Scientific Papers

Panax japonicus C.A. Meyer: a comprehensive review on botany, phytochemistry, pharmacology, pharmacokinetics and authentication | Chinese Medicine

Description of Image

  • Yang X, Wang R, Zhang S, et al. Polysaccharides from Panax japonicus C.A. Meyer and their antioxidant activities. Carbohydr Polym. 2014;101:386–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morita T, Tanaka O, Kohda H. Saponin composition of rhizomes of Panax japonicus collected in South Kyushu, Japan, and its significance in oriental traditional medicine. Chem pharm bull. 1985;33:3852–8.

    Article 
    CAS 

    Google Scholar
     

  • Zhang S, Wu Y, Jin J, et al. De novo characterization of Panax japonicus C. A. Mey transcriptome and genes related to triterpenoid saponin biosynthesis. Biochem Biophys Res Co. 2015;466(3):450–5.

    Article 
    CAS 

    Google Scholar
     

  • Wang R, Chen P, Jia F, et al. Characterization and antioxidant activities of polysaccharides from Panax japonicus C.A. Meyer. Carbohydr Polym. 2012;88(4):1402–6.

    Article 
    CAS 

    Google Scholar
     

  • You XL, Han JY, Choi YE. Plant regeneration via direct somatic embryogenesis in Panax japonicus. Plant Biotechnol Rep. 2007;1(1):5–9.

    Article 

    Google Scholar
     

  • Ngan F, Shaw P, But P, et al. Molecular authentication of Panax species. Phytochemistry. 1999;50(5):787–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia P, Li J, Wang R, et al. Comparative study on volatile oils of four Panax genus species in Southeast Asia by gas chromatography–mass spectrometry. Ind Crops Prod. 2015;74:478–84.

    Article 
    CAS 

    Google Scholar
     

  • Yoshizaki K, Devkota HP, Yahara S. Four new triterpenoid saponins from the leaves of Panax japonicus grown in southern Miyazaki Prefecture (4). Chem Pharm Bull. 2013;61(3):273–8.

    Article 
    CAS 

    Google Scholar
     

  • Yoshizaki K, Devkota HP, Fujino H, et al. Saponins composition of rhizomes, taproots, and lateral roots of Satsuma-ninjin (Panax japonicus). Chem Pharm Bull. 2013;61(3):344–50.

    Article 
    CAS 

    Google Scholar
     

  • Yoshizaki K, Murakami M, Fujino H, et al. New triterpenoid saponins from fruit specimens of Panax japonicus collected in Toyama Prefecture and Hokkaido (2). Chem Pharm Bull. 2012;60(6):728–35.

    Article 
    CAS 

    Google Scholar
     

  • Ouyang LN, Xiang DW, Wu X, et al. Research progress on chemical constituents and pharmacological activities of Panax japonicus. Chin Tradit Herbal Drugs. 2010;41(6):1023–7.

    CAS 

    Google Scholar
     

  • Zhou M, Xu M, Zhu HT, et al. New dammarane-type saponins from the rhizomes of Panax japonicus. Helv Chim Acta. 2011;94(11):2010–9.

    Article 
    CAS 

    Google Scholar
     

  • Tanaka K, Kubota M, Zhu S, et al. Analysis of ginsenosides in Ginseng drugs using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry. Nat Prod Commun. 2007;2(6):625–32.

    CAS 

    Google Scholar
     

  • Chen J, Tan M, Zou L, et al. Qualitative and quantitative analysis of the saponins in Panacis Japonici Rhizoma using ultra-fast liquid chromatography coupled with triple quadrupole-time of flight tandem mass spectrometry and ultra-fast liquid chromatography coupled with triple quadrupole-linear ion trap tandem mass spectrometry. Chem Pharm Bull. 2019;67(8):839–48.

    Article 
    CAS 

    Google Scholar
     

  • Wu QS, Chen P, Zhang QW, et al. Advances in research of chemical constituents, pharmacological activities and analytical methods of Panax japonicus. Asia Pac Tradit Med. 2016;12(06):46–54.


    Google Scholar
     

  • Du Z, Li J, Zhang X, et al. An integrated LC-MS-based strategy for the quality assessment and discrimination of three Panax Species. Molecules. 2018;23(11):2988.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen JL, Tan MX, Zou LS, et al. Stimultaneous determination of multiple bioactive constituents in Panacis Japonici Rhizoma processed by different methods and grey relational analysis. Chin J of Chin Mater Med. 2018;43(21):4274–82.


    Google Scholar
     

  • Tanaka O, Morita T, Kasai R, et al. Study on saponins of rhizomes of Panax pseudo-ginseng subsp. himalaicus collected at Tzatogang and Pari-la, Bhutan-Himalaya. Chem Pharm Bull. 1985;33(6):2323–30.

    Article 
    CAS 

    Google Scholar
     

  • Cai P, Xiao ZY, Wei JX. Chemical constituents of Panax japonicus (I). Chin Tradit Herbal Drugs. 1982;13(3):1–2.

    CAS 

    Google Scholar
     

  • Cai P, Xiao ZY. Chemical constituents of Panax japonicus (II). Chin Tradit Herbal Drugs. 1984;15(6):1–6.


    Google Scholar
     

  • Atopkina LN, Denisenko VA. Synthesis of 20S-protopanaxatriol β-d-glucopyranosides. Chem Nat Compd. 2019;55(1):82–7.

    Article 
    CAS 

    Google Scholar
     

  • Jia L, Zhao Y. Current evaluation of the millennium phytomedicine–ginseng (I): etymology, pharmacognosy, phytochemistry, market and regulations. Curr Med Chem. 2009;16(19):2475.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou K, Zhu S, Meselhy MR, et al. Dammarane-type saponins from Panax japonicus and their neurite outgrowth activity in SK-N-SH cells. J Nat Prod. 2002;65(9):1288–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou K, Zhu S, Tohda C, et al. Dammarane-type triterpene saponins from Panax japonicus. J Nat Prod. 2002;65(3):346–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang Z, Huang Y, Li X, et al. Molecular mass and chain conformations of Rhizoma Panacis Japonici polysaccharides. Carbohydr Polym. 2009;78(3):596–601.

    Article 
    CAS 

    Google Scholar
     

  • Huang Z, Zhang L. Chemical structures of water-soluble polysaccharides from Rhizoma Panacis Japonici. Carbohydr Res. 2009;344(9):1136–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang Z, Zhang L, Duan X, et al. Novel highly branched water-soluble heteropolysaccharides as immunopotentiators to inhibit S-180 tumor cell growth in BALB/c mice. Carbohyd Polym. 2012;87(1):427–34.

    Article 
    CAS 

    Google Scholar
     

  • Meyer C, Zhang L, Zhang X, et al. Comparative analysis of the essential oils from normal and hairy roots of Panax japonicas C.A. Meyer. Afr J Biotechnol. 2011;10:2440–5.


    Google Scholar
     

  • Yang LB, Liu SJ, Da LL, et al. Research of fat-soluble components of Panax japonicus C. A. Mey. J Anhui Agric Sci. 2011;39(20):12145–6.


    Google Scholar
     

  • Chen L, Ren H, Xu R, et al. The effect of Fufang Zhujieshen tablets on inflammatory factors in osteoarthritis. Chin Hosp Pharm J. 2019;39(06):580–5.


    Google Scholar
     

  • Tan QL. The effects of anti -inflammatory of compound Panax japonicus Tablet in rheumatoid arthritis mice. Chin Med Herald. 2011;8(28):27–8.

    Article 

    Google Scholar
     

  • Wang ZF, Tan QL, Zhang H, et al. Experimental studies on the mechanism of compound Japanese Ginseng pill in treatment of Rheumatoid arthritis. Lishizhen Med Mater Med Res. 2009;20(7):1611–3.


    Google Scholar
     

  • Wen DJ, Chen GD, Zhang CL, et al. Study on the anti-inflammatory effects of total Panax japonicus saponins. Lishizhen Med Mater Med Res. 2008;19(5):1155–6.

    CAS 

    Google Scholar
     

  • Deng L, Yuan D, Zhou Z, et al. Saponins from Panax japonicus attenuate age-related neuroinflammation via regulation of the mitogen-activated protein kinase and nuclear factor kappa B signaling pathways. Neural Regen Res. 2017;12(11):1877–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng ZH, Dun YY, Liu J, et al. Effects of saponins from Panax japonicus on colonic inflammation through Neu3/IAP signaling pathway in aging rats. Lishizhen Med Mater Med Res. 2019;30(7):1597–601.


    Google Scholar
     

  • Wang T, Dai Y, Dun Y, et al. Chikusetsusaponin V inhibits inflammatory responses via NF-κB and MAPK signaling pathways in LPS-induced RAW 264.7 macrophages. Immunopharm Immunot. 2014;36(6):404–11.

    Article 
    CAS 

    Google Scholar
     

  • Yuan C, Liu C, Wang T, et al. Chikusetsu saponinIVa ameliorates high fat diet-induced inflammation in adipose tissue of mice through inhibition of NLRP3 inflammasome activation and NF-κB signaling. Oncotarget. 2017;8(19):31023.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao QQ, Wang T, Yuang D, et al. Effect of Panax japonicus polysaccharide on LPS induced microglial inflammatory response. J Chin Med Mater. 2019;42(6):1409–12.


    Google Scholar
     

  • Duan L, Liu CQ, Wu LC, et al. Effects of Panax japonicus hypolipidemic compound on non-alcoholic fatty liver disease in mice and its mechanism. Med J Chin PLA. 2017;42(9):764–8.


    Google Scholar
     

  • Qin YE, Cui QQ, Zhang CC, et al. Effects of total saponins from Panax japonicus on acute hepatic injury induced by carbon tetrachloride. Chin J Inf Tradit Chin Med. 2014;21(10):47–9.


    Google Scholar
     

  • Qin YE, Zhang CC, Wang T, et al. Effect of polysaccharide from Panax japonicus on hepatic cell injury. Chin J Inf Tradit Chin Med. 2014;21(11):59–62.

    CAS 

    Google Scholar
     

  • Yang XL, Chen P. Protective Effects of polysaccharide and total Saponins from Panax japonicus on acute hepatic injury. Chin J Inf Tradit Chin Med. 2011;17(1):65–6.


    Google Scholar
     

  • Yuan D, Xiang T, Huo Y, et al. Preventive effects of total saponins of Panax japonicus on fatty liver fibrosis in mice. Arch Med Sci. 2018;14(2):396–406.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai YW, Zhang CC, Zhao HX, et al. Chikusetsusaponin V attenuates lipopolysaccharide-induced liver injury in mice. Immunopharm Immunot. 2016;38(3):167–74.

    Article 
    CAS 

    Google Scholar
     

  • Xu R, Liu Z, Fu Q, et al. Protective effects of polysaccharides from Panax japonicus on mice with liver injury induced by acetaminophen. J South-Central Univ Nat (Nat Sci Ed). 2020;39(1):51–5.


    Google Scholar
     

  • Jiang SQ, Duan H, Shu GW, et al. Protective effects of polysaccharides from Panax japonicus on mice with acute liver injury induced by LPS/D-GalN. Chin Med Mat. 2017;40(5):1170–3.


    Google Scholar
     

  • Zhou Q, Duan L, Wu LC, et al. Experimental study of the protective effects of extracts of Panax japonica rhizoma, Salviae Miltiorrhiz radix Et Rhizoma and Crataegi Fructus compound on the hypolipidaemic in nonalcoholic fatty liver of mice. Chin J Clin Pharmacol. 2018;34(13):1532–5.


    Google Scholar
     

  • He ZG, Wang YP, Liu L, et al. Effects of Panax japonicus extractions on serum biochemical indices and inflammatory factors in mice with alcoholic liver injury. Zhejiang J Integr Tradit Chin West Med. 2018;28(1):21–4.


    Google Scholar
     

  • He HB, Xu J, Wang HW, et al. Effects of preconditioning with different fractions extracted from Panax japonicus C. A. Mey on acute myocardial ischemia in rats induced by ligation of left anterior descending branch. J Third Mil Med Univ. 2011;33(14):1462–6.


    Google Scholar
     

  • He H, Xu J, Xu Y, et al. Cardioprotective effects of saponins from Panax japonicus on acute myocardial ischemia against oxidative stress-triggered damage and cardiac cell death in rats. J Ethnopharmacol. 2012;140(1):73–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei N, Zhang C, He H, et al. Protective effect of saponins extract from Panax japonicus on myocardial infarction: involvement of NF-κB, Sirt1 and mitogen-activated protein kinase signalling pathways and inhibition of inflammation. J Pharm Pharmacol. 2014;66(11):1641–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Yuan D, Zheng J, et al. Chikusetsu saponin IVa attenuates isoprenaline-induced myocardial fibrosis in mice through activation autophagy mediated by AMPK/mTOR/ULK1 signaling. Phytomedicine. 2019;58:152764.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng CH, Wang WS, Lu WJ, et al. Effects of Panax japonicus on the expression of Drd-2 and GFAP, TNF-α in hippocampus of AD Rats. Genomics Appl Biol. 2019;38(4):1560–5.


    Google Scholar
     

  • Zeng CH, Min Y, Lu WJ, et al. Effects of Panax japonicus on the expression of Inos, Arg-1, Aβ1-42, TNF-α in hippocampal microglia of AD Rats. Lishizhen Med Mater Med Res. 2018;29(9):2097–100.


    Google Scholar
     

  • Zhao H, Wang L, Zhang QX, et al. Effects of Panax japonicus on transmitter amino acid and free radical metabolism in vascular dementia rat. Chin J Gerontol. 2010;30(21):3096–8.


    Google Scholar
     

  • Wan JZ, Wang R, Zhou ZY, et al. Saponins of Panax japonicus confer neuroprotection against brain aging through mitochondrial related oxidative stress and autophagy in rats. Curr Pharm Biotechnol. 2020;21(8):667–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang T, Di G, Yang L, et al. Saponins from Panax japonicus attenuate D-galactose-induced cognitive impairment through its anti-oxidative and anti-apoptotic effects in rats. J Pharm Pharmacol. 2015;67(9):1284–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan J, Deng L, Zhang C, et al. Chikusetsu saponin V attenuates H2O2– induced oxidative stress in human neuroblastoma SH-SY5Y cells through Sirt1/PGC-1α/Mn-SOD signaling pathways. Can J Physiol Pharm. 2016;94(9):919–28.

    Article 

    Google Scholar
     

  • Fang X, Han Q, Li S, et al. Chikusetsu saponin IVa attenuates isoflurane-induced neurotoxicity and cognitive deficits via SIRT1/ERK1/2 in developmental rats. Am J Transl Res. 2017;9(9):4288–99.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim H, Lee H, Kim DJ, et al. Panax ginseng exerts antiproliferative effects on rat hepatocarcinogenesis. Nutr Res. 2013;33(9):753–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu WB, Tian FJ, Liu LQ. Chikusetsu (CHI) triggers mitochondria-regulated apoptosis in human prostate cancer via reactive oxygen species (ROS) production. Biomed Pharmacother. 2017;90:446–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zuo T, Zhang Z, Jiang P, Zhang R, et al. Characterization of chikusetsusaponinIV and V induced apoptosis in HepG2 cancer cells. Mol Biol Rep. 2022;49(6):4247–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan D, Zuo R, Zhang CC. Effects of total saponins of Panax japonicus on human leukemic HL-60 cells. J Integr Med. 2007;5(5):570–2.

    CAS 

    Google Scholar
     

  • Zhang Y, Wang G, Zuo T, et al. Effects of Chikusetsusaponin IV, IVa and V on the proliferation, migration, invasion and apoptosis of human gastric cancer SGC-7901 cells. Tradit Chin Drug Res Clin Pharmacol. 2019;30(7):796–801.


    Google Scholar
     

  • Zhou ZY, Chen YX, Li DH, et al. Total saponins of Panax japonicus improve cancer cachexia in mice through inhibiting inflammatory response mediated by NF- κB. Chin Pharmacol Bull. 2018;34(4):532–7.


    Google Scholar
     

  • Shu G, Jiang S, Mu J, et al. Antitumor immunostimulatory activity of polysaccharides from Panax japonicus C. A. Mey: Roles of their effects on CD4+ T cells and tumor associated macrophages. Int J Biol Macromol. 2018;111:430–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen C, Wu W, Xu X, et al. Chain conformation and anti-tumor activity of derivatives of polysaccharide from Rhizoma Panacis Japonici. Carbohydr Polym. 2014;105:308–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Wu Q, Meng F, et al. ChikusetsusaponinIVa methyl ester induces G1 cell cycle arrest, triggers apoptosis and inhibits migration and invasion in ovarian cancer cells. Phytomedicine. 2016;23(13):1555–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang HY, Deng QH, Zheng XH, et al. Effects of total saponins of Panax japonicus on apoptosis and activity of caspase-3 on A549 lung cancer cell. Sci Technol Eng. 2015;15(25):100–3.


    Google Scholar
     

  • Gao GZ, Zhang HR, Zhang T, et al. Study on the mechanism of saponins from Panax japonicus on inhition of A549 cell proliferation and migration through regulating PTEN/PI3K/Akt Pathway. Prog Mod Biomed. 2020;20(2):242–7.


    Google Scholar
     

  • Ni GF. Experimental study on antitumor activity of different extracts from Panax japonicus in vitro. Zhejiang J Tradit Chin Med. 2007;42(4):230–1.


    Google Scholar
     

  • Liu Y, Huang Z. Effect of water extract of Panax japonicus on apoptosis of cervical cancer Hela cells. Chin Tradit Pat Med. 2021;43(01):224–7.


    Google Scholar
     

  • Xi M, Hai C, Tang H, et al. Antioxidant and antiglycation properties of total saponins extracted from traditional Chinese medicine used to treat diabetes mellitus. Phytother Res. 2008;22(2):228–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang R, Chen P, Jia F, et al. Optimization of polysaccharides from Panax japonicus C.A. Meyer by RSM and its anti-oxidant activity. Int J Biol Macromol. 2012;50(2):331–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Zhao RF. Essential oil and antioxidant activity of tuber from Panax japonicus in Guizhou. Guizhou Agri Sci. 2010;38(6):44–6.


    Google Scholar
     

  • Ohtani K, Hatono S, Mizutani K, et al. Reticuloendothelial system-activating polysaccharides from rhizomes of Panax japonicas. I. Tochibanan-A and -B. Chem Pharm Bull. 1989;37(10):2587.

    Article 
    CAS 

    Google Scholar
     

  • Zhang J, Li CY, Li JP, et al. Immunoregulation on mice of low immunity and effects on five kinds of human cancer cells of Panax japonicus polysaccharide. Evid-Based Compl Alt. 2015;2015:839697.


    Google Scholar
     

  • Zhang J, Li CY, Li JP, et al. Immunoregulative effects of Panax japonicus polysaccharide on mice of low immunity. In: 2014 China Pharmaceutical Conference and the 14th China Pharmacist Week Proceedings. 2014; 1–6.

  • Zhang CC, Zhao HX, Jiang MJ, et al. Effects of polysaccharides isolated from Panax japonicus on immunosuppression mice. J Chin Med Mater. 2011;34(1):91–4.


    Google Scholar
     

  • Zhang CC, Jiang MJ, Zhao HX, et al. Effects of total saponins of Panax japonicus Rhizoma on cyclophosphamide-in-duced immunosuppressed mice. Chin Tradit Pat Med. 2011;33(7):1134–8.


    Google Scholar
     

  • Wang HW, Jiang MJ, Zhao HX, et al. Immunomodulatory effects of saponin-polysaccharide and Panax japonicus composition on cyclophosphamide-induced immunosuppressed mice. Guangdong Med J. 2010;31(20):2620–2.

    CAS 

    Google Scholar
     

  • Yang BR, Yuen SC, Fan GY, et al. Identification of certain Panax species to be potential substitutes for Panax notoginseng in hemostatic treatments. Pharmacol Res. 2018;134:1–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuda H, Samukawa KL, Fukuda S, et al. Studies of Panax japonicus fibrinolysis. Planta Med. 1989;55(1):18–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dahmer T, Berger M, Barlette AG, et al. Antithrombotic effect of Chikusetsusaponin IVa isolated from Ilex paraguariensis (Mate). J Med Food. 2012;15(12):1073–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Wang HF, Liu Y, et al. The haematopoietic effect of Panax japonicus on blood deficiency model mice. J Ethnopharmacol. 2014;154(3):818–24.

    Article 
    PubMed 

    Google Scholar
     

  • Yang XL, Chen P, Wang RF, et al. Experimental study on the antihyperlipidemia effect of the polysaccharides of Panax japonicus in mice. Chin Hosp Pharm J. 2011;31(6):433–5.

    CAS 

    Google Scholar
     

  • Yang XL, Chen P. Experimental study on the anti hyperlipidemia effect of the total rhizoma Panacis japonica saponins. Acta Chin Med Pharmacol. 2010;38(6):22–4.


    Google Scholar
     

  • Han L, Zheng Y, Yoshikawa M, et al. Anti-obesity effects of chikusetsusaponins isolated from Panax japonicus rhizomes. BMC Complem Altern M. 2005;5(1):9.

    Article 

    Google Scholar
     

  • Ma QY, Zhang CC, Yang SQ, et al. Protective mechanism of saponins of Panax japonicus on high-fat diet induced reproductive dysfunction in mice. Chin Pharmacol Bull. 2019;35(10):1375–80.


    Google Scholar
     

  • Yamahara J, Kubomura Y, Miki K, et al. Anti-ulcer action of Panax japonicus rhizome. J Ethnopharmacol. 1987;19(1):95–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mei Y, Xiao CC, Feng JW, et al. The preventive effect of total saponins of Panax japonicus on nonsteroidal anti-inflammatory drug-induced enteropathy. Chin J Cell Mol Immunol. 2016;32(6):734–8.


    Google Scholar
     

  • Borrelli F, Izzo AA. The plant kingdom as a source of anti-ulcer remedies. Phytother Res. 2000;14(8):581–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang T, Huang X, Zhai K, et al. Integrating metabolomics and network pharmacology to investigate Panax japonicus prevents kidney injury in HFD/STZ-induced diabetic mice. J Ethnopharmacol. 2023;303:115893.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao H, Zhang QX, Mu Y. Effects of total rhizoma Panacis japonjica saponins (tRPJS) on nitric oxide synthase in hippocampus region following rat ischemic cerebral injury. Chin J Chin Mater Med. 2008;33(5):557–9.


    Google Scholar
     

  • Jia ZH, Zhao H. Effects of TSPJ on neuronal apoptosis and related gene expression in rat cerebral ischemia-reperfusion injury. Chin J Exp Tradit Med Form. 2011;17(21):168–72.

    CAS 

    Google Scholar
     

  • Zheng H, Qiu F, Zhao H, et al. Simultaneous determination of six bioactive saponins from Rhizoma Panacis Japonici in rat plasma by UHPLC-MS/MS: application to a pharmacokinetic study. J Chromatogr B. 2018;1092:199–206.

    Article 
    CAS 

    Google Scholar
     

  • Qi D, Yang X, Chen J, et al. Determination of chikusetsusaponin V and chikusetsusaponinIV in rat plasma by liquid chromatography-mass spectrometry and its application to a preliminary pharmacokinetic study. Biomed Chromatogr. 2013;27(11):1568–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu C, Zhang CC, Li J, et al. Identification of Panax japonicus and its related plant species based on RAPD markers. Lishizhen Med Mate Med Res. 2016;27(1):101–4.

    CAS 

    Google Scholar
     

  • Chen JA, Yang L, Li RZ, et al. Identification of Panax japonicus and its related species or adulterants using ITS2 sequence. China Tradit Herb Drugs. 2018;49(15):3672–80.


    Google Scholar
     

  • Xia L, Liang YS, Li SL, et al. Comparative identification of Panax japonicus and its adulterant Sedum notoginseng. J Chin Med Mater. 2014;37(5):797–800.


    Google Scholar
     

  • Duan YM, Duan CL. Application of DNA molecular markers in the research of Panax Ginseng. Res Pract Chin Med. 2009;23(6):74–6.

    CAS 

    Google Scholar
     

  • Zhu S, Fushimi H, Komatsu K. Development of a DNA microarray for authentication of Ginseng drugs based on 18S rRNA gene sequence. J Agr Food Chem. 2008;56(11):3953–9.

    Article 
    CAS 

    Google Scholar
     

  • Zhou M, Gong X, Pan Y. Panax species identification with the assistance of DNA data. Genet Resour Crop Ev. 2018;65(7):1839–56.

    Article 
    CAS 

    Google Scholar
     

  • Cheng Y, Zou P, Zhang CF, et al. Development and validation of SSR markers based on transcriptome of Panax japonicus. J Chin Med Mater. 2017;40(12):2805–9.


    Google Scholar
     

  • Choi Y, Ahn CH, Kim B, et al. Development of species specific AFLP-derived SCAR marker for authentication of Panax japonicus C. A. MEYER. Biol Pharm Bull. 2008;31(1):135–8.

    Article 
    PubMed 

    Google Scholar
     

  • Nguyen VB, Linh Giang VN, Waminal NE, et al. Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers. J Ginseng Res. 2020;44(1):135–44.

    Article 
    PubMed 

    Google Scholar
     

  • Wu Q, Wang C, Lu J, et al. Simultaneous determination of six saponins in Panacis japonici rhizoma using quantitative analysis of multi-components with single-marker method. Curr Pharm Anal. 2017;13:289–95.

    Article 
    CAS 

    Google Scholar
     

  • Meng F, Wu Q, Wang R, et al. A novel strategy for quantitative analysis of major ginsenosides in Panacis japonici rhizoma with a standardized reference fraction. Molecules. 2017;22(12):2067.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang XJ, Xie Q, Liu Y, et al. Panax japonicus and chikusetsusaponins: a review of diverse biological activities and pharmacology mechanism. Chin Herb Med. 2020;13(1):64–77.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang SP, Wang RF, Zeng WY, et al. Resource investigation of traditional medicinal plant Panax japonicus (T. Nees) C. A. Mey and its varieties in China. J Ethnopharmacol. 2015;166:79–85.

    Article 
    PubMed 

    Google Scholar
     

  • Description of Image

    Source link