Scientific Papers

Recent advances in surface-mounted metal–organic framework thin film coatings for biomaterials and medical applications: a review | Biomaterials Research


  • Ma L, Abney C, Lin W. Enantioselective catalysis with homochiral metal-organic frameworks. Chem Soc Rev. 2009;38:1248–56 Royal Society Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Gu ZG, Zhan C, Zhang J, Bu X. Chiral chemistry of metal-camphorate frameworks. Chem Soc Rev. 2016;45:3122–44 Royal Soc Chem.

    Article 
    CAS 

    Google Scholar
     

  • Xu Y, Yuan D, Wu B, Han L, Wu M, Jiang F, et al. 1D tube, 2D layer, and 3D framework derived from a new series of metal(II) – 5-Aminodiacetic isophthalate coordination polymers. Cryst Growth Des. 2006;6:1168–74 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Li H, Eddaoudi M, O’Keeffe M, Yaghi OM. Design and synthesis of an exceptionally stable and highly porous metal- organic framework. Nature. 1999;402:276–9 Nature Publish Group.

    Article 
    CAS 

    Google Scholar
     

  • Subudhi S, Rath D, Parida KM. A mechanistic approach towards the photocatalytic organic transformations over functionalised metal organic frameworks: a review. Catalysis Sci Technol. 2018;8:679–96 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials. Nature. 2003;423:705–14 Nature Publishing Group.

    Article 
    CAS 

    Google Scholar
     

  • Beobide G, Castillo O, Cepeda J, Luque A, Pérez-Yáñez S, Román P, et al. Metal-carboxylato-nucleobase systems: from supramolecular assemblies to 3D porous materials. Coord Chem Rev. 2013;257:2716–36 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Wang HS, Wang YH, Ding Y. Development of biological metal-organic frameworks designed for biomedical applications: From bio-sensing/bio-imaging to disease treatment. Nanoscale Adv. 2020;2:3788–97 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Zimpel A, Al Danaf N, Steinborn B, Kuhn J, Höhn M, Bauer T, et al. Coordinative binding of polymers to metal-organic framework nanoparticles for control of interactions at the biointerface. ACS Nano. 2019;13:3884–95 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Lv M, Zhou W, Tavakoli H, Bautista C, Xia J, Wang Z, et al. Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing. Biosens Bioelectron. 2020;176:112947 Elsevier.

    Article 

    Google Scholar
     

  • Lin C, He H, Zhang Y, Xu M, Tian F, Li L, et al. Acetaldehyde-modified-cystine functionalized Zr-MOFs for pH/GSH dual-responsive drug delivery and selective visualization of GSH in living cells. RSC Adv. 2020;10:3084–91 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Muldoon PF, Collet G, Eliseeva SV, Luo TY, Petoud S, Rosi NL. Ship-in-a-bottle preparation of long wavelength molecular antennae in lanthanide metal-organic frameworks for biological imaging. J Am Chem. 2020;142:8776–81 Soc ACS Publications.

    Article 

    Google Scholar
     

  • Liu J, Liang J, Xue J, Liang K. Metal-organic frameworks as a versatile materials platform for unlocking new potentials in biocatalysis. Small. 2021;17:2100300 Wiley Online Library.

    Article 
    CAS 

    Google Scholar
     

  • Quijia CR, Alves RC, Hanck-Silva G, Galvão Frem RC, Arroyos G, Chorilli M. Metal-organic frameworks for diagnosis and therapy of infectious diseases. Crit Rev Microbiol. 2022;48:161–96 Taylor & Francis.

    Article 
    CAS 

    Google Scholar
     

  • Xiao T, Fan L, Liu R, Huang X, Wang S, Xiao L, et al. Fabrication of dexamethasone-loaded dual-metal-organic frameworks on polyetheretherketone implants with bacteriostasis and angiogenesis properties for promoting bone regeneration. ACS Appl Mater Interfaces. 2021;13:50836–50 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Liu W, Yan Q, Xia C, Wang X, Kumar A, Wang Y, et al. Recent advances in cell membrane coated metal-organic frameworks (MOFs) for tumor therapy. J Mater Chem B. 2021;9:4459–74 The Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Moon HR, Lim DW, Suh MP. Fabrication of metal nanoparticles in metal-organic frameworks. Chem Soc Rev. 2013;42:1807–24 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Juan-Alcañiz J, Gascon J, Kapteijn F. Metal-organic frameworks as scaffolds for the encapsulation of active species: State of the art and future perspectives. J Mater Chem. 2012;22:10102–19 Royal Society of Chemistry.

    Article 

    Google Scholar
     

  • Wang S, McGuirk CM, d’Aquino A, Mason JA, Mirkin CA. Metal-Organic framework nanoparticles. Adv Mater. 2018;30:1800202 Wiley Online Library.

    Article 

    Google Scholar
     

  • Wyszogrodzka G, Marszałek B, Gil B, Dorozyński P. Metal-organic frameworks: Mechanisms of antibacterial action and potential applications. Drug Discov Today. 2016;21:1009–18 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Gonzvlez CMO, Morales EMC, Tellez ADMN, Quezada TES, Kharissova O V., Méndez-Rojas MA. CO2 capture by MOFs. In: Kharisov B, Kharissova OBT-H of GS of N and C, editors. Handb Greener Synth Nanomater Compd Vol 2 Synth Macroscale Nanoscale. Elsevier; 2021;407–48. Available from: https://www.sciencedirect.com/science/article/pii/B9780128224465000186.

  • Anderson SL, Stylianou KC. Biologically derived metal organic frameworks. Coord Chem Rev. 2017;349:102–28 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Kukkar D, Vellingiri K, Kim KH, Deep A. Recent progress in biological and chemical sensing by luminescent metal-organic frameworks. Sensors Actuators, B Chem. 2018;273:1346–70 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Kim KJ, Culp JT, Ohodnicki PR, Thallapally PK, Tao J. Synthesis of high-quality Mg-MOF-74 thin films via vapor-assisted crystallization. ACS Appl Mater Interfaces ACS Publications. 2021;13:35223–31.

    Article 
    CAS 

    Google Scholar
     

  • Hu Q, Yu J, Liu M, Liu A, Dou Z, Yang Y. A low cytotoxic cationic metal-organic framework carrier for controllable drug release. J Med Chem ACS Publications. 2014;57:5679–85.

    CAS 

    Google Scholar
     

  • Lawson S, Rownaghi AA, Rezaei F. Combined Ibuprofen and curcumin delivery using Mg-MOF-74 as a single nanocarrier. ACS Appl Bio Mater ACS Publications. 2022;5:265–71.

    Article 
    CAS 

    Google Scholar
     

  • Lawson S, Siemers A, Kostlenick J, Al-Naddaf Q, Newport K, Rownaghi AA, et al. Mixing Mg-MOF-74 with Zn-MOF-74: a facile pathway of controlling the pharmacokinetic release rate of curcumin. ACS Appl Bio Mater ACS Publications. 2021;4:6874–80.

    Article 
    CAS 

    Google Scholar
     

  • Castner DG, Ratner BD. Biomedical surface science: foundations to frontiers. Surf Sci Elsevier. 2002;500:28–60.

    Article 
    CAS 

    Google Scholar
     

  • Krishnamoorthy M, Hakobyan S, Ramstedt M, Gautrot JE. Surface-initiated polymer brushes in the biomedical field: Applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chem Rev ACS Publications. 2014;114:10976–1026.

    CAS 

    Google Scholar
     

  • Yin L, Nakanishi Y, Alao AR, Song XF, Abduo J, Zhang Y. A review of engineered zirconia surfaces in biomedical applications. Procedia CIRP Elsevier. 2017;65:284–90.

    Article 

    Google Scholar
     

  • Bullock CJ, Bussy C. Biocompatibility considerations in the design of graphene biomedical materials. Adv Mater Interfaces. 2019;6:1900229 Wiley Online Library.

    Article 

    Google Scholar
     

  • Von Recum AF, Shannon CE, Cannon CE, Long KJ, Van Kooten TG, Meyle J. Surface roughness, porosity, and texture as modifiers of cellular adhesion. Tissue Eng. 1996;2:241–53 Mary Ann Liebert, Inc. 2 Madison Avenue Larchmont, NY 10538 USA.

    Article 

    Google Scholar
     

  • Al-Amin M, Abdul Rani AM, Abdu Aliyu AA, Abdul Razak MA, Hastuty S, Bryant MG. Powder mixed-EDM for potential biomedical applications: a critical review. Mater Manuf Process Taylor & Francis. 2020;35:1789–811.

    Article 
    CAS 

    Google Scholar
     

  • Swartjes JJTM, Sharma PK, Kooten TG, van der Mei HC, Mahmoudi M, Busscher HJ, et al. Current developments in antimicrobial surface coatings for biomedical applications. Curr Med Chem. 2015;22:2116–29.

    Article 
    CAS 

    Google Scholar
     

  • Thakur A, Kumar A, Kaya S, Marzouki R, Zhang F, Guo L. Recent advancements in surface modification, characterization and functionalization for enhancing the biocompatibility and corrosion resistance of biomedical implants. Coatings. 2022;12:1459 MDPI.

    Article 
    CAS 

    Google Scholar
     

  • Ahmadabadi HY, Yu K, Kizhakkedathu JN. Surface modification approaches for prevention of implant associated infections. Colloids Surfaces B Biointerfaces. 2020;193:111116 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Yu K, Lo JCY, Yan M, Yang X, Brooks DE, Hancock REW, et al. Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model. Biomaterials. 2017;116:69–81 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • He Y, Wan X, Xiao K, Lin W, Li J, Li Z, et al. Anti-biofilm surfaces from mixed dopamine-modified polymer brushes: Synergistic role of cationic and zwitterionic chains to resist: Staphyloccocus aureus. Biomater Sci. 2019;7:5369–82 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Shen X, Zhang Y, Ma P, Sutrisno L, Luo Z, Hu Y, et al. Fabrication of magnesium/zinc-metal organic framework on titanium implants to inhibit bacterial infection and promote bone regeneration. Biomaterials. 2019;212:1–16 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Rieter WJ, Taylor KML, Lin W. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. J Am Chem Soc. 2007;129:9852–3 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Chouirfa H, Bouloussa H, Migonney V, Falentin-Daudré C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019;83:37–54 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Firouzjaei MD, Shamsabadi AA, Aktij SA, Seyedpour SF, Sharifian M, Rahimpour A, et al. Exploiting synergetic effects of graphene oxide and a silver-based metal-organic framework to enhance antifouling and anti-biofouling properties of thin-film nanocomposite membranes. ACS Appl Mater Interfaces. 2018;10:42967–78 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Asl EA, Pooresmaeil M, Namazi H. Chitosan coated MOF/GO nanohybrid as a co-anticancer drug delivery vehicle: synthesis, characterization, and drug delivery application. Mater Chem Phys. 2023;293:126933 Elsevier.

    Article 

    Google Scholar
     

  • Skvortsova A, Kocianova A, Guselnikova O, Elashnikov R, Burtsev V, Rimpelova S, et al. Self-activated antibacterial MOF-based coating on medically relevant polypropylene. Appl Surf Sci. 2023;623:157048 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Rahim MI, Ullah S, Mueller PP. Advances and challenges of biodegradable implant materials with a focus on magnesium-alloys and bacterial infections. Metals (Basel). 2018;8:532 Multidisciplinary Digital Publishing Institute.

    Article 

    Google Scholar
     

  • Saberi A, Bakhsheshi-Rad HR, Abazari S, Ismail AF, Sharif S, Ramakrishna S, et al. A comprehensive review on surface modifications of biodegradable magnesium-based implant alloy: Polymer coatings opportunities and challenges. Coatings. 2021;11:747.

    Article 
    CAS 

    Google Scholar
     

  • Chakraborty Banerjee P, Al-Saadi S, Choudhary L, Harandi SE, Singh R. Magnesium implants: prospects and challenges. Materials (Basel). 2019;12:136 Multidisciplinary Digital Publishing Institute.

    Article 

    Google Scholar
     

  • Bairagi D, Mandal S. A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: current status, challenges, and future prospects. J Magnes Alloy. 2022;10:627–69 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Walker J, Shadanbaz S, Woodfield TBF, Staiger MP, Dias GJ. Magnesium biomaterials for orthopedic application: A review from a biological perspective. J Biomed Mater Res – Part B Appl Biomater. 2014;102:1316–31 Wiley Online Library.

    Article 

    Google Scholar
     

  • Narayanan TSNS, Park IS, Lee MH. Strategies to improve the corrosion resistance of microarc oxidation coatings on magnesium and its alloys: Implications for biomedical applications. Surf Modif Magnes Its Alloy Biomed Appl. 2015;2:235–67 Elsevier.


    Google Scholar
     

  • Nartita R, Ionita D, Demetrescu I. Sustainable coatings on metallic alloys as a nowadays challenge. Sustain. 2021;13:10217 Multidisciplinary Digital.

    Article 
    CAS 

    Google Scholar
     

  • Ding W. Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials. Regen Biomater. 2016;3:79–86 Oxford University Press.

    Article 
    CAS 

    Google Scholar
     

  • Ling L, Cai S, Li Q, Sun J, Bao X, Xu G. Recent advances in hydrothermal modification of calcium phosphorus coating on magnesium alloy. J Magnes Alloy. 2022;10:62–80 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Yao J, Wang H. Zeolitic imidazolate framework composite membranes and thin films: Synthesis and applications. Chem Soc Rev. 2014;43:4470–93 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Stavila V, Talin AA, Allendorf MD. MOF-based electronic and opto-electronic devices. Chem Soc Rev. 2014;43:5994–6010 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Li Y, Ling W, Liu X, Shang X, Zhou P, Chen Z, et al. Metal-organic frameworks as functional materials for implantable flexible biochemical sensors. Nano Res. 2021;14:2981–3009 Springer.

    Article 
    CAS 

    Google Scholar
     

  • Meng J, Liu X, Niu C, Pang Q, Li J, Liu F, et al. Advances in metal-organic framework coatings: Versatile synthesis and broad applications. Chem Soc Rev. 2020;49:3142–86 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Tu M, Wannapaiboon S, Fischer RA. Liquid phase stepwise growth of surface mounted metal-organic frameworks for exploratory research and development of applications. Inorg Chem Front. 2014;1:442–63 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Zacher D, Shekhah O, Wöll C, Fischer RA. Thin films of metal–organic frameworks. Chem Soc Rev. 2009;38:1418–29 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Tan G, Zhong Y, Yang L, Jiang Y, Liu J, Ren F. A multifunctional MOF-based nanohybrid as injectable implant platform for drug synergistic oral cancer therapy. Chem Eng J. 2020;390:124446 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Ye Y, Yang D, Zhang D, Chen H, Zhao H, Li X, et al. POSS-tetraaniline modified graphene for active corrosion protection of epoxy-based organic coating. Chem Eng J. 2020;383:123160 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Li F, Du M, Zheng Q. Dopamine/Silica nanoparticle assembled, microscale porous structure for versatile superamphiphobic coating. ACS Nano. 2016;10:2910–21 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Javidparvar AA, Naderi R, Ramezanzadeh B. Manipulating graphene oxide nanocontainer with benzimidazole and cerium ions: Application in epoxy-based nanocomposite for active corrosion protection. Corros Sci. 2020;165:108379 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Chernikova V, Shekhah O, Eddaoudi M. Advanced fabrication method for the preparation of MOF thin films: liquid-phase epitaxy approach meets spin coating method. ACS Appl Mater Interfaces. 2016;8:20459–64 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Augustin S, Hennige V, Hörpel G, Hying C. Ceramic but flexible: New ceramic membrane foils for fuel cells and batteries. Desalination. 2002;146:23–8 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Deng L, Cai C, Huang Y, Fu Y. In-situ MOFs coating on 3D-channeled separator with superior electrolyte uptake capacity for ultrahigh cycle stability and dendrite-inhibited lithium-ion batteries. Microporous Mesoporous Mater. 2022;329:111544 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Sabzehmeidani MM, Kazemzad M. Microstructure and anti-corrosion properties of acrylic bone cement-based with MOF nanostructured hybrid coatings on AZ31 Mg alloy. Mater Chem Phys. 2023;307:128147. Available from: https://www.sciencedirect.com/science/article/pii/S0254058423008556.

  • Li J, Taylor M, Zhang Z. Anti-fouling Medical Coatings BT – Antimicrobial Coatings and Modifications on Medical Devices. In: Zhang Z, Wagner VE, editors. Cham: Springer International Publishing; 2017. p. 189–214. Available from: https://doi.org/10.1007/978-3-319-57494-3_8.

  • Macocinschi D, Filip D, Vlad S, Tuchilus CG, Cristian AF, Barboiu M. Polyurethane/β-cyclodextrin/ciprofloxacin composite films for possible medical coatings with antibacterial properties. J Mater Chem B. 2014;2:681–90 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Khalili MA, Tamjid E. Controlled biodegradation of magnesium alloy in physiological environment by metal organic framework nanocomposite coatings. Sci Rep. 2021;11:1–13 Nature Publishing Group.

    Article 

    Google Scholar
     

  • Dekura S, Kobayashi H, Kusada K, Kitagawa H. Hydrogen in Palladium and storage properties of related nanomaterials: size, shape, alloying, and metal-organic framework coating effects. ChemPhysChem. 2019;20:1158–76 Wiley Online Library.

    Article 
    CAS 

    Google Scholar
     

  • Hong XJ, Song CL, Yang Y, Tan HC, Li GH, Cai YP, et al. Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium-sulfur batteries. ACS Nano. 2019;13:1923–31 ACS Publications.

    CAS 

    Google Scholar
     

  • Ansari-Asl Z, Shahvali Z, Sacourbaravi R, Hoveizi E, Darabpour E. Cu (II) metal-organic framework@ Polydimethylsiloxane nanocomposite sponges coated by chitosan for antibacterial and tissue engineering applications. Microporous Mesoporous Mater. 2022;336:111866 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Learn GD, Lai EJ, von Recum HA. Using nonthermal plasma treatment to improve quality and durability of hydrophilic coatings on hydrophobic polymer surfaces. bioRxiv. Cold Spring Harbor Laboratory; 2019;868885. Available from: https://doi.org/10.1101/868885.

  • Mitra D, Kang ET, Neoh KG. Polymer-based coatings with integrated antifouling and bactericidal properties for targeted biomedical applications. ACS Appl Polym Mater. 2021;3:2233–63 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Calciolari E, Hamlet S, Ivanovski S, Donos N. Pro-osteogenic properties of hydrophilic and hydrophobic titanium surfaces: Crosstalk between signalling pathways in in vivo models. J Periodontal Res. 2018;53:598–609 Wiley Online Library.

    Article 
    CAS 

    Google Scholar
     

  • Darouiche RO. Device-associated infections: A macroproblem that starts with microadherence. Clin Infect Dis. 2001;33:1567–72 The University Chicago Press.

    Article 
    CAS 

    Google Scholar
     

  • Noimark S, Dunnill CW, Wilson M, Parkin IP. The role of surfaces in catheter-associated infections. Chem Soc Rev. 2009;38:3435–48 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Gao G, Lange D, Hilpert K, Kindrachuk J, Zou Y, Cheng JTJ, et al. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials. 2011;32:3899–909 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Harris LG, Mead L, Müller-Oberländer E, Richards RG. Bacteria and cell cytocompatibility studies on coated medical grade titanium surfaces. J Biomed Mater Res – Part A. 2006;78:50–8 Wiley Online Library.

    Article 
    CAS 

    Google Scholar
     

  • Silva-Bermudez P, Rodil SE. An overview of protein adsorption on metal oxide coatings for biomedical implants. Surf Coatings Technol. 2013;233:147–58 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Liang W, Xu H, Carraro F, Maddigan NK, Li Q, Bell SG, et al. Enhanced activity of enzymes encapsulated in hydrophilic metal-organic frameworks. J Am Chem Soc. 2019;141:2348–55 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Liu W, Yan Z, Ma X, Geng T, Wu H, Li Z. Mg-MOF-74/MgF2 composite coating for improving the properties of magnesium alloy implants: Hydrophilicity and corrosion resistance. Materials (Basel). 2018;11:396 Multidisciplinary Digital Publishing Institute.

    Article 

    Google Scholar
     

  • Pornpattananangkul D, Zhang L, Olson S, Aryal S, Obonyo M, Vecchio K, et al. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection. J Am Chem Soc. 2011;133:4132–9 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Zhang S, Ye J, Liu Z, Lu H, Shi S, Qi Y, et al. Superior antibacterial activity of Fe3O4@copper(ii) metal-organic framework core-shell magnetic microspheres. Dalt Trans. 2020;49:13044–51 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Pallavicini P, Dacarro G, Taglietti A. Self-Assembled monolayers of silver nanoparticles: from intrinsic to switchable inorganic antibacterial surfaces. Eur J Inorg Chem. 2018;2018:4846–55 Wiley Online Library.

    Article 
    CAS 

    Google Scholar
     

  • He Y, Zhang Y, Shen X, Tao B, Liu J, Yuan Z, et al. The fabrication and in vitro properties of antibacterial polydopamine-LL-37-POPC coatings on micro-arc oxidized titanium. Colloids Surfaces B Biointerfaces. 2018;170:54–63 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Han J, Yang Y, Lu J, Wang C, Xie Y, Zheng X, et al. Sustained release vancomycin-coated titanium alloy using a novel electrostatic dry powder coating technique may be a potential strategy to reduce implant-related infection. Biosci Trends. 2017;11:346–54 International Research and Cooperation Association for Bio & Socio-Sciences.

    Article 
    CAS 

    Google Scholar
     

  • Hu T, Xu H, Wang C, Qin H, An Z. Magnesium enhances the chondrogenic differentiation of mesenchymal stem cells by inhibiting activated macrophage-induced inflammation. Sci Rep. 2018;8:1–13 Nature Publishing Group.


    Google Scholar
     

  • Kaur N, Tiwari P, Kapoor KS, Saini AK, Sharma V, Mobin SM. Metal-organic framework based antibiotic release and antimicrobial response: An overview. CrystEngComm. 2020;22:7513–27 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Yilgor E, Nugay II, Bakan M, Yilgor I. Antibacterial silicone-urea/organoclay nanocomposites. Silicon. 2009;1:183–90 Springer.

    Article 
    CAS 

    Google Scholar
     

  • Jaros SW, Guedes Da Silva MFC, Król J, Conceição Oliveira M, Smoleński P, Pombeiro AJL, et al. Bioactive silver-organic networks assembled from 1,3,5-Triaza-7-phosphaadamantane and flexible Cyclohexanecarboxylate blocks. Inorg Chem. 2016;55:1486–96.

    Article 
    CAS 

    Google Scholar
     

  • Moritz M, Geszke-Moritz M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem Eng J. 2013;228:596–613 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Chojnowski J, Fortuniak W, Rościszewski P, Werel W, Łukasiak J, Kamysz W, et al. Polysilsesquioxanes and oligosilsesquioxanes substituted by alkylammonium salts as antibacterial biocides. J Inorg Organomet Polym Mater. 2006;16:219–30 Springer.

    Article 
    CAS 

    Google Scholar
     

  • Mansouri J, Truong VK, MacLaughlin S, Mainwaring DE, Moad G, Dagley IJ, et al. Polymerization-induced phase segregation and self-assembly of siloxane additives to provide thermoset coatings with a defined surface topology and biocidal and self-cleaning properties. Nanomaterials. 2019;9:1610 Multidisciplinary Digital Publishing Institute.

    Article 
    CAS 

    Google Scholar
     

  • Sancet MPA, Hanke M, Wang Z, Bauer S, Azucena C, Arslan HK, et al. Surface anchored metal-organic frameworks as stimulus responsive antifouling coatings. Biointerphases. 2013;8:29 American Vacuum Society.

    Article 

    Google Scholar
     

  • Au-Duong AN, Lee CK. Iodine-loaded metal organic framework as growth-triggered antimicrobial agent. Mater Sci Eng C. 2017;76:477–82 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Claes B, Boudewijns T, Muchez L, Hooyberghs G, Van der Eycken EV, Vanderleyden J, et al. Smart metal-organic framework coatings: triggered antibiofilm compound release. ACS Appl Mater Interfaces. 2017;9:4440–9 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Yu M, You D, Zhuang J, Lin S, Dong L, Weng S, et al. Controlled release of naringin in metal-organic framework-loaded mineralized collagen coating to simultaneously enhance osseointegration and antibacterial activity. ACS Appl Mater Interfaces. 2017;9:19698–705 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Rabiee N, Yaraki MT, Garakani SM, Garakani SM, Ahmadi S, Lajevardi A, et al. Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials. 2020;232:119707 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Hatamie S, Ahadian MM, SoufiZomorod M, Torabi S, Babaie A, Hosseinzadeh S, et al. Antibacterial properties of nanoporous graphene oxide/cobalt metal organic framework. Mater Sci Eng C. 2019;104:109862 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Mendhi J, Asgari M, Ratheesh G, Prasadam I, Yang Y, Xiao Y. Dose controlled nitric oxide-based strategies for antibacterial property in biomedical devices. Appl Mater Today. 2020;19:100562 Elsevier.

    Article 

    Google Scholar
     

  • Ramezanzadeh M, Ramezanzadeh B, Bahlakeh G, Tati A, Mahdavian M. Development of an active/barrier bi-functional anti-corrosion system based on the epoxy nanocomposite loaded with highly-coordinated functionalized zirconium-based nanoporous metal-organic framework (Zr-MOF). Chem Eng J. 2021;408:127361 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Zhang M, Liu Y. Enhancing the anti-corrosion performance of ZIF-8-based coatings: Via microstructural optimization. New J Chem. 2020;44:2941–6 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Cao K, Yu Z, Yin D, Chen L, Jiang Y, Zhu L. Fabrication of BTA-MOF-TEOS-GO nanocomposite to endow coating systems with active inhibition and durable anticorrosion performances. Prog Org Coatings. 2020;143:105629 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Keshmiri N, Najmi P, Ramezanzadeh M, Ramezanzadeh B. Designing an eco-friendly lanthanide-based metal organic framework (MOF) assembled graphene-oxide with superior active anti-corrosion performance in epoxy composite. J Clean Prod. 2021;319:128732 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Tarzanagh YJ, Seifzadeh D, Rajabalizadeh Z, Habibi-Yangjeh A, Khodayari A, Sohrabnezhad S. Sol-gel/MOF nanocomposite for effective protection of 2024 aluminum alloy against corrosion. Surf Coatings Technol. 2019;380:125038 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Mohammadpour Z, Zare HR. The role of embedded 2-ABT@Cu-BTC MOF on the anti-corrosion performance of electro-assisted deposited silica sol-gel composite film. Mater Chem Phys. 2021;267:124590 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Liu X, Yue T, Qi K, Xia BY, Chen Z, Qiu Y, et al. Probe into metal-organic framework membranes fabricated via versatile polydopamine-assisted approach onto metal surfaces as anticorrosion coatings. Corros Sci. 2020;177:108949 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Lashgari SM, Yari H, Mahdavian M, Ramezanzadeh B, Bahlakeh G, Ramezanzadeh M. Synthesis of graphene oxide nanosheets decorated by nanoporous zeolite-imidazole (ZIF-67) based metal-organic framework with controlled-release corrosion inhibitor performance: experimental and detailed DFT-D theoretical explorations. J Hazard Mater. 2021;404:124068 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Chen H, Wang F, Fan H, Hong R, Li W. Construction of MOF-based superhydrophobic composite coating with excellent abrasion resistance and durability for self-cleaning, corrosion resistance, anti-icing, and loading-increasing research. Chem Eng J. 2021;408:127343 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Ren B, Chen Y, Li Y, Li W, Gao S, Li H, et al. Rational design of metallic anti-corrosion coatings based on zinc gluconate@ZIF-8. Chem Eng J. 2020;384:123389 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Cao K, Yu Z, Yin D. Preparation of Ce-MOF@TEOS to enhance the anti-corrosion properties of epoxy coatings. Prog Org Coatings. 2019;135:613–21 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Ramezanzadeh M, Ramezanzadeh B, Mahdavian M, Bahlakeh G. Development of metal-organic framework (MOF) decorated graphene oxide nanoplatforms for anti-corrosion epoxy coatings. Carbon N Y. 2020;161:231–51 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Li H, Qiang Y, Zhao W, Zhang S. 2-Mercaptobenzimidazole-inbuilt metal-organic-frameworks modified graphene oxide towards intelligent and excellent anti-corrosion coating. Corros Sci. 2021;191:109715 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Wang N, Zhang Y, Chen J, Zhang J, Fang Q. Dopamine modified metal-organic frameworks on anti-corrosion properties of waterborne epoxy coatings. Prog Org Coatings. 2017;109:126–34 Elsevier.

    Article 

    Google Scholar
     

  • Zhou C, Li Z, Li J, Yuan T, Chen B, Ma X, et al. Epoxy composite coating with excellent anticorrosion and self-healing performances based on multifunctional zeolitic imidazolate framework derived nanocontainers. Chem Eng J. 2020;385:123835 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Yang S, Wang J, Mao W, Zhang D, Guo Y, Song Y, et al. pH-Responsive zeolitic imidazole framework nanoparticles with high active inhibitor content for self-healing anticorrosion coatings. Colloids Surfaces A Physicochem Eng Asp. 2018;555:18–26 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Dehghanghadikolaei A, Fotovvati B. Coating techniques for functional enhancement of metal implants for bone replacement: A review. Materials (Basel). 2019;12:1795 Multidisciplinary Digital Publishing Institute.

    Article 
    CAS 

    Google Scholar
     

  • Xie K, Zhou Z, Guo Y, Wang L, Li G, Zhao S, et al. Long-term prevention of bacterial infection and enhanced osteoinductivity of a hybrid coating with selective silver toxicity. Adv Healthc Mater. 2019;8:1801465 Wiley Online Library.

    Article 

    Google Scholar
     

  • Caplin JD, García AJ. Implantable antimicrobial biomaterials for local drug delivery in bone infection models. Acta Biomater. 2019;93:2–11 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Alotaibi NM, Naudi KB, Conway DI, Ayoub AF. The current state of peek implant osseointegration and future perspectives: a systematic review. Eur Cells Mater. 2020;40:1–20 AO Research Institute Davos.

    Article 
    CAS 

    Google Scholar
     

  • Deng Y, Gao X, Shi XL, Lu S, Yang W, Duan C, et al. Graphene oxide and adiponectin-functionalized sulfonated poly(etheretherketone) with effective osteogenicity and remotely repeatable photodisinfection. Chem Mater. 2020;32:2180–93 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Chen Y, Yang Q, Ma D, Peng L, Mao Y, Zhou X, et al. Metal-organic frameworks/polydopamine coating endows polyetheretherketone with disinfection and osteogenicity. Int J Polym Mater Polym Biomater. 2022;71:783–94 Taylor & Francis.

    Article 
    CAS 

    Google Scholar
     

  • Draxler J, Martinelli E, Weinberg AM, Zitek A, Irrgeher J, Meischel M, et al. The potential of isotopically enriched magnesium to study bone implant degradation in vivo. Acta Biomater. 2017;51:526–36 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Md Saad AP, Jasmawati N, Harun MN, Abdul Kadir MR, Nur H, Hermawan H, et al. Dynamic degradation of porous magnesium under a simulated environment of human cancellous bone. Corros Sci. 2016;112:495–506 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Zang D, Zhu R, Zhang W, Yu X, Lin L, Guo X, et al. Corrosion-resistant superhydrophobic coatings on mg alloy surfaces inspired by lotus seedpod. Adv Funct Mater. 2017;27:1605446 Wiley Online Library.

    Article 

    Google Scholar
     

  • Atrens A, Song GL, Liu M, Shi Z, Cao F, Dargusch MS. Review of recent developments in the field of magnesium corrosion. Adv Eng Mater. 2015;17:400–53 Wiley Online Library.

    Article 
    CAS 

    Google Scholar
     

  • Zheng Z, Chen Y, Guo B, Wang Y, Liu W, Sun J, et al. Magnesium-organic framework-based stimuli-responsive systems that optimize the bone microenvironment for enhanced bone regeneration. Chem Eng J. 2020;396:125241 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Zhu Z, Jiang S, Liu Y, Gao X, Hu S, Zhang X, et al. Micro or nano: evaluation of biosafety and biopotency of magnesium metal organic framework-74 with different particle sizes. Nano Res. 2020;13:511–26 Springer.

    Article 
    CAS 

    Google Scholar
     

  • Zhang W, Zhao S, Mo X, Xian P, Tang S, Qian J, et al. Mg ions incorporated phytic acid (PA) and zoledronic acid (ZA) of metal-organic complex coating on biodegradable magnesium for orthopedic implants application. Surf Coatings Technol. 2021;413:127075 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Zhang W, Chen Y, Chen M, Zhao S, Mao J, Qu A, et al. Strengthened corrosion control of poly (lactic acid) (PLA) and poly (ε-caprolactone) (PCL) polymer-coated magnesium by imbedded hydrophobic stearic acid (SA) thin layer. Corros Sci. 2016;112:327–37 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Zheng Q, Li J, Yuan W, Liu X, Tan L, Zheng Y, et al. Metal-organic frameworks incorporated polycaprolactone film for enhanced corrosion resistance and biocompatibility of mg alloy. ACS Sustain Chem Eng. 2019;7:18114–24 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Li Y, Xu X, Liu X, Li B, Han Y, Zheng Y, et al. Photoelectrons mediating angiogenesis and immunotherapy through heterojunction film for noninvasive disinfection. Adv Sci. 2020;7:2000023 Wiley Online Library.

    Article 
    CAS 

    Google Scholar
     

  • Giménez-Marqués M, Hidalgo T, Serre C, Horcajada P. Nanostructured metal–organic frameworks and their bio-related applications. Coord Chem Rev. 2016;307:342–60 Elsevier.

    Article 

    Google Scholar
     

  • Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, et al. Metal-organic frameworks in biomedicine. Chem Rev. 2012;112:1232–68 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Azizabadi O, Akbarzadeh F, Sargazi G, Chauhan NPS. Preparation of a novel Ti-metal organic framework porous nanofiber polymer as an efficient dental nano-coating: physicochemical and mechanical properties. Polym Technol Mater. 2021;60:734–43 Taylor & Francis.

    CAS 

    Google Scholar
     

  • Tao B, Zhao W, Lin C, Yuan Z, He Y, Lu L, et al. Surface modification of titanium implants by ZIF-8@Levo/LBL coating for inhibition of bacterial-associated infection and enhancement of in vivo osseointegration. Chem Eng J. 2020;390:124621 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Du J, Zhang R, Wang F, Wang X, Du X. Template-directed fabrication of zeolitic imidazolate framework-67-derived coating materials on nickel/titanium alloy fiber substrate for selective solid-phase microextraction. J Chromatogr A. 2020;1618:460855 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Elkaiam L, Hakimi O, Yosafovich-Doitch G, Ovadia S, Aghion E. In vivo evaluation of Mg–5%Zn–2%Nd alloy as an innovative biodegradable implant material. Ann Biomed Eng. 2020;48:380–92 Springer.

    Article 
    CAS 

    Google Scholar
     

  • Katarivas Levy G, Ventura Y, Goldman J, Vago R, Aghion E. Cytotoxic characteristics of biodegradable EW10X04 Mg alloy after Nd coating and subsequent heat treatment. Mater Sci Eng C. 2016;62:752–61 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Z, Zhang Y, Yao K, Huang W, Wang T. Facile synthesis of a neodymium doped metal organic frame modified antibacterial material and corrosion resistant coating. Inorganica Chim Acta. 2021;528:120599 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Chu G, Zhang C, Liu Y, Cao Z, Wang L, Chen Y, et al. A gold nanocluster constructed mixed-metal metal-organic network film for combating implant-associated infections. ACS Nano. 2020;14:15633–45 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Bhatnagar D, Bherwani AK, Simon M, Rafailovich MH. Biomineralization on enzymatically cross-linked gelatin hydrogels in the absence of dexamethasone. J Mater Chem B. 2015;3:5210–9.

    Article 
    CAS 

    Google Scholar
     

  • Giannaccini M, Calatayud MP, Poggetti A, Corbianco S, Novelli M, Paoli M, et al. Magnetic nanoparticles for efficient delivery of growth factors: stimulation of peripheral nerve regeneration. Adv Healthc Mater. 2017;6:1601429 Wiley Online Library.

    Article 

    Google Scholar
     

  • Ran J, Zeng H, Cai J, Jiang P, Yan P, Zheng L, et al. Rational design of a stable, effective, and sustained dexamethasone delivery platform on a titanium implant: an innovative application of metal organic frameworks in bone implants. Chem Eng J. 2018;333:20–33 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Z, Zhang Y, Zhang S, Yao K, Sun Y, Liu Y, et al. Synthesis of rare earth doped MOF base coating on TiO2 nanotubes arrays by electrochemical method using as antibacterial implant material. Inorg Chem Commun. 2021;127:108484 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Z, Zhang Y, Liu Y, Zhang S, Yao K, Sun Y, et al. Electro-deposition of Nd3+-doped metal-organic frameworks on titanium dioxide nanotube array coated by hydroxyapatite for anti-microbial and anticorrosive implant. Ionics (Kiel). 2021;27:2707–15 Springer.

    Article 
    CAS 

    Google Scholar
     

  • Tao B, Lin C, He Y, Yuan Z, Chen M, Xu K, et al. Osteoimmunomodulation mediating improved osteointegration by OGP-loaded cobalt-metal organic framework on titanium implants with antibacterial property. Chem Eng J. 2021;423:130176 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Wang BH, Yan B. Tunable multi-color luminescence and white emission in lanthanide ion functionalized polyoxometalate-based metal–organic frameworks hybrids and fabricated thin films. J Alloys Compd. 2019;777:415–22 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Park J, Feng D, Zhou HC. Structure-assisted functional anchor implantation in robust metal-organic frameworks with ultralarge pores. J Am Chem Soc. 2015;137:1663–72 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Simon-Yarza T, Mielcarek A, Couvreur P, Serre C. Nanoparticles of metal-organic frameworks: on the road to in vivo efficacy in biomedicine. Adv Mater. 2018;30:1707365 Wiley Online Library.

    Article 

    Google Scholar
     

  • Ren H, Zhang L, An J, Wang T, Li L, Si X, et al. Polyacrylic acid@zeolitic imidazolate framework-8 nanoparticles with ultrahigh drug loading capability for pH-sensitive drug release. Chem Commun. 2014;50:1000–2 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Ying T, Li J, Xu Y, Wang R, Ke Q, et al. Hierarchical micro/nanofibrous scaffolds incorporated with curcumin and zinc ion eutectic metal organic frameworks for enhanced diabetic wound healing via anti-oxidant and anti-inflammatory activities. Chem Eng J. 2020;402:126273 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Li X, Salzano G, Qiu J, Ménard M, Berg K, Theodossiou T, et al. Drug-loaded lipid-coated hybrid organic-inorganic “stealth” nanoparticles for cancer therapy. Front Bioeng Biotechnol. 2020;8:1027 Frontiers.

    Article 

    Google Scholar
     

  • Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science (80- ). 1997;277:1232–7 American Association for the Advancement of Science.

    Article 
    CAS 

    Google Scholar
     

  • Min J, Choi KY, Dreaden EC, Padera RF, Braatz RD, Spector M, et al. Designer dual therapy nanolayered implant coatings eradicate biofilms and accelerate bone tissue repair. ACS Nano. 2016;10:4441–50 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Wuttke S, Zimpel A, Bein T, Braig S, Stoiber K, Vollmar A, et al. Validating metal-organic framework nanoparticles for their nanosafety in diverse biomedical applications. Adv Healthc Mater. 2017;6:1600818 Wiley Online Library.

    Article 

    Google Scholar
     

  • Della Rocca J, Liu D, Lin W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res. 2011;44:957–68 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Sanchis-Gomar F, Perez-Quilis C, Leischik R, Lucia A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann Transl Med. 2016;4(13):256 AME Publications.

  • He S, Wu L, Li X, Sun H, Xiong T, Liu J, et al. Metal-organic frameworks for advanced drug delivery. Acta Pharm Sin B. 2021;11:2362–95 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Zhang P, Li Y, Tang Y, Shen H, Li J, Yi Z, et al. Copper-based metal-organic framework as a controllable nitric oxide-releasing vehicle for enhanced diabetic wound healing. ACS Appl Mater Interfaces. 2020;12:18319–31 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Yin M, Wu J, Deng M, Wang P, Ji G, Wang M, et al. Multifunctional magnesium organic framework-based microneedle patch for accelerating diabetic wound healing. ACS Nano. 2021;15:17842–53 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Liu X, Yan Z, Zhang Y, Liu Z, Sun Y, Ren J, et al. Two-dimensional metal-organic framework/enzyme hybrid nanocatalyst as a benign and self-activated cascade reagent for in vivo wound healing. ACS Nano. 2019;13:5222–30 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Xiao J, Zhu Y, Huddleston S, Li P, Xiao B, Farha OK, et al. Copper metal-organic framework nanoparticles stabilized with folic acid improve wound healing in diabetes. ACS Nano. 2018;12:1023–32 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Li J, Lv F, Li J, Li Y, Gao J, Luo J, et al. Cobalt-based metal–organic framework as a dual cooperative controllable release system for accelerating diabetic wound healing. Nano Res. 2020;13:2268–79 Springer.

    Article 
    CAS 

    Google Scholar
     

  • Wang C, Tadepalli S, Luan J, Liu KK, Morrissey JJ, Kharasch ED, et al. Metal-organic framework as a protective coating for biodiagnostic chips. Adv Mater. 2017;29:1604433 Wiley Online Library.

    Article 

    Google Scholar
     

  • Sabzehmeidani MM, Kazemzad M. Quantum dots based sensitive nanosensors for detection of antibiotics in natural products: a review. Sci Total Environ. 2022;810:151997.

    Article 
    CAS 

    Google Scholar
     

  • Wang C, Wang L, Tadepalli S, Morrissey JJ, Kharasch ED, Naik RR, et al. Ultrarobust biochips with metal-organic framework coating for point-of-care diagnosis. ACS Sensors. 2018;3:342–51 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Zhu G, Zhang M, Lu L, Lou X, Dong M, Zhu L. Metal-organic framework/enzyme coated optical fibers as waveguide-based biosensors. Sensors Actuators, B Chem. 2019;288:12–9 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Tang K, Wang W, Song Z, Luo X. Multifunctional nano-biosensor based on metal-organic framework for enhanced fluorescence imaging of intracellular miRNA-122 and synergistic chemo-photothermal therapy of tumor cells. Anal Chim Acta. 2021;1176:338779 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Xu P, Liao G. A novel fluorescent biosensor for adenosine triphosphate detection based on a metal-organic framework coating polydopamine layer. Materials (Basel). 2018;11:1616 Multidisciplinary Digital Publishing Institute.

    Article 

    Google Scholar
     

  • Worrall SD, Mann H, Rogers A, Bissett MA, Attfield MP, Dryfe RAW. Electrochemical deposition of zeolitic imidazolate framework electrode coatings for supercapacitor electrodes. Electrochim Acta. 2016;197:228–40 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Zhang H, Wang L, Xu X, Su P, Lu Y, Zhang G. Metal-organic framework catalytic membranes for environmental management. IOP Conf Ser Earth Environ Sci. 2018;170:32075 IOP Publishing.

    Article 

    Google Scholar
     

  • Emam HE, Darwesh OM, Abdelhameed RM. In-growth metal organic framework/synthetic hybrids as antimicrobial fabrics and its toxicity. Colloids Surfaces B Biointerfaces. 2018;165:219–28 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Wang C, Zhang T, Lin W. Rational synthesis of noncentrosymmetric metal-organic frameworks for second-order nonlinear optics. Chem Rev. 2012;112:1084–104 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem Rev. 2012;112:933–69 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Li ZQ, Zhang M, Liu B, Guo CY, Zhou M. Rapid fabrication of metal-organic framework thin films using in situ microwave irradiation and its photocatalytic property. Inorg Chem Commun. 2013;36:241–4 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Zhao JP, Xu J, De Han S, Wang QL, Bu XH. A niccolite structural multiferroic metal-organic framework possessing four different types of bistability in response to dielectric and magnetic modulation. Adv Mater. 2017;29:1606966 Wiley Online Library.

    Article 

    Google Scholar
     

  • Gao Q, Xu J, Cao D, Chang Z, Bu XH. A rigid nested metal-organic framework featuring a thermoresponsive gating effect dominated by counterions. Angew Chemie – Int Ed. 2016;55:15027–30 Wiley Online Library.

    Article 
    CAS 

    Google Scholar
     

  • Ji H, Hwang S, Kim K, Kim C, Jeong NC. Direct in situ conversion of metals into metal-organic frameworks: a strategy for the rapid growth of MOF films on metal substrates. ACS Appl Mater Interfaces. 2016;8:32414–20 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Okada K, Ricco R, Tokudome Y, Styles MJ, Hill AJ, Takahashi M, et al. Copper conversion into Cu(OH)2 nanotubes for positioning Cu 3(BTC)2 MOF crystals: Controlling the growth on flat plates, 3D architectures, and as patterns. Adv Funct Mater. 2014;24:1969–77 Wiley Online Library.

    Article 
    CAS 

    Google Scholar
     

  • Ma K, Islamoglu T, Chen Z, Li P, Wasson MC, Chen Y, et al. Scalable and template-free aqueous synthesis of zirconium-based metal-organic framework coating on textile fiber. J Am Chem Soc. 2019;141:15626–33 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Zhu J, Zhao F, Peng T, Liu H, Xie L, Jiang C. Facile preparation of superhydrophobic metal meshes with micro-hierarchical structure via in situ self-assembly metal-organic framework for efficient oil-water separation. Surf Coatings Technol. 2020;402:126344 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Ping D, Feng X, Zhang J, Geng J, Dong X. Directed growth of a bimetallic MOF membrane and the derived NiCo Alloy@C/NixCo1-xO/Ni foam composite as an efficient electrocatalyst for the oxygen evolution reaction. ChemElectroChem. 2017;4:3037–41 Wiley Online Library.

    Article 
    CAS 

    Google Scholar
     

  • Li T, Zhang Z, Liu L, Gao M, Han Z. A stable metal-organic framework nanofibrous membrane as photocatalyst for simultaneous removal of methyl orange and formaldehyde from aqueous solution. Colloids Surfaces A Physicochem Eng Asp. 2021;617:126359 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Ikigaki K, Okada K, Tokudome Y, Takahashi M. Metal-organic framework thin films from copper hydroxide nano-assemblies. J Sol-Gel Sci Technol. 2019;89:128–34 Springer.

    Article 
    CAS 

    Google Scholar
     

  • Li Z, Shao M, Zhou L, Zhang R, Zhang C, Wei M, et al. Directed growth of metal-organic frameworks and their derived carbon-based network for efficient electrocatalytic oxygen reduction. Adv Mater. 2016;28:2337–44 Wiley Online Library.

    Article 
    CAS 

    Google Scholar
     

  • Doan HV, Amer Hamzah H, Karikkethu Prabhakaran P, Petrillo C, Ting VP. Hierarchical metal-organic frameworks with macroporosity: synthesis, achievements, and challenges. Nano-Micro Lett Springer. 2019;11:1–33.

    CAS 

    Google Scholar
     

  • Sabzehmeidani MM, Kazemzad M. Insight into the microstructural characteristics and corrosion properties of AZ31 Mg alloy coated with polyurethane containing nanostructures of copper metal organic frameworks. Mater Lett. 2023;341:134294. Available from: https://www.sciencedirect.com/science/article/pii/S0167577X23004792.

  • Horcajada P, Serre C, Grosso D. C. Boissi re, S. Perruchas, C. Sanchez, G. FØrey. Adv Mater. 2009;21:1931–5.

  • Demessence A, Boissière C, Grosso D, Horcajada P, Serre C, Férey G, et al. Adsorption properties in high optical quality nanoZIF-8 thin films with tunable thickness. J Mater Chem. 2010;20:7676–81 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Falcaro P, Buso D, Hill AJ, Doherty CM. Patterning techniques for metal organic frameworks. Adv Mater. 2012;24:3153–68 Wiley Online Library.

    Article 
    CAS 

    Google Scholar
     

  • GarcíaMárquez A, Demessence A, Platero-Prats AE, Heurtaux D, Horcajada P, Serre C, et al. Green microwave synthesis of MIL-100(Al, Cr, Fe) nanoparticles for thin-film elaboration. Eur J Inorg Chem. 2012;2012:5165–74 Wiley Online Library.

    Article 

    Google Scholar
     

  • Jiang D, Burrows AD, Xiong Y, Edler KJ. Facile synthesis of crack-free metal-organic framework films on alumina by a dip-coating route in the presence of polyethylenimine. J Mater Chem A. 2013;1:5497–500 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Nadar SS, Rathod VK. One pot synthesis of α-amylase metal organic framework (MOF)-sponge via dip-coating technique. Int J Biol Macromol. 2019;138:1035–43 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Lu G, Hupp JT. Metal-organic frameworks as sensors: A ZIF-8 based fabry-pérot device as a selective sensor for chemical vapors and gases. J Am Chem Soc. 2010;132:7832–3 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Fan Y, Zhang Y, Zhao Q, Xie Y, Luo R, Yang P, et al. Immobilization of nano Cu-MOFs with polydopamine coating for adaptable gasotransmitter generation and copper ion delivery on cardiovascular stents. Biomaterials. 2019;204:36–45 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Yin X, Mu P, Wang Q, Li J. Superhydrophobic ZIF-8-based dual-layer coating for enhanced corrosion protection of Mg alloy. ACS Appl Mater Interfaces. 2020;12:35453–63 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Sahu N, Parija B, Panigrahi S. Fundamental understanding and modeling of spin coating process: A review. Indian J Phys. 2009;83:493–502 Springer.

    Article 
    CAS 

    Google Scholar
     

  • Gorgojo P, Karan S, Wong HC, Jimenez-Solomon MF, Cabral JT, Livingston AG. Ultrathin polymer films with intrinsic microporosity: Anomalous solvent permeation and high flux membranes. Adv Funct Mater. 2014;24:4729–37 Wiley Online Library.

    Article 
    CAS 

    Google Scholar
     

  • Zhang W, Lu G, Li S, Liu Y, Xu H, Cui C, et al. Controlled incorporation of nanoparticles in metal-organic framework hybrid thin films. Chem Commun. 2014;50:4296–8 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Liu G, Jiang Z, Yang H, Li C, Wang H, Wang M, et al. High-efficiency water-selective membranes from the solution-diffusion synergy of calcium alginate layer and covalent organic framework (COF) layer. J Memb Sci. 2019;572:557–66 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Hu Z, Tao CA, Liu H, Zou X, Zhu H, Wang J. Fabrication of an NH2-MIL-88B photonic film for naked-eye sensing of organic vapors. J Mater Chem A. 2014;2:14222–7 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Yang H, Fei H. A generic and facile strategy to fabricate metal-organic framework films on TiO2 substrates for photocatalysis. Dalt Trans. 2017;46:2751–5 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Hu Z, Tao C, Wang F, Zou X, Wang J. Flexible metal–organic framework-based one-dimensional photonic crystals. J Mater Chem C. 2015;3:211–6 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Cheng Y, Wang X, Jia C, Wang Y, Zhai L, Wang Q, et al. Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. J Memb Sci. 2017;539:213–23 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Stavila V, Volponi J, Katzenmeyer AM, Dixon MC, Allendorf MD. Kinetics and mechanism of metal-organic framework thin film growth: systematic investigation of HKUST-1 deposition on QCM electrodes. Chem Sci. 2012;3:1531–40 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Rawtani D, Agrawal YK. Emerging strategies and applications of layer-by-layer self-assembly. Nanobiomedicine InTech. 2014;1:1–8.


    Google Scholar
     

  • Wang Z, Wöll C. Fabrication of metal-organic framework thin films using programmed layer-by-layer assembly techniques. Adv Mater Technol. 2019;4:1800413 Wiley Online Library.

    Article 

    Google Scholar
     

  • Fu W, Chen J, Li C, Jiang L, Qiu M, Li X, et al. Enhanced flux and fouling resistance forward osmosis membrane based on a hydrogel/MOF hybrid selective layer. J Colloid Interface Sci. 2021;585:158–66 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Zhou Y, Chen Z, Zhao D, Li D, He C, Chen X. A pH-triggered self-unpacking capsule containing zwitterionic hydrogel-coated MOF nanoparticles for efficient oral exendin-4 delivery. Adv Mater. 2021;33:2102044 Wiley Online Library.

    Article 
    CAS 

    Google Scholar
     

  • Yang W, Guo H, Fan T, Zhao X, Zhang L, Guan Q, et al. MoS2/Ni(OH)2 composites derived from in situ grown Ni-MOF coating MoS2 as electrode materials for supercapacitor and electrochemical sensor. Colloids Surfaces A Physicochem Eng Asp. 2021;615:126178 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Arslan HK, Shekhah O, Wohlgemuth J, Franzreb M, Fischer RA, Wöll C. High-throughput fabrication of uniform and homogenous MOF coatings. Adv Funct Mater. 2011;21:4228–31 Wiley Online Library.

    Article 
    CAS 

    Google Scholar
     

  • Shekhah O, Wang H, Kowarik S, Schreiber F, Paulus M, Tolan M, et al. Step-by-step route for the synthesis of metal organic frameworks (Supporting Information). J Am Chem Soc. 2007;129:15118–9 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Meilikhov M, Yusenko K, Schollmeyer E, Mayer C, Buschmann HJ, Fischer RA. Stepwise deposition of metal organic frameworks on flexible synthetic polymer surfaces. Dalt Trans. 2011;40:4838–41 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Zhao J, Gong B, Nunn WT, Lemaire PC, Stevens EC, Sidi FI, et al. Conformal and highly adsorptive metal-organic framework thin films via layer-by-layer growth on ALD-coated fiber mats. J Mater Chem A. 2015;3:1458–64 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Abbasi AR, Akhbari K, Morsali A. Dense coating of surface mounted CuBTC metal-organic framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity. Ultrason Sonochem. 2012;19:846–52 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Li M, Ishihara S, Akada M, Liao M, Sang L, Hill JP, et al. Electrochemical-coupling layer-by-layer (ECC–LbL) assembly. J Am Chem Soc. 2011;133:7348–51 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Tu M, Wannapaiboon S, Fischer RA. Programmed functionalization of SURMOFs via liquid phase heteroepitaxial growth and post-synthetic modification. Dalt Trans. 2013;42:16029–35 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Hinterholzinger FM, Wuttke S, Roy P, Preuße T, Schaate A, Behrens P, et al. Highly oriented surface-growth and covalent dye labeling of mesoporous metal-organic frameworks. Dalt Trans. 2012;41:3899–901 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Neufeld MJ, Harding JL, Reynolds MM. Immobilization of metal-organic framework copper(II) benzene-1,3,5-tricarboxylate (CuBTC) onto cotton fabric as a nitric oxide release catalyst. ACS Appl Mater Interfaces. 2015;7:26742–50 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Fu WQ, Liu M, Gu ZG, Chen SM, Zhang J. Liquid phase epitaxial growth and optical properties of photochromic guest-encapsulated MOF thin film. Cryst Growth Des. 2016;16:5487–92 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Zhao Q, Fan Y, Zhang Y, Liu J, Li W, Weng Y. Copper-based SURMOFs for nitric oxide generation: hemocompatibility, vascular cell growth, and tissue response. ACS Appl Mater Interfaces. 2019;11:7872–83 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Karthikeyan J. The advantages and disadvantages of the cold spray coating process. Cold Spray Mater Depos Process Fundam Appl. Elsevier; 2007. p. 62–71.

  • Fotovvati B, Namdari N, Dehghanghadikolaei A. On coating techniques for surface protection: a review. J Manuf Mater Process. 2019;3:28 Multidisciplinary Digital Publishing Institute.

    CAS 

    Google Scholar
     

  • Kubo M, Moriyama R, Shimada M. Facile fabrication of HKUST-1 nanocomposite incorporating Fe3O4 nanoparticles by a spray-assisted synthetic process and its dye adsorption performance. J Soc Powder Technol Japan. 2020;57:495–9 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Kubo M, Saito T, Shimada M. Evaluation of the parameters utilized for the aerosol-assisted synthesis of HKUST-1. Microporous Mesoporous Mater. 2017;245:126–32 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Wan Y, Hou S, Guo M, Fu Y. Surface properties of spray-assisted layer-by-layer electrostatic self-assembly treated wooden take-off board. Appl Sci. 2021;11:836 Multidisciplinary Digital Publishing Institute.

    Article 
    CAS 

    Google Scholar
     

  • Kubo M, Sugahara T, Shimada M. Facile fabrication of HKUST-1 thin films and free-standing MWCNT/HKUST-1 film using a spray-assisted method. Microporous Mesoporous Mater. 2021;312:110771 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Aceituno Melgar VM, Kwon HT, Kim J. Direct spraying approach for synthesis of ZIF-7 membranes by electrospray deposition. J Memb Sci. 2014;459:190–6 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Malik N, Elool Dov N, De Ruiter G, Lahav M, Van Der Boom ME. On-surface self-assembly of stimuli-responsive metallo-organic films: automated ultrasonic spray-coating and electrochromic devices. ACS Appl Mater Interfaces. 2019;11:22858–68 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Kim DY, Joshi BN, Lee JG, Lee JH, Lee JS, Hwang YK, et al. Supersonic cold spraying for zeolitic metal-organic framework films. Chem Eng J. 2016;295:49–56 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • SeokChae Y, Park S, Won Kang D, Won Kim D, Kang M, San Choi D, et al. Moisture-tolerant diamine-appended metal–organic framework composites for effective indoor CO2 capture through facile spray coating. Chem Eng J. 2022;433:133856 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Silva AGV, Ribeiro JON, Vasconcelos DCL, Weidler PG, Vasconcelos WL. Room temperature and ambient pressure deposition of Cu-BTC MOF on SBA-15 functionalized silica supports by simple spray layer-by-layer method. Mater Today Commun. 2021;27:102388 Elsevier.

    Article 

    Google Scholar
     

  • Zhou W, Begum S, Wang Z, Krolla P, Wagner D, Bräse S, et al. High antimicrobial activity of metal-organic framework-templated porphyrin polymer thin films. ACS Appl Mater Interfaces. 2018;10:1528–33 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Patel GCM, Pradeep NB, Girisha L, Harsha HM, Shettigar AK. Experimental analysis and optimization of plasma spray parameters on microhardness and wear loss of Mo-Ni-Cr coated super duplex stainless steel. Aust J Mech Eng. 2022;20:1426–38 Taylor & Francis.

    Article 

    Google Scholar
     

  • Vogel D, Dempwolf H, Baumann A, Bader R. Characterization of thick titanium plasma spray coatings on PEEK materials used for medical implants and the influence on the mechanical properties. J Mech Behav Biomed Mater. 2018;77:600–8 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Cao L, Ullah I, Li N, Niu S, Sun R, Xia D, et al. Plasma spray of biofunctional (Mg, Sr)-substituted hydroxyapatite coatings for titanium alloy implants. J Mater Sci Technol. 2019;35:719–26 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Ke D, Vu AA, Bandyopadhyay A, Bose S. Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants. Acta Biomater. 2019;84:414–23 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Han S, Mullins CB. Current progress and future directions in gas-phase metal-organic framework thin-film growth. ChemSusChem. 2020;13:5433–42 Wiley Online Library.

    Article 
    CAS 

    Google Scholar
     

  • Ghazy A, Safdar M, Lastusaari M, Karppinen M. Amorphous-to-crystalline transition and photoluminescence switching in guest-absorbing metal-organic network thin films. Chem Commun. 2019;56:241–4 Royal Society of Chemistry.

    Article 

    Google Scholar
     

  • Ahvenniemi E, Karppinen M. Atomic/molecular layer deposition: A direct gas-phase route to crystalline metal-organic framework thin films. Chem Commun. 2016;52:1139–42 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Stassen I, Styles M, Grenci G, Van Gorp H, Vanderlinden W, De Feyter S, et al. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat Mater. 2016;15:304–10 Nature Publishing Group.

    Article 
    CAS 

    Google Scholar
     

  • Huang JK, Saito N, Cai Y, Wan Y, Cheng CC, Li M, et al. Steam-assisted chemical vapor deposition of zeolitic imidazolate framework. ACS Mater Lett. 2020;2:485–91 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Han S, Ciufo RA, Meyerson ML, Keitz BK, Buddie Mullins C. Solvent-free vacuum growth of oriented HKUST-1 thin films. J Mater Chem A. 2019;7:19396–406 The Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Sundberg P, Karppinen M. Organic and inorganic-organic thin film structures by molecular layer deposition: A review. Beilstein J Nanotechnol. 2014;5:1104–36 Beilstein-Institut.

    Article 

    Google Scholar
     

  • Schlichte K, Kratzke T, Kaskel S. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous Mesoporous Mater. 2004;73:81–8 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Ma X, Kumar P, Mittal N, Khlyustova A, Daoutidis P, Andre Mkhoyan K, et al. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science (80- ). 2018;361:1008–11 American Association for the Advancement of Science.

    Article 
    CAS 

    Google Scholar
     

  • Stassin T, Stassen I, Marreiros J, Cruz AJ, Verbeke R, Tu M, et al. Solvent-free powder synthesis and MOF-CVD thin films of the large-pore metal-organic framework MAF-6. Chem Mater. 2020;32:1784–93 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Li WJ, Liu J, Sun ZH, Liu TF, Lü J, Gao SY, et al. Integration of metal-organic frameworks into an electrochemical dielectric thin film for electronic applications. Nat Commun. 2016;7:1–8 Nature Publishing Group.


    Google Scholar
     

  • Hod I, Bury W, Karlin DM, Deria P, Kung CW, Katz MJ, et al. Directed growth of electroactive metal-organic framework thin films using electrophoretic deposition. Adv Mater. 2014;26:6295–300 Wiley Online Library.

    Article 
    CAS 

    Google Scholar
     

  • Li M, Dincǎ M. Selective formation of biphasic thin films of metal-organic frameworks by potential-controlled cathodic electrodeposition. Chem Sci. 2014;5:107–11 Royal Society of Chemistry.

    Article 

    Google Scholar
     

  • Zhao J, Wang Y, Zhou J, Qi P, Li S, Zhang K, et al. A copper(II)-based MOF film for highly efficient visible-light-driven hydrogen production. J Mater Chem A. 2016;4:7174–7 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Hosseini MS, Zeinali S, Sheikhi MH. Fabrication of capacitive sensor based on Cu-BTC (MOF-199) nanoporous film for detection of ethanol and methanol vapors. Sensors Actuators, B Chem. 2016;230:9–16 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Senthil Kumar R, Senthil Kumar S, Anbu KM. Efficient electrosynthesis of highly active Cu3(BTC) 2-MOF and its catalytic application to chemical reduction. Microporous Mesoporous Mater. 2013;168:57–64 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Shi E, Zou X, Liu J, Lin H, Zhang F, Shi S, et al. Electrochemical fabrication of copper-containing metal-organic framework films as amperometric detectors for bromate determination. Dalt Trans. 2016;45:7728–36 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Li WJ, Lü J, Gao SY, Li QH, Cao R. Electrochemical preparation of metal-organic framework films for fast detection of nitro explosives. J Mater Chem A. 2014;2:19473–8 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Hosseini MS, Zeinali S. Capacitive humidity sensing using a metal–organic framework nanoporous thin film fabricated through electrochemical in situ growth. J Mater Sci Mater Electron. 2019;30:3701–10 Springer.

    Article 
    CAS 

    Google Scholar
     

  • Jabarian S, Ghaffarinejad A, Kazemi H. Electrochemical and solvothermal syntheses of HKUST-1 metal organic frameworks and comparison of their performances as electrocatalyst for oxygen reduction reaction. Anal Bioanal Electrochem. 2018;10:1611–9.

    CAS 

    Google Scholar
     

  • Shen L, Wang G, Zheng X, Cao Y, Guo Y, Lin K, et al. Tuning the growth of Cu-MOFs for efficient catalytic hydrolysis of carbonyl sulfide. Cuihua Xuebao/Chinese J Catal. 2017;38:1373–81 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Jabarian S, Ghaffarinejad A. Electrochemical synthesis of NiBTC metal organic framework thin layer on nickel foam: an efficient electrocatalyst for the hydrogen evolution reaction. J Inorg Organomet Polym Mater. 2019;29:1565–74 Springer.

    Article 
    CAS 

    Google Scholar
     

  • Osadchii DY, Olivos-Suarez AI, Szécsényi Á, Li G, Nasalevich MA, Dugulan IA, et al. Isolated fe sites in metal organic frameworks catalyze the direct conversion of methane to methanol. ACS Catal. 2018;8:5542–8 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Yang HM, Song XL, Yang TL, Liang ZH, Fan CM, Hao XG. Electrochemical synthesis of flower shaped morphology MOFs in an ionic liquid system and their electrocatalytic application to the hydrogen evolution reaction. RSC Adv. 2014;4:15720–6 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Campagnol N, Rezende Souza E, De Vos DE, Binnemans K, Fransaer J. Luminescent terbium-containing metal–organic framework films: new approaches for the electrochemical synthesis and application as detectors for explosives. Chem Commun. 2014;50:12680–3 Royal Society of Chemistry.

    Article 

    Google Scholar
     

  • Naseri M, Fotouhi L, Ehsani A, Dehghanpour S. Facile electrosynthesis of nano flower like metal-organic framework and its nanocomposite with conjugated polymer as a novel and hybrid electrode material for highly capacitive pseudocapacitors. J Colloid Interface Sci. 2016;484:314–9 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Hou Y, Liu Z, Tong L, Zhao L, Kuang X, Kuang R, et al. One-step electrodeposition of the MOF@CCQDs/NiF electrode for chiral recognition of tyrosine isomers. Dalt Trans. 2019;49:31–4 Royal Society of Chemistry.

    Article 

    Google Scholar
     

  • Kuang X, Luo Y, Kuang R, Wang Z, Sun X, Zhang Y, et al. Metal organic framework nanofibers derived Co3O4-doped carbon-nitrogen nanosheet arrays for high efficiency electrocatalytic oxygen evolution. Carbon N Y. 2018;137:433–41 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Liu Z, Kuang X, Sun X, Zhang Y, Wei Q. Electrochemical enantioselective recognition penicillamine isomers based on chiral C-dots/MOF hybrid arrays. J Electroanal Chem. 2019;846:113151 Elsevier.

    Article 
    CAS 

    Google Scholar
     

  • Kang X, Zhu Q, Sun X, Hu J, Zhang J, Liu Z, et al. Highly efficient electrochemical reduction of CO 2 to CH 4 in an ionic liquid using a metal-organic framework cathode. Chem Sci. 2016;7:266–73 Royal Society of Chemistry.

    Article 
    CAS 

    Google Scholar
     

  • Feng JF, Gao SY, Liu TF, Shi J, Cao R. Preparation of dual-emitting Ln@UiO-66-hybrid films via electrophoretic deposition for ratiometric temperature sensing. ACS Appl Mater Interfaces. 2018;10:6014–23 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Feng JF, Gao SY, Shi J, Liu TF, Cao R. C-QDs@UiO-66-(COOH)2 composite film via electrophoretic deposition for temperature sensing. Inorg Chem. 2018;57:2447–54 ACS Publications.

    Article 
    CAS 

    Google Scholar
     

  • Campagnol N, Romero-Vara R, Deleu W, Stappers L, Binnemans K, De Vos DE, et al. A hybrid supercapacitor based on porous carbon and the metal-organic framework MIL-100(Fe). ChemElectroChem. 2014;1:1182–8 Wiley Online Library.

    Article 
    CAS 

    Google Scholar
     

  • Falcaro P, Hill AJ, Nairn KM, Jasieniak J, Mardel JI, Bastow TJ, et al. A new method to position and functionalize metal-organic framework crystals. Nat Commun Nature. 2011;2:1–8 Publishing Group.


    Google Scholar
     

  • Zang Y, Roberts TR, Batchinsky AI, Reynolds MM. Metal-organic framework polymer coating inhibits staphylococcus aureus attachment on medical circulation tubing under static and dynamic flow conditions. ACS Appl Bio Mater. 2020;3:3535–43 ACS Publications.

    Article 
    CAS 

    Google Scholar
     



  • Source link