Scientific Papers

Cycle-dependent sex differences in expression of membrane proteins involved in cerebrospinal fluid secretion at rat choroid plexus | BMC Neuroscience

Description of Image

  • Bruce BB, Kedar S, Van Stavern GP, Monaghan D, Acierno MD, Braswell RA, et al. Idiopathic intracranial hypertension in men. Neurology. 2009;72(4):304–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kratzer I, Ek J, Stolp H. The molecular anatomy and functions of the choroid plexus in healthy and diseased brain. Biochim Biophys Acta. 2020;1862(11):183430.

    Article 
    CAS 

    Google Scholar
     

  • Milhorat TH. Choroid plexus and cerebrospinal fluid production. Science. 1969;166(3912):1514–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spector R, Robert Snodgrass S, Johanson CE. A balanced view of the cerebrospinal fluid composition and functions: focus on adult humans. Exp Neurol. 2015;273:57–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steffensen AB, Oernbo EK, Stoica A, Gerkau NJ, Barbuskaite D, Tritsaris K, et al. Cotransporter-mediated water transport underlying cerebrospinal fluid formation. Nat Commun. 2018;9(1):2167.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damkier HH, Brown PD, Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev. 2013;93(4):1847–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeuthen T. Cotransport of K+, Cl- and H2O by membrane proteins from choroid plexus epithelium of Necturus maculosus. J Physiol. 1994;478(Pt2):203–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeuthen T. Secondary active transport of water across ventricular cell membrane of choroid plexus epithelium of Necturus maculosus. J Physiol. 1991;444:153–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hutton D, Fadelalla MG, Kanodia AK, Hossain-Ibrahim K. Choroid plexus and CSF: an updated review. Br J Neurosurg. 2022;36(3):307–15.

    Article 
    PubMed 

    Google Scholar
     

  • Hamann S, Herrera-Perez JJ, Zeuthen T, Alvarez-Leefmans FJ. Cotransport of water by the Na+-K+-2Cl(-) cotransporter NKCC1 in mammalian epithelial cells. J Physiol. 2010;588(Pt 21):4089–101.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Javaheri S, Wagner KR. Bumetanide decreases canine cerebrospinal fluid production. in vivo evidence for NaCl cotransport in the central nervous system. J clin Investig. 1993;92(5):2257–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barbuskaite D, Oernbo EK, Wardman JH, Toft-Bertelsen TL, Conti E, Andreassen SN, et al. Acetazolamide modulates intracranial pressure directly by its action on the cerebrospinal fluid secretion apparatus. Fluids Barriers CNS. 2022;19(1):53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • MacAulay N, Zeuthen T. Water transport between CNS compartments: contributions of aquaporins and cotransporters. Neuroscience. 2010;168(4):941–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • MacAulay N, Hamann S, Zeuthen T. Water transport in the brain: role of cotransporters. Neuroscience. 2004;129(4):1031–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeuthen T. Water-transporting proteins. J Membr Biol. 2010;234(2):57–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Praetorius J, Damkier HH. Transport across the choroid plexus epithelium. Am J Physiol Cell Physiol. 2017;312(6):C673–86.

    Article 
    PubMed 

    Google Scholar
     

  • Oernbo EK, Steffensen AB, Razzaghi Khamesi P, Toft-Bertelsen TL, Barbuskaite D, Vilhardt F, et al. Membrane transporters control cerebrospinal fluid formation independently of conventional osmosis to modulate intracranial pressure. Fluids Barriers CNS. 2022;19(1):65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Redzic ZB, Segal MB. The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev. 2004;56(12):1695–716.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quadros PS, Pfau JL, Wagner CK. Distribution of progesterone receptor immunoreactivity in the fetal and neonatal rat forebrain. J Comp Neurol. 2007;504(1):42–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong-Goka BC, Chang FL. Estrogen receptors alpha and beta in choroid plexus epithelial cells in Alzheimer’s disease. Neurosci Lett. 2004;360(3):113–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santos CR, Duarte AC, Quintela T, Tomás J, Albuquerque T, Marques F, et al. The choroid plexus as a sex hormone target: functional implications. Front Neuroendocrinol. 2017;44:103–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alves CH, Gonçalves I, Socorro S, Baltazar G, Quintela T, Santos CR. Androgen receptor is expressed in murine choroid plexus and downregulated by 5alpha-dihydrotestosterone in male and female mice. J Mol Neurosci MN. 2009;38(1):41–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quintela T, Marcelino H, Deery MJ, Feret R, Howard J, Lilley KS, et al. Sex-related differences in rat choroid plexus and cerebrospinal fluid: a cDNA microarray and proteomic analysis. J Neuroendocrinol. 2016. https://doi.org/10.1111/jne.12340.

    Article 
    PubMed 

    Google Scholar
     

  • Quintela T, Gonçalves I, Carreto LC, Santos MA, Marcelino H, Patriarca FM, et al. Analysis of the effects of sex hormone background on the rat choroid plexus transcriptome by cDNA microarrays. PLoS ONE. 2013;8(4):e60199.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andreassen SN, Toft-Bertelsen TL, Wardman JH, Villadsen R, MacAulay N. Transcriptional profiling of transport mechanisms and regulatory pathways in rat choroid plexus. Fluids Barriers CNS. 2022;19(1):44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yaba A, Sozen B, Suzen B, Demir N. Expression of aquaporin-7 and aquaporin-9 in tanycyte cells and choroid plexus during mouse estrus cycle. Morphologie. 2017;101(332):39–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castañeyra-Ruiz L, González-Marrero I, Hernández-Abad LG, Carmona-Calero EM, Meyer G, Castañeyra-Perdomo A. A distal to proximal gradient of human choroid plexus development, with antagonistic expression of Glut1 and AQP1 in mature cells vs. calbindin and PCNA in proliferative Cells. Front Neuroanat. 2016;10:87.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quek AM, McKeon A, Lennon VA, Mandrekar JN, Iorio R, Jiao Y, et al. Effects of age and sex on aquaporin-4 autoimmunity. Arch Neurol. 2012;69(8):1039–43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quintela T, Albuquerque T, Lundkvist G, Carmine Belin A, Talhada D, Gonçalves I, et al. The choroid plexus harbors a circadian oscillator modulated by estrogens. Chronobiol Int. 2018;35(2):270–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herak-Kramberger CM, Breljak D, Ljubojević M, Matokanović M, Lovrić M, Rogić D, et al. Sex-dependent expression of water channel AQP1 along the rat nephron. Am J Physiol Renal Physiol. 2015;308(8):F809–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ajayi AF, Akhigbe RE. Staging of the estrous cycle and induction of estrus in experimental rodents: an update. Fertil Res Pract. 2020;6:5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nilsson ME, Vandenput L, Tivesten Å, Norlén AK, Lagerquist MK, Windahl SH, et al. Measurement of a comprehensive sex steroid profile in rodent serum by high-sensitive gas chromatography-tandem mass spectrometry. Endocrinology. 2015;156(7):2492–502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marcondes FK, Bianchi FJ, Tanno AP. Determination of the estrous cycle phases of rats: some helpful considerations. Braz J Biol = Revista Brasleira de Biologia. 2002;62(4a):609–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weisser JJ, Hansen CH, Poulsen R, Larsen LW, Cornett C, Styrishave B. Two simple cleanup methods combined with LC-MS/MS for quantification of steroid hormones in in vivo and in vitro assays. Anal Bioanal Chem. 2016;408(18):4883–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sozen B, Aytac G, Demir N, Suzen B, Tanriover G. Are there any sex-depended differences in water transporting proteins of choroid plexus in mice? J Basic and Clin Health Sci. 2020;4(2):123–7.


    Google Scholar
     

  • MacAulay N. Molecular mechanisms of brain water transport. Nat Rev Neurosci. 2021;22(6):326–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karimy JK, Zhang J, Kurland DB, Theriault BC, Duran D, Stokum JA, et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med. 2017;23(8):997–1003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eftekhari S, Westgate CSJ, Uldall MS, Jensen RH. Preclinical update on regulation of intracranial pressure in relation to idiopathic intracranial hypertension. Fluids Barriers CNS. 2019;16(1):35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu G, Mestre H, Sweeney AM, Sun Q, Weikop P, Du T, et al. Direct measurement of cerebrospinal fluid production in mice. Cell Rep. 2020;33(12):108524.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alimajstorovic Z, Pascual-Baixauli E, Hawkes CA, Sharrack B, Loughlin AJ, Romero IA, et al. Cerebrospinal fluid dynamics modulation by diet and cytokines in rats. Fluids Barriers CNS. 2020;17(1):10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badawy MT, Sobeh M, Xiao J, Farag MA. Androstenedione (a natural steroid and a drug supplement): a comprehensive review of its consumption, metabolism, health effects, and toxicity with sex differences. Molecules. 2021;26(20):6210.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindvall-Axelsson M, Owman C. Changes in transport functions of isolated rabbit choroid plexus under the influence of oestrogen and progesterone. Acta Physiol Scand. 1989;136(1):107–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Reilly MW, Westgate CS, Hornby C, Botfield H, Taylor AE, Markey K, et al. A unique androgen excess signature in idiopathic intracranial hypertension is linked to cerebrospinal fluid dynamics. JCI Insight. 2019;4(6):e125348.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakano M, Hirooka Y, Matsukawa R, Ito K, Sunagawa K. Mineralocorticoid receptors/epithelial Na(+) channels in the choroid plexus are involved in hypertensive mechanisms in stroke-prone spontaneously hypertensive rats. Hypertens Res. 2013;36(3):277–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sinclair AJ, Walker EA, Burdon MA, van Beek AP, Kema IP, Hughes BA, et al. Cerebrospinal fluid corticosteroid levels and cortisol metabolism in patients with idiopathic intracranial hypertension: a link between 11beta-HSD1 and intracranial pressure regulation? J Clin Endocrinol Metab. 2010;95(12):5348–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Description of Image

    Source link