Scientific Papers

Insights into the underlying pathogenesis and therapeutic potential of endoplasmic reticulum stress in degenerative musculoskeletal diseases | Military Medical Research

Description of Image

  • Zheng YL, Song G, Guo JB, Su X, Chen YM, Yang Z, et al. Interactions among lncRNA/circRNA, miRNA, and mRNA in musculoskeletal degenerative diseases. Front Cell Dev Biol. 2021;9:753931.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glyn-Jones S, Palmer AJR, Agricola R, Price AJ, Vincent TL, Weinans H, et al. Osteoarthr Lancet. 2015;386(9991):376–87.

    Article 
    CAS 

    Google Scholar
     

  • Lane NE. Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol. 2006;194(2 Suppl):3–11.

    Article 

    Google Scholar
     

  • Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol. 2014;10(1):44–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cruz-Jentoft AJ, Sayer AA, Sarcopenia. Lancet. 2019;393(10191):2636–46.

    Article 
    PubMed 

    Google Scholar
     

  • Rellmann Y, Eidhof E, Dreier R, Review. ER stress-induced cell death in osteoarthritic cartilage. Cell Signal. 2021;78:109880.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Black DM, Rosen CJ. Clinical practice. Postmenopausal osteoporosis. N Engl J Med. 2016;374(3):254–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Francisco V, Pino J, Gonzalez-Gay MA, Lago F, Karppinen J, Tervonen O, et al. A new immunometabolic perspective of intervertebral disc degeneration. Nat Rev Rheumatol. 2022;18(1):47–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song Y, Wu Z, Zhao P. The function of metformin in aging-related musculoskeletal disorders. Front Pharmacol. 2022;13:865524.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oakes SA, Papa FR. The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol. 2015;10:173–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 2011;13(3):184–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krebs J, Agellon LB, Michalak M. Ca2+ homeostasis and endoplasmic reticulum (ER) stress: an integrated view of calcium signaling. Biochem Biophys Res Commun. 2015;460(1):114–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta. 2013;1833(12):3460–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahmati M, Moosavi MA, McDermott MF. ER stress: a therapeutic target in rheumatoid arthritis? Trends Pharmacol Sci. 2018;39(7):610–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong J, Kim K, Kim JH, Park Y. The role of endoplasmic reticulum stress in cardiovascular disease and exercise. Int J Vasc Med. 2017;2017:2049217.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yong J, Johnson JD, Arvan P, Han J, Kaufman RJ. Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus. Nat Rev Endocrinol. 2021;17(8):455–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell. 2017;168(4):692–706.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin JH, Walter P, Yen TS. Endoplasmic reticulum stress in Disease pathogenesis. Annu Rev Pathol. 2008;3:399–425.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siwecka N, Rozpedek-Kaminska W, Wawrzynkiewicz A, Pytel D, Diehl JA, Majsterek I. The structure, activation and signaling of IRE1 and its role in determining cell fate. Biomedicines. 2021;9(2):156.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kopp MC, Larburu N, Durairaj V, Adams CJ, Ali MMU. UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor. Nat Struct Mol Biol. 2019;26(11):1053–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kohno K, Normington K, Sambrook J, Gething MJ, Mori K. The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Mol Cell Biol. 1993;13(2):877–90.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye J, Rawson RB, Komuro R, Chen X, Davé UP, Prywes R, et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. 2000;6(6):1355–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adachi Y, Yamamoto K, Okada T, Yoshida H, Harada A, Mori K. ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct Funct. 2008;33(1):75–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohammad-Qureshi SS, Jennings MD, Pavitt GD. Clues to the mechanism of action of eIF2B, the guanine-nucleotide-exchange factor for translation initiation. Biochem Soc Trans. 2008;36(Pt 4):658–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 2000;6(5):1099–108.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han J, Kaufman RJ. Physiological/pathological ramifications of transcription factors in the unfolded protein response. Genes Dev. 2017;31(14):1417–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morishima N, Nakanishi K, Nakano A. Activating transcription factor-6 (ATF6) mediates apoptosis with reduction of myeloid cell Leukemia sequence 1 (Mcl-1) protein via induction of WW domain binding protein 1. J Biol Chem. 2011;286(40):35227–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acosta-Alvear D, Karagöz GE, Fröhlich F, Li H, Walther TC, Walter P. The unfolded protein response and endoplasmic reticulum protein targeting machineries converge on the stress sensor IRE1. Elife. 2018;7:e43036.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poothong J, Sopha P, Kaufman RJ, Tirasophon W. Domain compatibility in Ire1 kinase is critical for the unfolded protein response. FEBS Lett. 2010;584(14):3203–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karagöz GE, Acosta-Alvear D, Nguyen HT, Lee CP, Chu F, Walter P. An unfolded protein-induced conformational switch activates mammalian IRE1. Elife. 2017;6:e30700.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maurel M, Chevet E, Tavernier J, Gerlo S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci. 2014;39(5):245–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coelho DS, Domingos PM. Physiological roles of regulated Ire1 dependent decay. Front Genet. 2014;5:76.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sozen E, Yazgan B, Tok OE, Demirel T, Ercan F, Proto JD, et al. Cholesterol induced autophagy via IRE1/JNK pathway promotes autophagic cell death in heart tissue. Metabolism. 2020;106:154205.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem. 2017;86:129–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bernales S, McDonald KL, Walter P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 2006;4(12):e423.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sen R, Hurley JA. In: StatPearls, editor. Osteoarthritis. Treasure Island (FL): StatPearls Publishing; 2023.


    Google Scholar
     

  • Kung LHW, Mullan L, Soul J, Wang P, Mori K, Bateman JF, et al. Cartilage endoplasmic reticulum stress may influence the onset but not the progression of experimental osteoarthritis. Arthritis Res Ther. 2019;21(1):206.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson WH, Lepus CM, Wang Q, Raghu H, Mao R, Lindstrom TM, et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2016;12(10):580–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li YH, Tardif G, Hum D, Kapoor M, Fahmi H, Pelletier JP, et al. The unfolded protein response genes in human osteoarthritic chondrocytes: PERK emerges as a potential therapeutic target. Arthritis Res Ther. 2016;18:172.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haywood J, Yammani RR. Free fatty acid palmitate activates unfolded protein response pathway and promotes apoptosis in meniscus cells. Osteoarthr Cartil. 2016;24(5):942–5.

    Article 
    CAS 

    Google Scholar
     

  • Lin Z, Teng C, Ni L, Zhang Z, Lu X, Lou J, et al. Echinacoside upregulates Sirt1 to suppress endoplasmic reticulum stress and inhibit extracellular matrix degradation in vitro and ameliorates osteoarthritis in vivo. Oxid Med Cell Longev. 2021;2021:3137066.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hecht JT, Veerisetty AC, Wu J, Coustry F, Hossain MG, Chiu F, et al. Primary osteoarthritis early joint degeneration induced by endoplasmic reticulum stress is mitigated by resveratrol. Am J Pathol. 2021;191(9):1624–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol. 2015;11(1):21–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bei HP, Hung PM, Yeung HL, Wang S, Zhao X. Bone-a-petite: engineering exosomes towards bone, osteochondral, and cartilage repair. Small. 2021;17(50):e2101741.

    Article 
    PubMed 

    Google Scholar
     

  • Thomas CM, Fuller CJ, Whittles CE, Sharif M. Chondrocyte death by apoptosis is associated with cartilage matrix degradation. Osteoarthr Cartil. 2007;15(1):27–34.

    Article 
    CAS 

    Google Scholar
     

  • Loeser RF. Growth factor regulation of chondrocyte integrins. Differential effects of insulin-like growth factor 1 and transforming growth factor beta on alpha 1 beta 1 integrin expression and chondrocyte adhesion to type VI collagen. Arthritis Rheum. 1997;40(2):270–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cravero JD, Carlson CS, Im HJ, Yammani RR, Long D, Loeser RF. Increased expression of the Akt/PKB inhibitor TRB3 in osteoarthritic chondrocytes inhibits insulin-like growth factor 1-mediated cell survival and proteoglycan synthesis. Arthritis Rheum. 2009;60(2):492–500.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nazli SA, Loeser RF, Chubinskaya S, Willey JS, Yammani RR. High fat-diet and saturated fatty acid palmitate inhibits IGF-1 function in chondrocytes. Osteoarthr Cartil. 2017;25(9):1516–21.

    Article 
    CAS 

    Google Scholar
     

  • Hamamura K, Goldring MB, Yokota H. Involvement of p38 MAPK in regulation of MMP13 mRNA in chondrocytes in response to surviving stress to endoplasmic reticulum. Arch Oral Biol. 2009;54(3):279–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu X, Xu X, Dong W, Yang C, Luo Y, He Y, et al. DDIT3/CHOP mediates the inhibitory effect of ER stress on chondrocyte differentiation by AMPKα-SIRT1 pathway. Biochim Biophys Acta Mol Cell Res. 2022;1869(8):119265.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu H, Meng Z, Jiao Y, Ren Y, Yang X, Liu H, et al. The endoplasmic reticulum stress induced by tunicamycin affects the viability and autophagy activity of chondrocytes. J Clin Lab Anal. 2020;34(10):e23437.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang H, Wen Y, Zhang M, Liu Q, Zhang H, Zhang J, et al. MTORC1 coordinates the autophagy and apoptosis signaling in articular chondrocytes in osteoarthritic temporomandibular joint. Autophagy. 2020;16(2):271–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li K, Yang P, Zhang Y, Zhang Y, Cao H, Liu P, et al. DEPTOR prevents osteoarthritis development via interplay with TRC8 to reduce endoplasmic reticulum stress in chondrocytes. J Bone Miner Res. 2021;36(2):400–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Everett RD, Meredith M, Orr A, Cross A, Kathoria M, Parkinson J. A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. EMBO J. 1997;16(7):1519–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong X, Yang C, Luo Y, Dong W, Xu X, Wu Y, et al. USP7 attenuates endoplasmic reticulum stress and NF-κB signaling to modulate chondrocyte proliferation, apoptosis, and inflammatory response under inflammation. Oxid Med Cell Longev. 2022;2022:1835900.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coryell PR, Diekman BO, Loeser RF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat Rev Rheumatol. 2021;17(1):47–57.

    Article 
    PubMed 

    Google Scholar
     

  • Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan PG, Cooper C, Goldring MB, et al. Osteoarthr Nat Rev Dis Primers. 2016;2:16072.

    Article 

    Google Scholar
     

  • Chadwick SR, Lajoie P. Endoplasmic reticulum stress coping mechanisms and lifespan regulation in health and diseases. Front Cell Dev Biol. 2019;7:84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paz Gavilan M, Vela J, Castano A, Ramos B, del Rio JC, Vitorica J, et al. Cellular environment facilitates protein accumulation in aged rat hippocampus. Neurobiol Aging. 2006;27(7):973–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell. 2006;5(2):187–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirose J, Yamabe S, Takada K, Okamoto N, Nagai R, Mizuta H. Immunohistochemical distribution of advanced glycation end products (AGEs) in human osteoarthritic cartilage. Acta Histochem. 2011;113(6):613–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamabe S, Hirose J, Uehara Y, Okada T, Okamoto N, Oka K, et al. Intracellular accumulation of advanced glycation end products induces apoptosis via endoplasmic reticulum stress in chondrocytes. FEBS J. 2013;280(7):1617–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan L, Register TC, Yammani RR. Age-related decline in expression of molecular chaperones induces endoplasmic reticulum stress and chondrocyte apoptosis in articular cartilage. Aging Dis. 2020;11(5):1091–102.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nuss JE, Choksi KB, DeFord JH, Papaconstantinou J. Decreased enzyme activities of chaperones PDI and BiP in aged mouse livers. Biochem Biophys Res Commun. 2008;365(2):355–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Zhu H, Yan X, Gu H, Gu Z, Liu F. Endoplasmic reticulum stress participates in the progress of senescence and apoptosis of osteoarthritis chondrocytes. Biochem Biophys Res Commun. 2017;491(2):368–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ott C, Jacobs K, Haucke E, Navarrete Santos A, Grune T, Simm A. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014;2:411–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rasheed Z, Haqqi TM. Endoplasmic reticulum stress induces the expression of COX-2 through activation of eIF2α, p38-MAPK and NF-κB in advanced glycation end products stimulated human chondrocytes. Biochim Biophys Acta. 2012;1823(12):2179–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson G, Wordsworth J, Wang C, Jurk D, Lawless C, Martin-Ruiz C, et al. A senescent cell bystander effect: senescence-induced senescence. Aging Cell. 2012;11(2):345–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Opie LH, Walfish PG. Plasma free fatty acid concentrations in obesity. N Engl J Med. 1963;268:757–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sandell LJ. Etiology of osteoarthritis: genetics and synovial joint development. Nat Rev Rheumatol. 2012;8(2):77–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan L, Harper L, McNulty MA, Carlson CS, Yammani RR. High-fat diet induces endoplasmic reticulum stress to promote chondrocyte apoptosis in mouse knee joints. FASEB J. 2020;34(4):5818–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan L, Yammani RR. Nupr1 regulates palmitate-induced apoptosis in human articular chondrocytes. Biosci Rep. 2019;39(2):BSR20181473.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan L, Harper LR, Armstrong A, Carlson CS, Yammani RR. Dietary saturated fatty acid palmitate promotes cartilage lesions and activates the unfolded protein response pathway in mouse knee joints. PLoS One. 2021;16(2):e0247237.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandoval DA, D’Alessio DA. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol Rev. 2015;95(2):513–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, Xie JJ, Shi KS, Gu YT, Wu CC, Xuan J, et al. Glucagon-like peptide-1 receptor regulates endoplasmic reticulum stress-induced apoptosis and the associated inflammatory response in chondrocytes and the progression of osteoarthritis in rat. Cell Death Dis. 2018;9(2):212.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis: a review. JAMA. 2021;325(6):568–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson MG, Michet CJ Jr, Ilstrup DM, Melton LJ III. Idiopathic symptomatic osteoarthritis of the hip and knee: a population-based incidence study. Mayo Clin Proc. 1990;65(9):1214–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Srikanth VK, Fryer JL, Zhai G, Winzenberg TM, Hosmer D, Jones G. A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis. Osteoarthr Cartil. 2005;13(9):769–81.

    Article 

    Google Scholar
     

  • Dreier R, Ising T, Ramroth M, Rellmann Y. Estradiol inhibits ER stress-induced apoptosis in chondrocytes and contributes to a reduced osteoarthritic cartilage degeneration in female mice. Front Cell Dev Biol. 2022;10:913118.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Falconer J, Murphy AN, Young SP, Clark AR, Tiziani S, Guma M, et al. Review: synovial cell metabolism and chronic inflammation in rheumatoid arthritis. Arthritis Rheumatol. 2018;70(7):984–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orr C, Vieira-Sousa E, Boyle DL, Buch MH, Buckley CD, Canete JD, et al. Synovial tissue research: a state-of-the-art review. Nat Rev Rheumatol. 2017;13(8):463–75.

    Article 
    PubMed 

    Google Scholar
     

  • Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis. Bone. 2012;51(2):249–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathiessen A, Conaghan PG. Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Res Ther. 2017;19(1):18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Q, Wen Y, Wang L, Chen B, Chen J, Wang H, et al. Hyperglycemia-induced accumulation of advanced glycosylation end products in fibroblast-like synoviocytes promotes knee osteoarthritis. Exp Mol Med. 2021;53(11):1735–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan MI, Rath S, Adhami VM, Mukhtar H. Hypoxia driven glycation: mechanisms and therapeutic opportunities. Semin Cancer Biol. 2018;49:75–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Xing R, Huang Z, Zhang N, Zhang L, Li X, et al. Inhibition of synovial macrophage pyroptosis alleviates synovitis and fibrosis in knee osteoarthritis. Mediators Inflamm. 2019;2019:2165918.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han CY, Rho HS, Kim A, Kim TH, Jang K, Jun DW, et al. FXR inhibits endoplasmic reticulum stress-induced NLRP3 inflammasome in hepatocytes and ameliorates liver injury. Cell Rep. 2018;24(11):2985–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Z, Liao T, Yang N, Ding L, Li X, Wu P, et al. Interventional effects of the topical of Sanse Powder essential oils nanoemulsion on knee osteoarthritis in rats by targeting the ERS/TXNIP/NLRP3 signaling axis. Front Pharmacol. 2021;12:739644.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee CH, Chiang CF, Kuo FC, Su SC, Huang CL, Liu JS, et al. High-molecular-weight hyaluronic acid inhibits IL-1β-induced synovial inflammation and macrophage polarization through the GRP78-NF-κB signaling pathway. Int J Mol Sci. 2021;22(21):11917.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011;32(30):7411–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishimuta JF, Levenston ME. Meniscus is more susceptible than cartilage to catabolic and anti-anabolic effects of adipokines. Osteoarthr Cartil. 2015;23(9):1551–62.

    Article 
    CAS 

    Google Scholar
     

  • Mallik A, Yammani RR. Saturated fatty acid palmitate negatively regulates autophagy by promoting ATG5 protein degradation in meniscus cells. Biochem Biophys Res Commun. 2018;502(3):370–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madry H, van Dijk CN, Mueller-Gerbl M. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):419–33.

    Article 
    PubMed 

    Google Scholar
     

  • Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat Rev Rheumatol. 2012;8(11):665–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Intema F, Hazewinkel HA, Gouwens D, Bijlsma JW, Weinans H, Lafeber FP, et al. In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model. Osteoarthr Cartil. 2010;18(5):691–8.

    Article 
    CAS 

    Google Scholar
     

  • Li G, Yin J, Gao J, Cheng TS, Pavlos NJ, Zhang C, et al. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther. 2013;15(6):223.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat Rev Rheumatol. 2016;12(11):632–44.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu X, Chan YT, Yung PSH, Tuan RS, Jiang Y. Subchondral bone remodeling: a therapeutic target for osteoarthritis. Front Cell Dev Biol. 2020;8:607764.

    Article 
    PubMed 

    Google Scholar
     

  • Hu W, Chen Y, Dou C, Dong S. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis. 2021;80(4):413–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Zhang T, Xu Y, Chen R, Qu N, Zhang B, et al. Suppressing phosphoinositide-specific phospholipases Cgamma1 promotes mineralization of osteoarthritic subchondral bone osteoblasts via increasing autophagy, thereby ameliorating articular cartilage degeneration. Bone. 2022;154:116262.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo J, Ren R, Sun K, Yao X, Lin J, Wang G, et al. PERK controls bone homeostasis through the regulation of osteoclast differentiation and function. Cell Death Dis. 2020;11(10):847.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Han B, Ding J, Qiu C, Wang W. Endoplasmic reticulum stress mediates osteocyte death under oxygen-glucose deprivation in vitro. Acta Histochem. 2020;122(6):151577.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jilka RL, O’Brien CA. The role of osteocytes in age-related bone loss. Curr Osteoporos Rep. 2016;14(1):16–25.

    Article 
    PubMed 

    Google Scholar
     

  • Sun Y, Yuan Y, Wu W, Lei L, Zhang L. The effects of locomotion on bone marrow mesenchymal stem cell fate: insight into mechanical regulation and bone formation. Cell Biosci. 2021;11(1):88.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng J, Gao Y, Lin H, Yuan C, Keqianzhi. Enhanced autophagy suppresses inflammation-mediated bone loss through ROCK1 signaling in bone marrow mesenchymal stem cells. Cells Dev. 2021;167:203687.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schulze-Tanzil G. Intraarticular ligament degeneration is interrelated with cartilage and bone destruction in osteoarthritis. Cells. 2019;8(9):990.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim HA, Kim I, Song YW, Kim DH, Niu J, Guermazi A, et al. The association between meniscal and cruciate ligament damage and knee pain in community residents. Osteoarthr Cartil. 2011;19(12):1422–8.

    Article 
    CAS 

    Google Scholar
     

  • Li QX, Li ZY, Liu L, Ni QB, Yang X, Chen B, et al. Dexamethasone causes calcium deposition and degeneration in human anterior cruciate ligament cells through endoplasmic reticulum stress. Biochem Pharmacol. 2020;175:113918.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi L, Miao J, Chen D, Shi J, Chen Y. Endoplasmic reticulum stress regulates mechanical stress-induced ossification of posterior longitudinal ligament. Eur Spine J. 2019;28(10):2249–56.

    Article 
    PubMed 

    Google Scholar
     

  • Krishnasamy P, Hall M, Robbins SR. The role of skeletal muscle in the pathophysiology and management of knee osteoarthritis. Rheumatology (Oxford). 2018;57(suppl4):iv22–iv33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim TJ, Lee HJ, Pyun DH, Abd El-Aty AM, Jeong JH, Jung TW. Valdecoxib improves lipid-induced skeletal muscle insulin resistance via simultaneous suppression of inflammation and endoplasmic reticulum stress. Biochem Pharmacol. 2021;188:114557.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hunter DJ, Bierma-Zeinstra S, Osteoarthritis. Lancet. 2019;393(10182):1745–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu K, Robbins SR, McDougall JJ. Osteoarthritis: the genesis of pain. Rheumatology (Oxford). 2018;57(suppl4):iv43–iv50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inceoglu B, Bettaieb A, Trindade da Silva CA, Lee KS, Haj FG, Hammock BD. Endoplasmic reticulum stress in the peripheral nervous system is a significant driver of neuropathic pain. Proc Natl Acad Sci U S A. 2015;112(29):9082–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao Y, Wang C, Tian X, Huang Y, Zhang Y, Wu H, et al. Endoplasmic reticulum stress contributes to nociception via neuroinflammation in a murine Bone cancer pain model. Anesthesiology. 2020;132(2):357–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 2014;29(11):2520–6.

    Article 
    PubMed 

    Google Scholar
     

  • Armas LA, Recker RR. Pathophysiology of osteoporosis: new mechanistic insights. Endocrinol Metab Clin North Am. 2012;41(3):475–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Yang S, Li X, Liu D, Wang Z, Guo J, et al. Role of endoplasmic reticulum stress in disuse osteoporosis. Bone. 2017;97:2–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9(11):798–809.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang J, Gao R, Wu H, Wu X, Pan F. Signal transducer and activator of transcription 3 regulates CCAAT-enhancer-binding homologous protein expression in osteoblasts through upregulation of microRNA-205. Exp Ther Med. 2015;10(1):295–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han C, Xie K, Yang C, Zhang F, Liang Q, Lan C, et al. HA15 alleviates bone loss in ovariectomy-induced osteoporosis by targeting HSPA5. Exp Cell Res. 2021;406(2):112781.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • D’Autréaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007;8(10):813–24.

    Article 
    PubMed 

    Google Scholar
     

  • Hu X, Li B, Wu F, Liu X, Liu M, Wang C, et al. GPX7 facilitates BMSCs osteoblastogenesis via ER stress and mTOR pathway. J Cell Mol Med. 2021;25(22):10454–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim JH, Kim K, Kim I, Seong S, Nam KI, Kim KK, et al. Endoplasmic reticulum-bound transcription factor CREBH stimulates RANKL-induced osteoclastogenesis. J Immunol. 2018;200(5):1661–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamashita T, Yao Z, Li F, Zhang Q, Badell IR, Schwarz EM, et al. NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and Tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J Biol Chem. 2007;282(25):18245–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asagiri M, Sato K, Usami T, Ochi S, Nishina H, Yoshida H, et al. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med. 2005;202(9):1261–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee EG, Sung MS, Yoo HG, Chae HJ, Kim HR, Yoo WH. Increased RANKL-mediated osteoclastogenesis by interleukin-1β and endoplasmic reticulum stress. Joint Bone Spine. 2014;81(6):520–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT, et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell. 2006;124(3):587–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang YH, Li B, Zheng XF, Chen JW, Chen K, Jiang SD, et al. Oxidative damage to osteoblasts can be alleviated by early autophagy through the endoplasmic reticulum stress pathway–implications for the treatment of osteoporosis. Free Radic Biol Med. 2014;77:10–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Collier JJ, Suomi F, Oláhová M, McWilliams TG, Taylor RW. Emerging roles of ATG7 in human health and disease. EMBO Mol Med. 2021;13(12):e14824.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Li D, Ma Z, Qian Z, Kang X, Jin X, et al. Defective autophagy in osteoblasts induces endoplasmic reticulum stress and causes remarkable bone loss. Autophagy. 2018;14(10):1726–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;4:16009.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng Z, Zhang X, Huang B, Liu J, Wei X, Shan Z, et al. Site-1 protease controls osteoclastogenesis by mediating LC3 transcription. Cell Death Differ. 2021;28(6):2001–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Briot K, Roux C, Thomas T, Blain H, Buchon D, Chapurlat R, et al. 2018 update of French recommendations on the management of postmenopausal osteoporosis. Joint Bone Spine. 2018;85(5):519–30.

    Article 
    PubMed 

    Google Scholar
     

  • Suzuki R, Fujiwara Y, Saito M, Arakawa S, Shirakawa JI, Yamanaka M, et al. Intracellular accumulation of advanced glycation end products induces osteoblast apoptosis via endoplasmic reticulum stress. J Bone Miner Res. 2020;35(10):1992–2003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo YS, Sun Z, Ma J, Cui W, Gao B, Zhang HY, et al. 17β-estradiol inhibits ER stress-induced apoptosis through promotion of TFII-I-dependent Grp78 induction in osteoblasts. Lab Invest. 2014;94(8):906–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chotiyarnwong P, McCloskey EV. Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nat Rev Endocrinol. 2020;16(8):437–47.

    Article 
    PubMed 

    Google Scholar
     

  • Sato AY, Tu X, McAndrews KA, Plotkin LI, Bellido T. Prevention of glucocorticoid induced-apoptosis of osteoblasts and osteocytes by protecting against endoplasmic reticulum (ER) stress in vitro and in vivo in female mice. Bone. 2015;73:60–8.

    Article 
    PubMed 

    Google Scholar
     

  • Guo Y, Hao D, Hu H. High doses of dexamethasone induce endoplasmic reticulum stress-mediated apoptosis by promoting calcium ion influx-dependent CHOP expression in osteoblasts. Mol Biol Rep. 2021;48(12):7841–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohsin S, Baniyas MM, AlDarmaki RS, Tekes K, Kalász H, Adeghate EA. An update on therapies for the treatment of diabetes-induced osteoporosis. Expert Opin Biol Ther. 2019;19(9):937–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu W, Zhu X, Wang Q, Wang L. Hyperglycemia induces endoplasmic reticulum stress-dependent CHOP expression in osteoblasts. Exp Ther Med. 2013;5(5):1289–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aguirre L, Napoli N, Waters D, Qualls C, Villareal DT, Armamento-Villareal R. Increasing adiposity is associated with higher adipokine levels and lower bone mineral density in obese older adults. J Clin Endocrinol Metab. 2014;99(9):3290–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jing L, Jia XW. Lycium barbarum polysaccharide arbitrates palmitate-induced apoptosis in MC3T3E1 cells through decreasing the activation of ERS-mediated apoptosis pathway. Mol Med Rep. 2018;17(2):2415–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Gillet C, Spruyt D, Rigutto S, Dalla Valle A, Berlier J, Louis C, et al. Oleate abrogates palmitate-induced lipotoxicity and proinflammatory response in human bone marrow-derived mesenchymal stem cells and osteoblastic cells. Endocrinology. 2015;156(11):4081–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park SJ, Kim KJ, Kim WU, Oh IH, Cho CS. Involvement of endoplasmic reticulum stress in homocysteine-induced apoptosis of osteoblastic cells. J Bone Miner Metab. 2012;30(4):474–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ozcivici E, Luu YK, Adler B, Qin YX, Rubin J, Judex S, et al. Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol. 2010;6(1):50–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Styner M, Meyer MB, Galior K, Case N, Xie Z, Sen B, et al. Mechanical strain downregulates C/EBPβ in MSC and decreases endoplasmic reticulum stress. PLoS ONE. 2012;7(12):e51613.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chalil S, Jaspers RT, Manders RJ, Klein-Nulend J, Bakker AD, Deldicque L. Increased endoplasmic reticulum stress in mouse osteocytes with aging alters Cox-2 response to mechanical stimuli. Calcif Tissue Int. 2015;96(2):123–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Munoz J, Akhavan NS, Mullins AP, Arjmandi BH. Macrophage polarization and osteoporosis: a review. Nutrients. 2020;12(10):2999.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer V, Haffner-Luntzer M. Interaction between bone and immune cells: implications for postmenopausal osteoporosis. Semin Cell Dev Biol. 2022;123:14–21.

    Article 
    PubMed 

    Google Scholar
     

  • Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials. 2012;33(15):3792–802.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murray Peter J, Allen Judith E, Biswas Subhra K, Fisher Edward A, Gilroy Derek W, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loi F, Córdova LA, Zhang R, Pajarinen J, Lin TH, Goodman SB, et al. The effects of immunomodulation by macrophage subsets on osteogenesis in vitro. Stem Cell Res Ther. 2016;7:15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong L, Zhao Y, Zhang Y, Ruan Z. The macrophage polarization regulates MSC osteoblast differentiation in vitro. Ann Clin Lab Sci. 2016;46(1):65–71.

    CAS 
    PubMed 

    Google Scholar
     

  • Yuan Y, Jiao P, Wang Z, Chen M, Du H, Xu L, et al. Endoplasmic reticulum stress promotes the release of exosomal PD-L1 from Head and Neck cancer cells and facilitates M2 macrophage polarization. Cell Communication and Signaling. 2022;20(1):12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu C, Shi W, Hu W, Zhao Y, Zhao X, Dong F, et al. Endoplasmic reticulum stress promotes Breast cancer cells to release exosomes circ_0001142 and induces M2 polarization of macrophages to regulate Tumor progression. Pharmacol Res. 2022;177:106098.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du N, Wu K, Zhang J, Wang L, Pan X, Zhu Y, et al. Inonotsuoxide B regulates M1 to M2 macrophage polarization through sirtuin-1/endoplasmic reticulum stress axis. Int Immunopharmacol. 2021;96:107603.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manz MG, Boettcher S. Emergency granulopoiesis. Nat Rev Immunol. 2014;14(5):302–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poubelle PE, Chakravarti A, Fernandes MJ, Doiron K, Marceau AA. Differential expression of RANK, RANK-L, and osteoprotegerin by synovial fluid neutrophils from patients with rheumatoid arthritis and by healthy human blood neutrophils. Arthritis Res Ther. 2007;9(2):R25.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakravarti A, Raquil MA, Tessier P, Poubelle PE. Surface RANKL of toll-like receptor 4-stimulated human neutrophils activates osteoclastic bone resorption. Blood. 2009;114(8):1633–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu X, Sun Y, Xu W, Lin T, Zeng H. Expression of RANKL by peripheral neutrophils and its association with bone mineral density in COPD. Respirology. 2017;22(1):126–32.

    Article 
    PubMed 

    Google Scholar
     

  • Sule G, Abuaita BH, Steffes PA, Fernandes AT, Estes SK, Dobry C, et al. Endoplasmic reticulum stress sensor IRE1α propels neutrophil hyperactivity in lupus. J Clin Invest. 2021;131(7):e137866.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Filipowska J, Tomaszewski KA, Niedźwiedzki Ł, Walocha JA, Niedźwiedzki T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis. 2017;20(3):291–302.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shangguan WJ, Zhang YH, Li ZC, Tang LM, Shao J, Li H. Naringin inhibits vascular endothelial cell apoptosis via endoplasmic reticulum stress and mitochondrialmediated pathways and promotes intraosseous angiogenesis in ovariectomized rats. Int J Mol Med. 2017;40(6):1741–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kavanagh KL, Guo K, Dunford JE, Wu X, Knapp S, Ebetino FH, et al. The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs. Proc Natl Acad Sci U S A. 2006;103(20):7829–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kusumbe AP, Adams RH. Osteoclast progenitors promote bone vascularization and osteogenesis. Nat Med. 2014;20(11):1238–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding N, Liu C, Yao L, Bai Y, Cheng P, Li Z, et al. Alendronate induces osteoclast precursor apoptosis via peroxisomal dysfunction mediated ER stress. J Cell Physiol. 2018;233(9):7415–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamali A, Ziadlou R, Lang G, Pfannkuche J, Cui S, Li Z, et al. Small molecule-based treatment approaches for intervertebral disc degeneration: current options and future directions. Theranostics. 2021;11(1):27–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang D, He X, Zheng C, Wang C, Peng P, Gao C, et al. Endoplasmic reticulum stress: an emerging therapeutic target for intervertebral disc degeneration. Front Cell Dev Biol. 2021;9:819139.

    Article 
    PubMed 

    Google Scholar
     

  • Hartvigsen J, Hancock MJ, Kongsted A, Louw Q, Ferreira ML, Genevay S, et al. What low back pain is and why we need to pay attention. Lancet. 2018;391(10137):2356–67.

    Article 
    PubMed 

    Google Scholar
     

  • Ehrlich GE. Low back pain. Bull World Health Organ. 2003;81(9):671–6.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vergroesen PP, Kingma I, Emanuel KS, Hoogendoorn RJ, Welting TJ, van Royen BJ, et al. Mechanics and biology in intervertebral disc degeneration: a vicious circle. Osteoarthr Cartil. 2015;23(7):1057–70.

    Article 

    Google Scholar
     

  • Bian Q, Ma L, Jain A, Crane JL, Kebaish K, Wan M, et al. Mechanosignaling activation of TGFβ maintains intervertebral disc homeostasis. Bone Res. 2017;5:17008.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao CQ, Zhang YH, Jiang SD, Jiang LS, Dai LY. Both endoplasmic reticulum and mitochondria are involved in disc cell apoptosis and intervertebral disc degeneration in rats. Age (Dordr). 2010;32(2):161–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao Z, Luo R, Li G, Song Y, Zhan S, Zhao K, et al. Exosomes from mesenchymal stem cells modulate endoplasmic reticulum stress to protect against nucleus pulposus cell death and ameliorate intervertebral disc degeneration in vivo. Theranostics. 2019;9(14):4084–100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang H, Dong Y, Peng R, Liu H, Guo Q, Song K, et al. Inhibition of IRE1 suppresses the catabolic effect of IL-1β on nucleus pulposus cell and prevents intervertebral disc degeneration in vivo. Biochem Pharmacol. 2022;197:114932.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ling Z, Liu Y, Wang Z, Zhang Z, Chen B, Yang J, et al. Single-cell RNA-seq analysis reveals macrophage involved in the progression of human intervertebral disc degeneration. Front Cell Dev Biol. 2021;9:833420.

    Article 
    PubMed 

    Google Scholar
     

  • Rodrigues-Pinto R, Richardson SM, Hoyland JA. An understanding of intervertebral disc development, maturation and cell phenotype provides clues to direct cell-based tissue regeneration therapies for disc degeneration. Eur Spine J. 2014;23(9):1803–14.

    Article 
    PubMed 

    Google Scholar
     

  • Zhong H, Zhou Z, Guo L, Liu F, Zheng B, Bi S, et al. The miR-623/CXCL12 axis inhibits LPS-induced nucleus pulposus cell apoptosis and senescence. Mech Ageing Dev. 2021;194:111417.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gawri R, Rosenzweig DH, Krock E, Ouellet JA, Stone LS, Quinn TM, et al. High mechanical strain of primary intervertebral disc cells promotes secretion of inflammatory factors associated with disc degeneration and pain. Arthritis Res Ther. 2014;16(1):R21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang C, Gonzales S, Levene H, Gu W, Huang CY. Energy metabolism of intervertebral disc under mechanical loading. J Orthop Res. 2013;31(11):1733–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang H, Su W, Wu X, Chen W, Cong W, Yang S, et al. Exosomes derived from human urine-derived stem cells inhibit intervertebral disc degeneration by ameliorating endoplasmic reticulum stress. Oxid Med Cell Longev. 2020;2020:6697577.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao J, Zhang Y, Wang T, Li B. Endoplasmic reticulum stress is involved in baicalin protection on chondrocytes from patients with osteoarthritis. Dose Response. 2018;16(4):1559325818810636.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular Explosion. Nat Rev Mol Cell Biol. 2010;11(10):700–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin H, Peng Y, Li J, Wang Z, Chen S, Qing X, et al. Reactive oxygen species regulate endoplasmic reticulum stress and ER-mitochondrial Ca2+ crosstalk to promote programmed necrosis of rat nucleus pulposus cells under compression. Oxid Med Cell Longev. 2021;2021:8810698.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo R, Liao Z, Song Y, Yin H, Zhan S, Li G, et al. Berberine ameliorates oxidative stress-induced apoptosis by modulating ER stress and autophagy in human nucleus pulposus cells. Life Sci. 2019;228:85–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen L, Liu L, Xie ZY, Wang F, Zhu L, Zhang C, et al. Protein kinase RNA-like ER kinase/eukaryotic translation initiation factor 2α pathway attenuates tumor necrosis factor alpha-induced apoptosis in nucleus pulposus cells by activating autophagy. J Cell Physiol. 2019;234(7):11631–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang H, Cai F, Zhang Y, Xue M, Liu L, Yang A, et al. Early-stage autophagy protects nucleus pulposus cells from glucose deprivation-induced degeneration via the p-eIF2α/ATF4 pathway. Biomed Pharmacother. 2017;89:529–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chino H, Mizushima N. ER-phagy: quality control and turnover of endoplasmic reticulum. Trends Cell Biol. 2020;30(5):384–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo R, Liang H, Zhang W, Li G, Zhao K, Hua W, et al. RETREG1-mediated ER-phagy activation induced by glucose deprivation alleviates nucleus pulposus cell damage via ER stress pathway. Acta Biochim Biophys Sin (Shanghai). 2022;54(4):524–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krupkova O, Sadowska A, Kameda T, Hitzl W, Hausmann ON, Klasen J, et al. p38 MAPK facilitates crosstalk between endoplasmic reticulum stress and IL-6 release in the intervertebral disc. Front Immunol. 2018;9:1706.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wen T, Xue P, Ying J, Cheng S, Liu Y, Ruan D. The role of unfolded protein response in human intervertebral disc degeneration: Perk and IRE1-α as two potential therapeutic targets. Oxid Med Cell Longev. 2021;2021:6492879.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Wang X, Liu H, Li Z, Chen F, Wang H, et al. TNF-α enhances apoptosis by promoting chop expression in nucleus pulposus cells: role of the MAPK and NF-κB pathways. J Orthop Res. 2019;37(3):697–705.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen L, Liu L, Xie ZY, Wang F, Sinkemani A, Zhang C, et al. Endoplasmic reticulum stress facilitates the survival and proliferation of nucleus pulposus cells in TNF-α stimulus by activating unfolded protein response. DNA Cell Biol. 2018;37(4):347–58.

    Article 
    PubMed 

    Google Scholar
     

  • Qadir A, Liang S, Wu Z, Chen Z, Hu L, Qian A. Senile osteoporosis: the involvement of differentiation and senescence of bone marrow stromal cells. Int J Mol Sci. 2020;21(1):349.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan J, Li S, Zhang Y, Deng Z, Wu J, Huang Z, et al. Cholesterol induces pyroptosis and matrix degradation via mSREBP1-driven endoplasmic reticulum stress in intervertebral disc degeneration. Front Cell Dev Biol. 2021;9:803132.

    Article 
    PubMed 

    Google Scholar
     

  • Hu MH, Yang KC, Chen YJ, Sun YH, Yang SH. Lovastatin prevents discography-associated degeneration and maintains the functional morphology of intervertebral discs. Spine J. 2014;14(10):2459–66.

    Article 
    PubMed 

    Google Scholar
     

  • Tu J, Li W, Zhang Y, Wu X, Song Y, Kang L, et al. Simvastatin inhibits IL-1β-induced apoptosis and extracellular matrix degradation by suppressing the NF-κB and MAPK pathways in nucleus pulposus cells. Inflammation. 2017;40(3):725–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and Diseases. Signal Transduct Target Ther. 2021;6(1):128.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvarez-Garcia O, Matsuzaki T, Olmer M, Miyata K, Mokuda S, Sakai D, et al. FOXO are required for intervertebral disk homeostasis during aging and their deficiency promotes disk degeneration. Aging Cell. 2018;17(5):e12800.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song Y, Wang Y, Zhang Y, Geng W, Liu W, Gao Y, et al. Advanced glycation end products regulate anabolic and catabolic activities via NLRP3-inflammasome activation in human nucleus pulposus cells. J Cell Mol Med. 2017;21(7):1373–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song Y, Li S, Geng W, Luo R, Liu W, Tu J, et al. Sirtuin 3-dependent mitochondrial redox homeostasis protects against AGEs-induced intervertebral disc degeneration. Redox Biol. 2018;19:339–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo R, Song Y, Liao Z, Yin H, Zhan S, Wang K, et al. Impaired calcium homeostasis via advanced glycation end products promotes apoptosis through endoplasmic reticulum stress in human nucleus pulposus cells and exacerbates intervertebral disc degeneration in rats. FEBS J. 2019;286(21):4356–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Urban JP, Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine (Phila Pa 1976). 2004;29(23):2700–9.

    Article 
    PubMed 

    Google Scholar
     

  • Wang F, Cai F, Shi R, Wei JN, Wu XT. Hypoxia regulates sumoylation pathways in intervertebral disc cells: implications for hypoxic adaptations. Osteoarthr Cartil. 2016;24(6):1113–24.

    Article 
    CAS 

    Google Scholar
     

  • Zhu L, Xie ZY, Jiang ZL, Wang XH, Shi H, Chen L, et al. Unfolded protein response alleviates acid-induced premature senescence by promoting autophagy in nucleus pulposus cells. Cell Biol Int. 2022;46(4):568–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie ZY, Chen L, Zhang C, Liu L, Wang F, Cai F, et al. Acid-sensing ion channel 1a regulates fate of rat nucleus pulposus cells in acid stimulus through endoplasmic reticulum stress. Biores Open Access. 2018;7(1):2–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iu J, Santerre JP, Kandel RA. Towards engineering distinct multi-lamellated outer and inner annulus fibrosus tissues. J Orthop Res. 2018;36(5):1346–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chu G, Shi C, Lin J, Wang S, Wang H, Liu T, et al. Biomechanics in annulus fibrosus degeneration and regeneration. Adv Exp Med Biol. 2018;1078:409–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang YH, Zhao CQ, Jiang LS, Dai LY. Cyclic stretch-induced apoptosis in rat annulus fibrosus cells is mediated in part by endoplasmic reticulum stress through nitric oxide production. Eur Spine J. 2011;20(8):1233–43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Lin Z, Deng K, Shao B, Yang D. Tension induces intervertebral disc degeneration via endoplasmic reticulum stress-mediated autophagy. Biosci Rep. 2019;39(8):BSR20190578.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pang L, Yang K, Zhang Z. High-glucose environment accelerates annulus fibrosus cell apoptosis by regulating endoplasmic reticulum stress. Biosci Rep. 2020;40(7):BSR20200262.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Q, Gao X, Levene HB, Brown MD, Gu W. Influences of nutrition supply and pathways on the degenerative patterns in human intervertebral disc. Spine (Phila Pa 1976). 2016;41(7):568–76.

    Article 
    PubMed 

    Google Scholar
     

  • Han Y, Li X, Yan M, Yang M, Wang S, Pan J, et al. Oxidative damage induces apoptosis and promotes calcification in disc cartilage endplate cell through ROS/MAPK/NF-κB pathway: implications for disc degeneration. Biochem Biophys Res Commun. 2019;516(3):1026–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deldicque L. Endoplasmic reticulum stress in human skeletal muscle: any contribution to Sarcopenia? Front Physiol. 2013;4:236.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anker SD, Morley JE, von Haehling S. Welcome to the ICD-10 code for Sarcopenia. J Cachexia Sarcopenia Muscle. 2016;7(5):512–4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on Sarcopenia in older people. Age Ageing. 2010;39(4):412–23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31.

    Article 
    PubMed 

    Google Scholar
     

  • Antunes AC, Araújo DA, Veríssimo MT, Amaral TF. Sarcopenia and hospitalisation costs in older adults: a cross-sectional study. Nutr Diet. 2017;74(1):46–50.

    Article 
    PubMed 

    Google Scholar
     

  • Meng SJ, Yu LJ. Oxidative stress, molecular inflammation and sarcopenia. Int J Mol Sci. 2010;11(4):1509–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Narici MV, Maffulli N. Sarcopenia: characteristics, mechanisms and functional significance. Br Med Bull. 2010;95:139–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jheng JR, Chen YS, Ao UI, Chan DC, Huang JW, Hung KY, et al. The double-edged sword of endoplasmic reticulum stress in uremic sarcopenia through myogenesis perturbation. J Cachexia Sarcopenia Muscle. 2018;9(3):570–84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deldicque L, Hespel P, Francaux M. Endoplasmic reticulum stress in skeletal muscle: origin and metabolic consequences. Exerc Sport Sci Rev. 2012;40(1):43–9.

    Article 
    PubMed 

    Google Scholar
     

  • Barreiro E, Salazar-Degracia A, Sancho-Munoz A, Gea J. Endoplasmic reticulum stress and unfolded protein response profile in quadriceps of sarcopenic patients with Respiratory Diseases. J Cell Physiol. 2019;234(7):11315–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naidoo N. ER and aging-protein folding and the ER stress response. Ageing Res Rev. 2009;8(3):150–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogata T, Machida S, Oishi Y, Higuchi M, Muraoka I. Differential cell death regulation between adult-unloaded and aged rat soleus muscle. Mech Ageing Dev. 2009;130(5):328–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pierre N, Barbé C, Gilson H, Deldicque L, Raymackers JM, Francaux M. Activation of ER stress by hydrogen peroxide in C2C12 myotubes. Biochem Biophys Res Commun. 2014;450(1):459–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Potes Y, de Luxan-Delgado B, Rodriguez-Gonzalez S, Guimaraes MRM, Solano JJ, Fernandez-Fernandez M, et al. Overweight in elderly people induces impaired autophagy in skeletal muscle. Free Radic Biol Med. 2017;110:31–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294(5547):1704–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hwee DT, Baehr LM, Philp A, Baar K, Bodine SC. Maintenance of muscle mass and load-induced growth in muscle RING finger 1 null mice with age. Aging Cell. 2014;13(1):92–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic Diseases and potential as drug targets. Nat Rev Drug Discov. 2008;7(6):489–503.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee SM, Lee SH, Jung Y, Lee Y, Yoon JH, Choi JY, et al. FABP3-mediated membrane lipid saturation alters fluidity and induces ER stress in skeletal muscle with aging. Nat Commun. 2020;11(1):5661.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tezze C, Romanello V, Desbats MA, Fadini GP, Albiero M, Favaro G, et al. Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence. Cell Metab. 2017;25(6):1374–89e6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rennie MJ. Anabolic resistance: the effects of aging, sexual dimorphism, and immobilization on human muscle protein turnover. Appl Physiol Nutr Metab. 2009;34(3):377–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rennie MJ, Selby A, Atherton P, Smith K, Kumar V, Glover EL, et al. Facts, noise and wishful thinking: muscle protein turnover in aging and human disuse atrophy. Scand J Med Sci Sports. 2010;20(1):5–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Breen L, Phillips SM. Interactions between exercise and nutrition to prevent muscle waste during ageing. Br J Clin Pharmacol. 2013;75(3):708–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deldicque L, Bertrand L, Patton A, Francaux M, Baar K. ER stress induces anabolic resistance in muscle cells through PKB-induced blockade of mTORC1. PLoS ONE. 2011;6(6):e20993.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clark BC, Manini TM. Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci. 2008;63(8):829–34.

    Article 
    PubMed 

    Google Scholar
     

  • Russ DW, Grandy JS, Toma K, Ward CW. Ageing, but not yet senescent, rats exhibit reduced muscle quality and sarcoplasmic reticulum function. Acta Physiol (Oxf). 2011;201(3):391–403.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russ DW, Krause J, Wills A, Arreguin R. SR stress in mixed hindlimb muscles of aging male rats. Biogerontology. 2012;13(5):547–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Atkins JL, Whincup PH, Morris RW, Lennon LT, Papacosta O, Wannamethee SG. Sarcopenic obesity and risk of Cardiovascular Disease and mortality: a population-based cohort study of older men. J Am Geriatr Soc. 2014;62(2):253–60.

    Article 
    PubMed 

    Google Scholar
     

  • Bryner RW, Woodworth-Hobbs ME, Williamson DL, Alway SE. Docosahexaenoic acid protects muscle cells from palmitate-induced atrophy. ISRN Obes. 2012;2012:647348.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodworth-Hobbs ME, Perry BD, Rahnert JA, Hudson MB, Zheng B, Russ Price S. Docosahexaenoic acid counteracts palmitate-induced endoplasmic reticulum stress in C2C12 myotubes: impact on muscle atrophy. Physiol Rep. 2017;5(23):e13530.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deldicque L, Cani PD, Philp A, Raymackers JM, Meakin PJ, Ashford ML, et al. The unfolded protein response is activated in skeletal muscle by high-fat feeding: potential role in the downregulation of protein synthesis. Am J Physiol Endocrinol Metab. 2010;299(5):E695–705.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang YH, Yue ZS, Zheng WJ, Shen HF, Zeng LR, Hu ZQ, et al. 4-phenylbutyric acid presents therapeutic effect on osteoarthritis via inhibiting cell apoptosis and inflammatory response induced by endoplasmic reticulum stress. Biotechnol Appl Biochem. 2018;65(4):540–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu C, Cao Y, Yang X, Shan P, Liu H. Tauroursodeoxycholic acid suppresses endoplasmic reticulum stress in the chondrocytes of patients with osteoarthritis. Int J Mol Med. 2015;36(4):1081–7.

    Article 
    PubMed 

    Google Scholar
     

  • Wang W, Qing X, Wang B, Ma K, Wei Y, Shao Z. Tauroursodeoxycholic acid protects nucleus pulposus cells from compression-induced apoptosis and necroptosis via inhibiting endoplasmic reticulum stress. Evid Based Complement Alternat Med. 2018;2018:6719460.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamamura K, Lin CC, Yokota H. Salubrinal reduces expression and activity of MMP13 in chondrocytes. Osteoarthr Cartil. 2013;21(5):764–72.

    Article 
    CAS 

    Google Scholar
     

  • Hamamura K, Tanjung N, Yokota H. Suppression of osteoclastogenesis through phosphorylation of eukaryotic translation initiation factor 2 alpha. J Bone Miner Metab. 2013;31(6):618–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mullan LA, Mularczyk EJ, Kung LH, Forouhan M, Wragg JM, Goodacre R, et al. Increased intracellular proteolysis reduces Disease severity in an ER stress-associated dwarfism. J Clin Invest. 2017;127(10):3861–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen SZ, Ling Y, Yu LX, Song YT, Chen XF, Cao QQ, et al. 4-phenylbutyric acid promotes hepatocellular carcinoma via initiating cancer stem cells through activation of PPAR-α. Clin Transl Med. 2021;11(4):e379.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gohlke H, Schmitz B, Sommerfeld A, Reinehr R, Häussinger D. α5 β1-integrins are sensors for tauroursodeoxycholic acid in hepatocytes. Hepatology. 2013;57(3):1117–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamamura K, Nishimura A, Chen A, Takigawa S, Sudo A, Yokota H. Salubrinal acts as a Dusp2 inhibitor and suppresses inflammation in anti-collagen antibody-induced arthritis. Cell Signal. 2015;27(4):828–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Description of Image

    Source link