Scientific Papers

Expression of OsHARBI1-1 enhances the tolerance of Arabidopsis thaliana to cadmium | BMC Plant Biology

Description of Image

  • Grant C, Buckley W, Bailey L, Selles F. Cadmium accumulation in crops. Can J Plant Sci. 1998;78:1–17.

    Article 
    CAS 

    Google Scholar
     

  • Lysenko EA, Klaus AA, Pshybytko NL, Kusnetsov VV. Cadmium accumulation in chloroplasts and its impact on chloroplastic processes in barley and maize. Photosynth Res. 2015;125(1):291–303.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP. Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot. 2012;83:33–46.

    Article 
    CAS 

    Google Scholar
     

  • Di Sanità L, Gabbrielli R. Response to cadmium in higher plants. Environ Exp Bot. 1999;41(2):105–30.

    Article 

    Google Scholar
     

  • Wang F, Wang M, Liu Z, Shi Y, Han T, Ye Y, Gong N, Sun J, Zhu C. Different responses of low grain-Cd-accumulating and high grain-Cd-accumulating rice cultivars to cd stress. Plant physiology and biochemistry: PPB / Societe francaise de physiologie vegetale. 2015, 96:261–9.

  • Müller M, Anke M. Distribution of cadmium in the food chain (soil-plant-human) of a cadmium exposed area and the health risks of the general population. SCI TOTAL ENVIRON. 1994;156(2):151–8.

    Article 
    PubMed 

    Google Scholar
     

  • McLaughlin MJ, Parker DR, Clarke JM. Metals and micronutrients – food safety issues. Field Crop Res. 1999;60(1):143–63.

    Article 

    Google Scholar
     

  • Seck PA, Diagne A, Mohanty S, Wopereis MCS. Crops that feed the world 7: Rice. Food Secur. 2012;4(1):7–24.

    Article 

    Google Scholar
     

  • Clemens S, Ma JF. Toxic Heavy Metal and Metalloid Accumulation in Crop plants and Foods. Annu Rev Plant Biol. 2016;67(1):489–512.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishikawa S, Suzui N, Ito-Tanabata S, Ishii S, Igura M, Abe T, Kuramata M, Kawachi N, Fujimaki S. Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using positron-emitting107Cd tracer. Bmc Plant Biol. 2011;11(1):172.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahashi R, Bashir K, Ishimaru Y, Nishizawa NK, Nakanishi H. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal Behav. 2012;7(12):1605–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaur R, Das S, Bansal S, Singh G, Sardar S, Dhar H, Ram H. Heavy metal stress in rice: Uptake, transport, signaling, and tolerance mechanisms. Physiol Plant. 2021;173(1):430–48.

    CAS 
    PubMed 

    Google Scholar
     

  • Sasaki A, Yamaji N, Yokosho K. Nramp5 is a major transporter responsible for Manganese and Cadmium Uptake in Rice. Plant Cell. 2012;24:2155–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu S, Yu Y, Chen Q, Mu G, Shen Z, Zheng L. OsMYB45 plays an important role in rice resistance to cadmium stress. Plant Sci. 2017;264:1–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shah K, Nahakpam S. Heat exposure alters the expression of SOD, POD, APX and CAT isozymes and mitigates low cadmium toxicity in seedlings of sensitive and tolerant rice cultivars. Plant Physiol Bioch. 2012;57:106–13.

    Article 
    CAS 

    Google Scholar
     

  • Hsu YT, Kao CH. Cadmium-induced oxidative damage in rice leaves is reduced by polyamines. Plant Soil. 2007;291(1):27–37.

    Article 
    CAS 

    Google Scholar
     

  • Tan M, Cheng D, Yang Y, Zhang G, Qin M, Chen J, Chen Y, Jiang M. Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes. Bmc Plant Biol. 2017;17(1):194.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang B, Zhang M, Zhang J, Huang L, Chen X, Jiang M, Tan M. Profiling of rice Cd-tolerant genes through yeast-based cDNA library survival screening. Plant Physiol Bioch. 2020;155:429–36.

    Article 
    CAS 

    Google Scholar
     

  • Kapitonov VV, Jurka J. Harbinger transposons and an ancient HARBI1 gene derived from a transposase. Dna Cell Biol. 2004;23(5):311–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hickman AB, Chandler M, Dyda F. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit Rev Biochem Mol. 2010;45(1):50–69.

    Article 

    Google Scholar
     

  • Velanis C, Perera P, Thomson B, de Leau E, Liang SC, Hartwig B, Förderer A, Thornton H, Arede P, Chen J, et al. The domesticated transposase ALP2 mediates formation of a novel polycomb protein complex by direct interaction with MSI1, a core subunit of polycomb repressive complex 2 (PRC2). Plos Genet. 2020;16:e1008681.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao D, Tao S, Li X, Gao D, Tang M, Liu C, Wu D, Bai L, He Z, Wang X, et al. The Harbinger transposon-derived gene PANDA epigenetically coordinates panicle number and grain size in rice. Plant Biotechnol J. 2022;20(6):1154–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou X, He J, Velanis CN, Zhu Y, He Y, Tang K, Zhu M, Graser L, de Leau E, Wang X, et al. A domesticated harbinger transposase forms a complex with HDA6 and promotes histone H3 deacetylation at genes but not TEs in Arabidopsis. J Integr Plant Biol. 2021;63(8):1462–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang SC, Hartwig B, Perera P, Mora-García S, de Leau E, Thornton H, Alves F, Rappsilber J, Yang S, James G, et al. Kicking against the PRCs – a domesticated transposase antagonises silencing mediated by Polycomb Group Proteins and is an accessory component of polycomb repressive complex 2. Plos Genet. 2015;11:e1005660.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huo L, Guo Z, Wang P, Sun X, Xu K, Ma F. MdHARBI1, a MdATG8i-interacting protein, plays a positive role in plant thermotolerance. Plant Sci. 2021;306:110850.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao X. Overexpression of AtHARBI1-1 in Arabidopsis thaliana affects growth and development of cotyledons and Root. Inner Mongolia Agricultural University; 2020.

  • Li Z. Effect of AtHARBI1-2 over-expression on growth and development of the transgenic Arabidopsis thaliana. Inner Mongolia Agricultural University; 2020.

  • Karathia H, Vilaprinyo E, Sorribas A, Alves R. Saccharomyces cerevisiae as a Model Organism: a comparative study. PLoS One. 2011;6:e16015.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He XL, Fan SK, Zhu J, Guan MY, Liu XX, Zhang YS, Jin CW. Iron supply prevents cd uptake in Arabidopsis by inhibiting IRT1 expression and favoring competition between Fe and Cd uptake. Plant Soil. 2017;416(1):453–62.

    Article 
    CAS 

    Google Scholar
     

  • Yue X, Song J, Fang B, Wang L, Zou J, Su N, Cui J. BcNRAMP1 promotes the absorption of cadmium and manganese in Arabidopsis. Chemosphere. 2021;283:131113.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P. Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. Febs Lett. 2004;576(3):306–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim D, Bovet L, Maeshima M, Martinoia E, Lee Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J. 2007;50(2):207–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb Vacuolar Storage in Arabidopsis. Plant Physiol. 2009;149(2):894–904.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park J, Song W, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J. 2012;69(2):278–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oomen RJFJ, Wu J, Lelièvre F, Blanchet S, Richaud P, Barbier-Brygoo H, Aarts MGM, Thomine S. Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytol. 2009;181(3):637–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wongkaew A, Nakamura S, Suzui N, Yin Y, Ishii S, Kawachi N, Kojima K, Sekimoto H, Yokoyama T, Ohkama-Ohtsu N. Elevated glutathione synthesis in leaves contributes to zinc transport from roots to shoots in Arabidopsis. Plant Sci. 2019;283:416–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vatamaniuk OK, Mari S, Lu Y, Rea PA. AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci. 1999;96(12):7110–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ubeda-Tomás S, Beemster GTS, Bennett MJ. Hormonal regulation of root growth: integrating local activities into global behaviour. Trends Plant Sci. 2012;17(6):326–31.

    Article 
    PubMed 

    Google Scholar
     

  • Wang R, Wang J, Zhao L, Yang S, Song Y. Impact of heavy metal stresses on the growth and auxin homeostasis of Arabidopsis seedlings. Biometals. 2015;28(1):123–32.

    Article 
    PubMed 

    Google Scholar
     

  • Rolón-Cárdenas GA, Arvizu-Gómez JL, Soria-Guerra RE, Pacheco-Aguilar JR, Alatorre-Cobos F, Hernández-Morales A. The role of auxins and auxin-producing bacteria in the tolerance and accumulation of cadmium by plants. Environ Geochem Hlth. 2022;44(11):3743–64.

    Article 

    Google Scholar
     

  • Chen K, Li G, Bressan RA, Song C, Zhu J, Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. J INtegr Plant Biol. 2020;62(1):25–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skubacz A, Daszkowska-Golec A, Szarejko I. The role and regulation of ABI5 (ABA-Insensitive 5) in Plant Development, Abiotic Stress Responses and Phytohormone Crosstalk. Front Plant Sci; 2016. p. 7.

  • Journot-Catalino N, Somssich IE, Roby D, Kroj T. The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell. 2006;18(11):3289–302.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei GJ, Sun L, Sun Y, Zhu XF, Li GX, Zheng SJ. Jasmonic acid alleviates cadmium toxicity in Arabidopsis via suppression of cadmium uptake and translocation. J Integr Plant Biol. 2020;62(2):218–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang Y, Guo L, Liu R, Jiao B, Zhao X, Ling Z, Luo K. Overexpression of Poplar PtrWRKY89 in Transgenic Arabidopsis leads to a reduction of Disease Resistance by regulating Defense-related genes in salicylate- and jasmonate-dependent signaling. PLoS One. 2016;11(3):e149137.

    Article 

    Google Scholar
     

  • Farhat S, Jain N, Singh N, Sreevathsa R, Dash PK, Rai R, Yadav S, Kumar P, Sarkar AK, Jain A, et al. CRISPR-Cas9 directed genome engineering for enhancing salt stress tolerance in rice. Semin Cell Dev Biol. 2019;96:91–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • 4, Shi Y, Jiang N, Wang M, Du Z, Chen J, Huang Y, Li M, Jin Y, Li J, Wan J, et al. OsHIPP17 is involved in regulating the tolerance of rice to copper stress. Front Plant Sci; 2023. p. 14.

  • Huang H, Liu B, Liu L, Song S. Jasmonate action in plant growth and development. J Exp Bot. 2017;68(6):1349–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang T, Li C, Wu Z, Jia Y, Wang H, Sun S, Mao C, Wang X. Abscisic acid regulates Auxin Homeostasis in Rice Root Tips to Promote Root Hair Elongation. Front Plant Sci; 2017. p. 8.

  • Bali AS, Sidhu GPS, Kumar V, Bhardwaj R. Chapter 15 – Mitigating Cadmium Toxicity in Plants by Phytohormones. In: Cadmium Toxicity and Tolerance in Plants Edited by Hasanuzzaman M, Prasad MNV, Fujita M: Academic Press; 2019: 375–396.

  • Zhang P, Wang R, Ju Q, Li W, Tran LP, Xu J. The R2R3-MYB transcription factor MYB49 regulates Cadmium Accumulation. Plant Physiol. 2019;180(1):529–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinzelle L, Kapitonov VV, Grzela DP, Jursch T, Jurka J, Izsvák Z, Ivics Z. Transposition of a reconstructed harbinger element in human cells and functional homology with two transposon-derived cellular genes. Proc Natl Acad Sci. 2008;105(12):4715–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen L, Luo M, Wang Y, Wu K. Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot. 2010;61(12):3345–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng YT, Zhang XL, Wu Q, Shen RF, Zhu XF. Transcription factor ANAC004 enhances cd tolerance in Arabidopsis thaliana by regulating cell wall fixation, translocation and vacuolar detoxification of cd, ABA accumulation and antioxidant capacity. J Hazard Mater. 2022;436:129121.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo J, Zhang Z. Mechanisms of cadmium phytoremediation and detoxification in plants. Crop J. 2021;9(3):521–9.

    Article 

    Google Scholar
     

  • Zhu XF, Wang ZW, Dong F, Lei GJ, Shi YZ, Li GX, Zheng SJ. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls. J Hazard Mater. 2013;263:398–403.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Habib D, Chaudhary MF, Zia M. The study of Ascorbate Peroxidase, Catalase and peroxidase during in Vitro Regeneration of Argyrolobium Roseum. Appl Biochem Biotech. 2014;172(2):1070–84.

    Article 
    CAS 

    Google Scholar
     

  • Zhang W, Fan J, Tan Q, Zhao M, Zhou T, Cao F. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings. PLoS One. 2017;12(2):e172320.

    Article 

    Google Scholar
     

  • Kanmegne G, Omokolo ND. Changes in phenol content and peroxidase activity during in vitro organogenesis in Xanthosoma sagittifolium L. Volume 40. Plant Growth Regul; 2003. pp. 53–7. 1.

  • Bryant D, Moulton V. Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol. 2004;21(2):255–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oono Y, Yazawa T, Kawahara Y, Kanamori H, Kobayashi F, Sasaki H, Mori S, Wu J, Handa H, Itoh T, et al. Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in Drought stress Signal pathways in Rice. PLoS One. 2014;9(5):e96946.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuo K, Fukuzawa N, Matsumura T. A simple agroinfiltration method for transient gene expression in plant leaf discs. J Biosci Bioeng. 2016;122(3):351–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gietz R, Woods R. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Method Enzymol. 2002;350:87–96.

    Article 
    CAS 

    Google Scholar
     

  • Chen G, Xiong S. OsHIPP24 is a copper metallochaperone which affects Rice Growth. J Plant Biol. 2021;64(2):145–53.

    Article 
    CAS 

    Google Scholar
     

  • Aebi H. [13] catalase in vitro. Methods in Enzymology., Vol. 105: Academic Press; 1984: 121–6.

  • Flohé L, Ötting F. [10] Superoxide dismutase assays. Methods in Enzymology., Academic Press; 1984:105;93–104.

  • Pütter J. Peroxidases. In: Methods of Enzymatic Analysis (Second Edition). Edited by Bergmeyer HU: Academic Press; 1974: 685–690.

  • Description of Image

    Source link