functions related to β-barrel protein assembly and maintenance of mitochondrial morphology. PLoS One. 2013;8(8):e71837.

  • Hirabayashi Y, Kwon SK, Paek H, Pernice WM, Paul MA, Lee J, et al. ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science. 2017;358(6363):623–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schauder CM, Wu X, Saheki Y, Narayanaswamy P, Torta F, Wenk MR, et al. Structure of a lipid-bound extended synaptotagmin indicates a role in lipid transfer. Nature. 2014;510(7506):552–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flinner N, Ellenrieder L, Stiller SB, Becker T, Schleiff E, Mirus O. Mdm10 is an ancient eukaryotic porin co-occurring with the ERMES complex. Biochim Biophys Acta – Mol Cell Res. 2013;1833:3314–25.

    Article 
    CAS 

    Google Scholar
     

  • Kornmann B, Osman C, Walter P. The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections. Proc Natl Acad Sci U S A. 2011;108(34):14151–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang B, Yu Q, Huo D, Li J, Liang C, Li H, et al. Arf1 regulates the ER–mitochondria encounter structure (ERMES) in a reactive oxygen species-dependent manner. FEBS J. 2018;285(11):2004–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rasul F, Zheng F, Dong F, He J, Liu L, Liu W, et al. Emr1 regulates the number of foci of the endoplasmic reticulum-mitochondria encounter structure complex. Nat Commun. 2021;12(1):521.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wideman JG, Gawryluk RM, Gray MW, Dacks JB. The ancient and widespread nature of the ER-mitochondria encounter structure. Mol Biol Evol. 2013;30(9):2044–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Čepička I, et al. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol. 2017;1(4):0092.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tachezy J, Makki A, Hrdý I. The hydrogenosome of Trichomonas vaginalis. J Eukaryot Microbiol. 2022;69(6):e12922.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benchimol M. Hydrogenosomes under microscopy. Tissue Cell. 2009;41(3):151–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burgess SM, Delannoy M, Jensen RE. MMM1 encodes a mitochondrial outer membrane protein essential for establishing and maintaining the structure of yeast mitochondria. J Cell Biol. 1994;126(6):1375–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Youngman MJ, Hobbs AE, Burgess SM, Srinivasan M, Jensen RE. Mmm2p, a mitochondrial outer membrane protein required for yeast mitochondrial shape and maintenance of mtDNA nucleoids. J Cell Biol. 2004;164(5):677–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sogo LF, Yaffe MP. Regulation of mitochondrial morphology and inheritance by Mdm10p, a protein of the mitochondrial outer membrane. J Cell Biol. 1994;126(6):1361–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wideman JG, Muñoz-Gómez SA. The evolution of ERMIONE in mitochondrial biogenesis and lipid homeostasis: an evolutionary view from comparative cell biology. Biochim Biophys Acta. 2016;1861(8 Pt B):900–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tovar J, León-Avila G, Sánchez LB, Sutak R, Tachezy J, van der Giezen M, et al. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature. 2003;426(6963):172–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jerlström-Hultqvist J, Einarsson E, Xu F, Hjort K, Ek B, Steinhauf D, et al. Hydrogenosomes in the diplomonad Spironucleus salmonicida. Nat Commun. 2013;4:2493.

    Article 
    PubMed 

    Google Scholar
     

  • Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, et al. A Eukaryote without a Mitochondrial Organelle. Curr Biol. 2016;26(10):1274–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stairs CW, Táborský P, Salomaki ED, Kolisko M, Pánek T, Eme L, et al. Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Curr Biol. 2021;31:5605-5612.e5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barlow LD, Maciejowski W, More K, Terry K, Vargová R, Záhonová K, et al. Comparative Genomics for evolutionary cell biology using AMOEBAE: Understanding the Golgi and beyond. Methods Mol Biol. 2023;2557:431–52.

    Article 
    PubMed 

    Google Scholar
     

  • Liu LK, Choudhary V, Toulmay A, Prinz WA. An inducible ER–Golgi tether facilitates ceramide transport to alleviate lipotoxicity. J Cell Biol. 2017;216(1):131–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luévano-Martínez LA. The chimeric origin of the cardiolipin biosynthetic pathway in the Eukarya domain. Biochim Biophys Acta. 2015;1847(6–7):599–606.

    Article 
    PubMed 

    Google Scholar
     

  • Rada P, Makki A, Žárský V, Tachezy J. Targeting of tail-anchored proteins to Trichomonas vaginalis hydrogenosomes. Mol Microbiol. 2019;111(3):588–603.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19(6):679–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lang A, John Peter AT, Kornmann B. ER-mitochondria contact sites in yeast: beyond the myths of ERMES. Curr Opin Cell Biol. 2015;35:7–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wozny MR, Di Luca A, Morado DR, Picco A, Khaddaj R, Campomanes P, et al. In situ architecture of the ER-mitochondria encounter structure. Nature. 2023;618(7963):188–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernández-Murray JP, McMaster CR. Lipid synthesis and membrane contact sites: a crossroads for cellular physiology. J Lipid Res. 2016;57(10):1789–805.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guschina IA, Harris KM, Maskrey B, Goldberg B, Lloyd D, Harwood JL. The microaerophilic flagellate, Trichomonas vaginalis, contains unusual acyl lipids but no detectable cardiolipin. J Eukaryot Microbiol. 2009;56(1):52–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and Python bindings. J Chem Inf Model. 2021;61(8):3891–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tachezy J, editor. Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. 2nd ed. Springer; 2019.

  • Takishita K, Kolisko M, Komatsuzaki H, Yabuki A, Inagaki Y, Cepicka I, et al. Multigene phylogenies of diverse Carpediemonas-like organisms identify the closest relatives of “amitochondriate” diplomonads and retortamonads. Protist. 2012;163(3):344–55.

    Article 
    PubMed 

    Google Scholar
     

  • Kang S, Tice AK, Spiegel FW, Silberman JD, Pánek T, Čepička I, et al. Between a Pod and a Hard Test: The Deep Evolution of Amoebae. Mol Biol Evol. 2017;34(9):2258–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rada P, Doležal P, Jedelský PL, Bursac D, Perry AJ, Šedinová M, et al. The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis. PLoS ONE. 2011;6(9):e24428.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong H, Park J, Lee C. Crystal structure of Mdm12 reveals the architecture and dynamic organization of the ERMES complex. EMBO Rep. 2016;17(12):1857–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cerkasovova A, Cerkasov J, Kulda J, Reischig J. Circular DNA and cardiolipin in hydrogenosomes, microbody-like organelles of trichomonads. Folia Parasitol (Praha). 1976;23(1):33–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Rosa IDA, Einicker-Lamas M, Bernardo RR, Previatto LM, Mohana-Borges R, Morgado-Díaz JA, et al. Cardiolipin in hydrogenosomes: evidence of symbiotic origin. Eukaryot Cell. 2006;5(4):784–7.

    Article 
    CAS 

    Google Scholar
     

  • Paltauf F, Meingassner JG. The absence of cardiolipin in hydrogenosomes of Trichomonas vaginalis and Tritrichomonas foetus. J Parasitol. 1982;68(5):949–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vance JE. Phospholipid synthesis and transport in mammalian cells. Traffic. 2015;16(1):1–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD, Xie Y, et al. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol. 2011;41(13–14):1421–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beltrán NC, Horváthová L, Jedelský PL, Šedinová M, Rada P, Marcinčiková M, et al. Iron-induced changes in the proteome of Trichomonas vaginalis hydrogenosomes. PLoS ONE. 2013;8(5):e65148.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’Angelo G, Vicinanza M, De Matteis MA. Lipid-transfer proteins in biosynthetic pathways. Curr Opin Cell Biol. 2008;20(4):360–70.

    Article 
    PubMed 

    Google Scholar
     

  • Kawano S, Tamura Y, Kojima R, Bala S, Asai E, Michel AH, et al. Structure-function insights into direct lipid transfer between membranes by Mmm1-Mdm12 of ERMES. J Cell Biol. 2018;217(3):959–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beach DH, Holz GG, Singh BN, Lindmark DG. Phospholipid metabolism of cultured Trichomonas vaginalis and Tritrichomonas foetus. Mol Biochem Parasitol. 1991;44(1):97–108.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Posor Y, Jang W, Haucke V. Phosphoinositides as membrane organizers. Nat Rev Mol Cell Biol. 2022;23(12):797–816.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davy de Virville J, Brown S, Cochet F, Soler MN, Hoffelt M, Ruelland E, et al. Assessment of mitochondria as a compartment for phosphatidylinositol synthesis in Solanum tuberosum. Plant Physiol Biochem. 2010;48(12):952–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1(1):11–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benchimol M, de Souza W. Fine structure and cytochemistry of the hydrogenosome of Tritrichomonas foetus. J Protozool. 1983;30(2):422–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nelson MR, Thulin E, Fagan PA, Forsén S, Chazin WJ. The EF-hand domain: a globally cooperative structural unit. Protein Sci. 2002;11:198–205.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makki A, Rada P, Žárský V, Kereïche S, Kováčik L, Novotný M, et al. Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis. PLoS Biol. 2019;17(1):e3000098.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das S, Stevens T, Castillo C, Villasenõr A, Arredondo H, Reddy K. Lipid metabolism in mucous-dwelling amitochondriate protozoa. Int J Parasitol. 2002;32(6):655–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tai JH, Su HM, Tsai J, Shaio MF, Wang CC. The divergence of Trichomonas vaginalis virus RNAs among various isolates of Trichomonas vaginalis. Exp Parasitol. 1993;76(3):278–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diamond LS. The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol. 1957;43(4):488–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Štáfková J, Rada P, Meloni D, Žárský V, Smutná T, Zimmann N, et al. Dynamic secretome of Trichomonas vaginalis: Case study of β-amylases. Mol Cell Proteomics. 2018;17(2):304–20.

    Article 
    PubMed 

    Google Scholar
     

  • Sutak R, Dolezal P, Fiumera HL, Hrdy I, Dancist A, Delgadillo-Correa M, et al. Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc Natl Acad Sci U S A. 2004;101(28):10368–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rada P, Kellerová P, Verner Z, Tachezy J. Investigation of the secretory pathway in Trichomonas vaginalis argues against a moonlighting function of hydrogenosomal enzymes. J Eukaryot Microbiol. 2019;66(6):899–910.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nývltová E, Smutná T, Tachezy J, Hrdý I. OsmC and incomplete glycine decarboxylase complex mediate reductive detoxification of peroxides in hydrogenosomes of Trichomonas vaginalis. Mol Biochem Parasitol. 2016;206(1–2):29–38.

    Article 
    PubMed 

    Google Scholar
     

  • Drmota T, Proost P, Van Ranst M, Weyda F, Kulda J, Tachezy J. Iron-ascorbate cleavable malic enzyme from hydrogenosomes of Trichomonas vaginalis: purification and characterization. Mol Biochem Parasitol. 1996;83(2):221–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verner Z, Žárský V, Le T, Narayanasamy RK, Rada P, Rozbeský D, et al. Anaerobic peroxisomes in Entamoeba histolytica metabolize myo-inositol. PLoS. 2021;17(11):e1010041.

    CAS 

    Google Scholar
     

  • Masuda T, Tomita M, Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res. 2008;7(2):731–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13(9):2513–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aurrecoechea C, Brestelli J, Brunk BP, Fischer S, Gajria B, Gao X, et al. EuPathDB: a portal to eukaryotic pathogen databases. Nucleic Acids Res. 2010;38(Database issue):D415-9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47(D1):D442–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science. 2007;315(5809):207–12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palmieri N, de Jesus Ramires M, Hess M, Bilic I. Complete genomes of the eukaryotic poultry parasite Histomonas meleagridis: linking sequence analysis with virulence / attenuation. BMC Genomics. 2021;22:753.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benchimol M, de Almeida LGP, Vasconcelos AT, de Andrade RI, Bogo MR, Kist LW, et al. Draft genome sequence of Tritrichomonas foetus strain K. Genome Announc. 2017;5(16):e00195-e217.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Handrich MR, Garg SG, Sommerville EW, Hirt RP, Gould SB. Characterization of the BspA and Pmp protein family of trichomonads. Parasit Vectors. 2019;12(1):406.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richter DJ, Berney C, Strassert JFH, Poh Y-P, Herman EK, Muñoz-Gómez SA, et al. EukProt: A database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community J. 2022;2:e56.

    Article 

    Google Scholar
     

  • Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, et al. InterPro in 2022. Nucleic Acids Res. 2023;51(D1):D418–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zimmermann L, Stephens A, Nam SZ, Rau D, Kübler J, Lozajic M, et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol. 2018;430(15):2237–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. HMMER web server: 2018 update. Nucleic Acids Res. 2018;46(W1):W200–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armenteros JJA, Salvatore M, Emanuelsson O, Winther O, Von Heijne G, Elofsson A, et al. Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance. 2019;2(5):e201900429.

    Article 

    Google Scholar
     

  • Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, Imai K. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics. 2015;14(4):1113–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thumuluri V, Almagro Armenteros JJ, Johansen AR, Nielsen H, Winther O. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Res. 2022;50(W1):W228-34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10:210.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anisimova M, Gil M, Dufayard JF, Dessimoz C, Gascuel O. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst Biol. 2011;60(5):685–99.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans R, O’Neill M, Pritzel A, Antropova N, Senior A, Green T, et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv. 2021;10(04):463034.


    Google Scholar
     

  • Bryant P, Pozzati G, Elofsson A. Improved prediction of protein-protein interactions using AlphaFold2. Nat Commun. 2022;13(1):1265.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berman H, Henrick K, Nakamura H. Announcing the worldwide Protein Data Bank. Nat Struct Biol. 2003;10:980.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Sanner MF. AutoDock CrankPep: combining folding and docking to predict protein-peptide complexes. Bioinformatics. 2019;35(24):5121–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform. 2011;3:33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Description of Image

    Source link