Scientific Papers

Circular RNA ZNF800 (hsa_circ_0082096) regulates cancer stem cell properties and tumor growth in colorectal cancer | BMC Cancer

Description of Image

  • Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23:1124–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Munro MJ, Wickremesekera SK, Peng L, Tan ST, Itinteang T. Cancer stem cells in colorectal cancer: a review. J Clin Pathol. 2018;71:110–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14:275–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, Xia L, Wang H, Oyang L, Su M, Liu Q, Lin J, Tan S, Tian Y, Liao Q, et al. Cancer stem cells in progression of colorectal cancer. Oncotarget. 2018;9:33403–15.

    Article 
    PubMed 

    Google Scholar
     

  • van der Heijden M, Vermeulen L. Stem cells in homeostasis and cancer of the gut. Mol Cancer. 2019;18:66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, Danenberg E, Clarke AR, Sansom OJ, Clevers H. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457:608–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huels DJ, Sansom OJ. Stem vs non-stem cell origin of colorectal cancer. Br J Cancer. 2015;113:1–5.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Agliano A, Calvo A, Box C. The challenge of targeting cancer stem cells to halt metastasis. Semin Cancer Biol. 2017;44:25–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishiguro T, Ohata H, Sato A, Yamawaki K, Enomoto T, Okamoto K. Tumor-derived spheroids: Relevance to cancer stem cells and clinical applications. Cancer Sci. 2017;108:283–9.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 2005;65:9328–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fekir K, Dubois-Pot-Schneider H, Desert R, Daniel Y, Glaise D, Rauch C, Morel F, Fromenty B, Musso O, Cabillic F, et al. Retrodifferentiation of human tumor hepatocytes to stem cells leads to metabolic reprogramming and chemoresistance. Cancer Res. 2019;79:1869–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adeshakin FO, Adeshakin AO, Afolabi LO, Yan D, Zhang G, Wan X. Mechanisms for modulating anoikis resistance in cancer and the relevance of metabolic reprogramming. Front Oncol. 2021;11: 626577.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Angelis ML, Francescangeli F, Zeuner A, Baiocchi M. Colorectal cancer stem cells: An overview of evolving methods and concepts. Cancers (Basel). 2021;13:5910.

    Article 
    PubMed 

    Google Scholar
     

  • Huang C-J, Choo KB. Circular RNA- and microRNA-mediated post-transcriptional regulation of preadipocyte differentiation in adipogenesis: from expression profiling to signaling pathway. Intl J Mol Sci. 2023;24:4549.

    Article 
    CAS 

    Google Scholar
     

  • Zhou W-Y, Cai Z-R, Liu J, Wang D-S, Ju H-Q, Xu R-H. Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer. 2020;19:172.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panda AC. Circular RNAs act as miRNA sponges. Adv Exp Med Biol. 2018;1087:67–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function. J Neurosci Res. 2020;98:87–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su M, Xiao Y, Ma J, Tang Y, Tian B, Zhang Y, Li X, Wu Z, Yang D, Zhou Y, et al. Circular RNAs in cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol Cancer. 2019;18:90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rengganaten V, Huang CJ, Tsai PH, Wang ML, Yang YP, Lan YT, Fang WL, Soo S, Ong HT, Cheong SK, et al. Mapping a circular RNA-microRNA-mRNA-signaling regulatory axis that modulates stemness properties of cancer stem cell populations in colorectal cancer spheroid cells. Intl J Mol Sci. 2020;21:7864.

    Article 
    CAS 

    Google Scholar
     

  • Panda AC, Martindale JL, Gorospe M. Affinity pulldown of biotinylated RNA for detection of protein-RNA complexes. Bio-Protoc. 2016;6:e2062.

    PubMed 

    Google Scholar
     

  • Kramer MF. Stem-loop RT-qPCR for miRNAs. Curr Protoc Mol Biol Chapter. 2011;15:10.


    Google Scholar
     

  • Ford E, Ares M Jr. Synthesis of circular RNA in bacteria and yeast using RNA cyclase ribozymes derived from a group I intron of phage T4. Proc Natl Acad Sci USA. 1994;91:3117–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng C, Zhao X, Lao J. A modified immunofluorescence in situ hybridization method to detect long non-coding RNAs and proteins in frozen spinal cord sections. Exp Ther Med. 2018;15:4623–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features of circular RNA expression. PLoS Genet. 2013;9:e1003777.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;58:870–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maass PG, Glazar P, Memczak S, Dittmar G, Hollfinger I, Schreyer L, Sauer AV, Toka O, Aiuti A, Luft FC, et al. A map of human circular RNAs in clinically relevant tissues. J Mol Med. 2017;95:1179–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roche KC, Gracz AD, Liu XF, Newton V, Akiyama H, Magness ST. SOX9 maintains reserve stem cells and preserves radioresistance in mouse small intestine. Gastroenterology. 2015;149:1553–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishimura R, Osako T, Okumura Y, Hayashi M, Toyozumi Y, Arima N. Ki-67 as a prognostic marker according to breast cancer subtype and a predictor of recurrence time in primary breast cancer. Exp Ther Med. 2010;1:747–54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wesselhoeft RA, Kowalski PS, Anderson DG. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun. 2018;9:2629.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Nguyen TM, Zhang XO, Wang L, Phan T, Clohessy JG, Pandolfi PP. Optimized RNA-targeting CRISPR/Cas13d technology outperforms shRNA in identifying functional circRNAs. Genome Biol. 2021;22:41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li S, Li X, Xue W, Zhang L, Yang LZ, Cao SM, Lei YN, Liu CX, Guo SK, Shan L, et al. Screening for functional circular RNAs using the CRISPR-Cas13 system. Nat Methods. 2021;18:51–9.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang J, Espinoza LA, Kinders RJ, Lawrence SM, Pfister TD, Zhou M, Veenstra TD, Thorgeirsson SS, Jessup JM. NANOG modulates stemness in human colorectal cancer. Oncogene. 2013;32:4397–405.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amini S, Fathi F, Mobalegi J, Sofimajidpour H, Ghadimi T. The expressions of stem cell markers: Oct4, Nanog, Sox2, nucleostemin, Bmi, Zfx, Tcl1, Tbx3, Dppa4, and Esrrb in bladder, colon, and prostate cancer, and certain cancer cell lines. Anat Cell Biol. 2014;47:1–11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munro MJ, Wickremesekera SK, Peng L, Marsh RW, Itinteang T, Tan ST. Cancer stem cell subpopulations in primary colon adenocarcinoma. PLoS One. 2019;14: e0221963.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gisina AM, Kim YS, Potashnikova DM, Tvorogova AV, Yarygin KN, Lupatov AY. Proliferative activity of colorectal cancer cells with different levels of CD133 expression. Bull Exp Biol Med. 2019;167:541–5.

    Article 
    CAS 

    Google Scholar
     

  • Marhaba R, Klingbeil P, Nuebel T, Nazarenko I, Buechler MW, Zoeller M. CD44 and EpCAM: cancer-initiating cell markers. Curr Mol Med. 2008;8:784–804.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, Wu YM, Dhanasekaran SM, Engelke CG, Cao X, et al. The landscape of circular RNA in cancer. Cell. 2019;176:869–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu HJ, Li J, Yang G, Yi CJ, Zhang D, Yu F, Ma Z. Circular RNAs in stem cells: from basic research to clinical implications. Biosci Rep. 2022;42:BSR20212510.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu CY, Li TC, Wu YY, Yeh CH, Chiang W, Chuang CY, Kuo HC. The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nat Commun. 2017;8:1149.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao X, Zhong Q, Cheng X, Wang S, Wu R, Leng X, Shao L. miR-449c-5p availability is antagonized by circ-NOTCH1 for MYC-induced NOTCH1 upregulation as well as tumor metastasis and stemness in gastric cancer. J Cell Biochem. 2020;121:4052–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu C, Zhou N, Wang Z, Li G, Kou Y, Yu S, Feng Y, Chen L, Yang J, Tian F. circGprc5a promoted bladder oncogenesis and metastasis through Gprc5a-targeting peptide. Mol Ther Nucleic Acids. 2018;13:633–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Civelek M, Wu Y, Pan C, Raulerson CK, Ko A, He A, Tilford C, Saleem NK, Stancakova A, Scott LJ, et al. genetic regulation of adipose gene expression and cardio-metabolic traits. Am J Hum Genet. 2017;100:428–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuo E, Cai C, Liu W, Li K, Zhao W. Downregulated microRNA-140-5p expression regulates apoptosis, migration and invasion of lung cancer cells by targeting zinc finger protein 800. Oncol Lett. 2020;20:390.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Li T, Wang B. Circ-UBAP2 functions as sponges of miR-1205 and miR-382 to promote glioma progression by modulating STC1 expression. Cancer Med. 2021;10:1815–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan X, Guo D, Zhu Q, Qu R. microRNA-382 suppresses the progression of pancreatic cancer through the PI3K/Akt signaling pathway by inhibition of Anxa3. Am J Physiol Gastrointest Liver Physiol. 2020;319:G309–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao H, Xia D, Li ZL, Ren L, Wang MM, Chen WS, Hu ZC, Yi GP, Xu L. MiR-382 functions as tumor suppressor and chemosensitizer in colorectal cancer. Biosci Rep. 2019;39:BSR20180441.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu M, Jin H, Xu CX, Sun B, Song ZG, Bi WZ, Wang Y. miR-382 inhibits osteosarcoma metastasis and relapse by targeting Y box-binding protein 1. Mol Ther. 2015;23:89–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borcherding N, Kusner D, Kolb R, Xie Q, Li W, Yuan F, Velez G, Askeland R, Weigel RJ, Zhang W. Paracrine WNT5A signaling inhibits expansion of tumor-initiating cells. Cancer Res. 2015;75:1972–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurayoshi M, Oue N, Yamamoto H, Kishida M, Inoue A, Asahara T, Yasui W, Kikuchi A. Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res. 2006;66:10439–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Y, Dai Q, Fu X, Chen Q, Tang Y, Gao X, Zhou Q. CircVAPA exerts oncogenic property in non-small cell lung cancer by the miR-876-5p/WNT5A axis. J Gene Med. 2021;23:e3325.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin L, Yin YT, Zheng FJ, Peng LX, Yang CF, Bao YN, Liang YY, Li XJ, Xiang YQ, Sun R, et al. WNT5A promotes stemness characteristics in nasopharyngeal carcinoma cells leading to metastasis and tumorigenesis. Oncotarget. 2015;6:10239–52.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Jia C, Jia C, Jin X, Gu X. MicroRNA-374a inhibits aggressive tumor biological behavior in bladder carcinoma by suppressing Wnt/beta-catenin signaling. Cell Physiol Biochem. 2018;48:815–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu S, Wang H, Pan Y, Yang X, Wu D. miR-140-3p enhances cisplatin sensitivity and attenuates stem cell-like properties through repressing Wnt/beta-catenin signaling in lung adenocarcinoma cells. Exp Ther Med. 2020;20:1664–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalhori MR, Irani S, Soleimani M, Arefian E, Kouhkan F. The effect of miR-579 on the PI3K/AKT pathway in human glioblastoma PTEN mutant cell lines. J Cell Biochem. 2019;120:16760–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Principe M, Chanal M, Karam V, Wierinckx A, Mikaélian I, Gadet R, Auger C, Raverot V, Jouanneau E, Vasiljevic A, et al. ALK7 expression in prolactinoma is associated with reduced prolactin and increased proliferation. Endocr Relat Cancer. 2018;25:795–806.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asnaghi L, White DT, Key N, Choi J, Mahale A, Alkatan H, Edward DP, Elkhamary SM, Al-Mesfer S, Maktabi A, et al. ACVR1C/SMAD2 signaling promotes invasion and growth in retinoblastoma. Oncogene. 2019;38:2056–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia L, Wu L, Bao J, Li Q, Chen X, Xia H, Xia R. Circular RNA circ-CBFB promotes proliferation and inhibits apoptosis in chronic lymphocytic leukemia through regulating miR-607/FZD3/Wnt/beta-catenin pathway. Biochem Biophys Res Commun. 2018;503:385–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pamudurti NR, Patop IL, Krishnamoorthy A, Ashwal-Fluss R, Bartok O, Kadener S. An in vivo strategy for knockdown of circular RNAs. Cell Discov. 2020;6:52.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Wells DJ. Systemic AAV gene therapy close to clinical trials for several neuromuscular diseases. Mol Ther. 2017;25:834–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Description of Image

    Source link