Scientific Papers

Molecular characterization and phylogenetic analysis of the first Corynebacterium rouxii strains isolated in Brazil: a recent member of Corynebacterium diphtheriae complex | BMC Genomic Data

Description of Image

  • Parte AC, Carbasse JS, Meier-Kolthoff JP, Reimer LC, Göker M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol. 2020;70:5607–12. https://doi.org/10.1099/IJSEM.0.004332.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prygiel M, Polak M, Mosiej E, Wdowiak K, Formińska K, Zasada AA. New Corynebacterium species with the potential to produce Diphtheria Toxin. Pathogens 2022;11. https://doi.org/10.3390/PATHOGENS11111264.

  • Sangal V, Hoskisson PA. Evolution, epidemiology and diversity of Corynebacterium diphtheriae: new perspectives on an old foe. Infect Genet Evol. 2016;43:364–70. https://doi.org/10.1016/J.MEEGID.2016.06.024.

    Article 
    PubMed 

    Google Scholar
     

  • Sharma NC, Efstratiou A, Mokrousov I, Mutreja A, Das B, Ramamurthy T. Diphtheria. Nat Rev Dis Primers. 2019;5:5. https://doi.org/10.1038/S41572-019-0131-Y.

    Article 

    Google Scholar
     

  • Schlez K, Eisenberg T, Rau J, Dubielzig S, Kornmayer M, Wolf G, et al. Corynebacterium rouxii, a recently described member of the C. Diphtheriae group isolated from three dogs with ulcerative skin lesions. Antonie Van Leeuwenhoek. 2021;114:1361–71. https://doi.org/10.1007/S10482-021-01605-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawase J, Sakai T, Iwaki M, Umeda K, Fukuma A, Fujisawa N, et al. Rapid detection and discrimination of potentially toxigenic Corynebacterium ulcerans and Corynebacterium pseudotuberculosis by multiplex real-time PCR and amplicon melting curve analysis. J Microbiol Methods. 2022;195: 106454. https://doi.org/10.1016/J.MIMET.2022.106454.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simpson-Louredo L, Ramos JN, Peixoto RS, Santos LS, Antunes CA, Ladeira EM, et al. Corynebacterium ulcerans isolates from humans and dogs: fibrinogen, fibronectin and collagen-binding, antimicrobial and PFGE profiles. Antonie Van Leeuwenhoek 2013. 2013;105:2. https://doi.org/10.1007/S10482-013-0080-5.

    Article 

    Google Scholar
     

  • Guimarães AS, Carmo FB, Heinemann MB, Portela RWD, Meyer R, Lage AP, et al. High sero-prevalence of caseous lymphadenitis identified in slaughterhouse samples as a consequence of deficiencies in sheep farm management in the state of Minas Gerais. Brazil BMC Vet Res. 2011;7:68. https://doi.org/10.1186/1746-6148-7-68.

    Article 
    PubMed 

    Google Scholar
     

  • Badell E, Hennart M, Rodrigues C, Passet V, Dazas M, Panunzi L, et al. Corynebacterium rouxii sp. nov., a novel member of the diphtheriae species complex. Res Microbiol. 2020;171:122–7. https://doi.org/10.1016/J.RESMIC.2020.02.003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dangel A, Berger A, Konrad R, Sing A. NGS-based phylogeny of diphtheria-related pathogenicity factors in different Corynebacterium spp. implies species-specific virulence transmission. BMC Microbiol. 2019;19:19. https://doi.org/10.1186/S12866-019-1402-1.

    Article 

    Google Scholar
     

  • Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64:346–51. https://doi.org/10.1099/IJS.0.059774-0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee I, Kim YO, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol. 2016;66:1100–3. https://doi.org/10.1099/IJSEM.0.000760/CITE/REFWORKS.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018;46:W246-251. https://doi.org/10.1093/NAR/GKY425.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crooks G, Hon G, Chandonia J, Brenner S. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–90. https://doi.org/10.1101/GR.849004.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hennart M, Panunzi LG, Rodrigues C, Gaday Q, Baines SL, Barros-Pinkelnig M, et al. Population genomics and antimicrobial resistance in Corynebacterium diphtheriae. Genome Med. 2020;12:12. https://doi.org/10.1186/S13073-020-00805-7.

    Article 

    Google Scholar
     

  • Ramos J, Valadão T, Baio P, Mattos-Guaraldi A, Vieira V. Novel mutations in the QRDR region gyrA gene in multidrug-resistance Corynebacterium spp. isolates from intravenous sites. Antonie Van Leeuwenhoek Intern J Gen Mol Microbiol. 2020;113:589–92. https://doi.org/10.1007/s10482-019-01353-w.

    Article 
    CAS 

    Google Scholar
     

  • Hoefer A, Pampaka D, Herrera-León S, Peiró S, Varona S, López-Perea N, et al. Molecular and epidemiological characterization of toxigenic and nontoxigenic corynebacterium diphtheriae, corynebacterium belfantii, corynebacterium rouxii, and corynebacterium ulcerans isolates identified in Spain from 2014 to 2019. J Clin Microbiol. 2021;3:e02410-20. https://doi.org/10.1128/JCM.02410-20.

    Article 

    Google Scholar
     

  • Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, Colles FM, et al. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiol (Reading). 2012;158:1005–15. https://doi.org/10.1099/MIC.0.055459-0.

    Article 
    CAS 

    Google Scholar
     

  • Dangel A, Berger A, Rau J, Eisenberg T, Kämpfer P, Margos G, et al. Corynebacterium silvaticum sp. nov., a unique group of NTTB corynebacteria in wild boar and roe deer. Int J Syst Evol Microbiol. 2020;70:3614–24. https://doi.org/10.1099/IJSEM.0.004195.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2018;68:461–6. https://doi.org/10.1099/IJSEM.0.002516/CITE/REFWORKS.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bush K, Bradford PA. β-Lactams and β-Lactamase inhibitors: an overview. Cold Spring Harb Perspect Med. 2016;6(8):a025247. https://doi.org/10.1101/CSHPERSPECT.A025247.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forde BM, Henderson A, Playford EG, Looke D, Henderson BC, Watson C, et al. Fatal respiratory Diphtheria caused by ß-Lactam–resistant Corynebacterium diphtheriae. Clin Infect Dis. 2021;73:e4531-4538. https://doi.org/10.1093/CID/CIAA1147.

    Article 
    PubMed 

    Google Scholar
     

  • Leyton B, Ramos JN, Baio PVP, Veras JFC, Souza C, Burkovski A, et al. Treat me well or will resist: Uptake of Mobile genetic elements determine the Resistome of Corynebacterium striatum. Int J Mol Sci. 2021;22: 7499. https://doi.org/10.3390/ijms22147499.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zakikhany K, Neal S, Efstratiou A. Emergence and molecular characterisation of non-toxigenic tox gene-bearing Corynebacterium diphtheriae biovar mitis in the United Kingdom, 2003–2012. Euro Surveill. 2014;19: 19. https://doi.org/10.2807/1560-7917.ES2014.19.22.20819.

    Article 

    Google Scholar
     

  • Sachdeva P, Misra R, Tyagi AK, Singh Y. The sigma factors of Mycobacterium Tuberculosis: regulation of the regulators. FEBS J. 2010;277:605–26. https://doi.org/10.1111/J.1742-4658.2009.07479.X.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Antunes CA, Dos Santos LS, Hacker E, Köhler S, Bösl K, Ott L, et al. Characterization of DIP0733, a multi-functional virulence factor of Corynebacterium diphtheriae. Microbiol (Reading). 2015;161:639–47. https://doi.org/10.1099/MIC.0.000020.

    Article 
    CAS 

    Google Scholar
     

  • Makarova K, Wolf Y, Iranzo J, Shmakov S, Alkhnbashi O, Brouns S, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18:67–83. https://doi.org/10.1038/S41579-019-0299-X.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Makarova K, Koonin E. Annotation and classification of CRISPR-Cas systems. Methods Mol Biol. 2015;1311:47–75. https://doi.org/10.1007/978-1-4939-2687-9_4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carreira C, Mestre O, Nunes RF, Moura I, Pauleta SR. Genomic organization, gene expression and activity profile of Marinobacter hydrocarbonoclasticus denitrification enzymes. PeerJ. 2018;6. https://doi.org/10.7717/PEERJ.5603.

  • McInerney MJ, Bryant MP, Hespell RB, Costerton JW. Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol. 1981;41:1029. https://doi.org/10.1128/AEM.41.4.1029-1039.1981.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes De Novo Assembler. Curr Protoc Bioinformatics. 2020;70: e102. https://doi.org/10.1002/CPBI.102.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andrews S. FastQC – A quality control tool for high throughput sequence data. 2010. https://www.Bioinformatics.Babraham.Ac.Uk/Projects/Fastqc/.

  • Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022;50:D801-807. https://doi.org/10.1093/NAR/GKAB902.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. 2021;38:3022–7. https://doi.org/10.1093/MOLBEV/MSAB120.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020. https://doi.org/10.1093/jac/dkaa345.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of Progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80. https://doi.org/10.1093/NAR/22.22.4673.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu B, Zheng D, Zhou S, Chen L, Yang J. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res. 2022;50:D912-917. https://doi.org/10.1093/NAR/GKAB1107.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biswas A, Gagnon J, Brouns S, Fineran P, Brown C. CRISPRTarget: bioinformatic prediction and analysis of crRNA targets. RNA Biol. 2013;10:817–27. https://doi.org/10.4161/RNA.24046.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sangal V, Fineran P, Hoskisson P. Novel configurations of type I and II CRISPR–Cas systems in Corynebacterium diphtheriae. Microbiol (N Y). 2013;159:2118–26. https://doi.org/10.1099/MIC.0.070235-0.

    Article 
    CAS 

    Google Scholar
     

  • Hall TA. BioEdit. A user-friendly Biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.

    CAS 

    Google Scholar
     

  • Description of Image

    Source link