Scientific Papers

Heat-induced female biased sex ratio during development is not mitigated after prolonged thermal selection | BMC Ecology and Evolution

Description of Image

  • Petry WK, Soule JD, Iler AM, Chicas-Mosier A, Inouye DW, Miller TEX, Mooney KA. Sex-specific responses to climate change in plants alter population sex ratio and performance. Science. 2016;353:69–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edmands S. Sex ratios in a warming world: thermal effects on sex-biased survival, sex determination, and sex reversal. J Hered. 2021;112:155–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iossa G. Sex-specific differences in thermal fertility limits. Trends Ecol Evol. 2019;34:490–2.

    Article 
    PubMed 

    Google Scholar
     

  • Kellermann V, Overgaard J, Sgrò CM, Hoffmann AA. Phylogenetic and environmental patterns of sex differentiation in physiological traits across Drosophila species. J Evol Biol. 2022;35:1548–57.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janowitz SA, Fischer K. Opposing effects of heat stress on male versus female reproductive success in Bicyclus anynana butterflies. J Therm Biol. 2011;36:283–7.

    Article 

    Google Scholar
     

  • Angilletta MJ. Thermal adaptation: a theoretical and empirical synthesis. New York: Oxford University Press; 2009.

    Book 

    Google Scholar
     

  • Klockmann M, Kleinschmidt F, Fischer K. Carried over: Heat stress in the egg stage reduces subsequent performance in a butterfly. PLoS One. 2017;12:e0180968.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandori LLM, Sorte CJB. The weakest link: sensitivity to climate extremes across life stages of marine invertebrates. Oikos. 2019;128:621–9.

    Article 

    Google Scholar
     

  • Kingsolver JG, Buckley LB. Ontogenetic variation in thermal sensitivity shapes insect ecological responses to climate change. Curr Opin Insect Sci. 2020;41:17–24.

    Article 
    PubMed 

    Google Scholar
     

  • Simões P, Santos MA, Carromeu-Santos A, Quina AS, Santos M, Matos M. Beneficial developmental acclimation in reproductive performance under cold but not heat stress. J Therm Biol. 2020;90:102580.

    Article 
    PubMed 

    Google Scholar
     

  • Zwoinska MK, Rodrigues LR, Slate J, Snook RR. Phenotypic responses to and genetic architecture of sterility following exposure to sub-lethal temperature during development. Front Genet. 2020;11:573.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sales K, Vasudeva R, Gage MJG. Fertility and mortality impacts of thermal stress from experimental heatwaves on different life stages and their recovery in a model insect. R Soc Open Sci. 2021;8:201717.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santos MA, Carromeu-Santos A, Quina AS, Santos M, Matos M, Simões P. High developmental temperature leads to low reproduction despite adult temperature. J Therm Biol. 2021;95:102794.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krebs RA, Loeschcke V. Resistance to thermal stress in preadult Drosophila buzzatii: variation among populations and changes in relative resistance across life stages. Biol J Lin Soc. 1995;56:517–31.

    Article 

    Google Scholar
     

  • Zhang W, Chang XQ, Hoffmann A, Zhang S, Ma CS. Impact of hot events at different developmental stages of a moth: the closer to adult stage, the less reproductive output. Sci Rep. 2015;5:10436.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moghadam NN, Ketola T, Pertoldi C, Bahrndorff S, Kristensen TN. Heat hardening capacity in Drosophila melanogaster is life stage-specific and juveniles show the highest plasticity. Biol Lett. 2019;15:20180628.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Falconer DS, Mackay TFC. Introduction to quantitative genetics. 4th ed. Harlow: Longman; 1996.


    Google Scholar
     

  • Wood JL, Yates MC, Fraser DJ. Are heritability and selection related to population size in nature? Meta-analysis and conservation implications. Evol Appl. 2016;9(5):640–57.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wedekind C. Managing population sex ratios in conservation practice: how and why? In: Topics in Conservation Biology. Rijeka: InTech; 2012. p. 81–96.


    Google Scholar
     

  • Rankin DJ, Kokko H. Do males matter? The role of males in population dynamics. Oikos. 2007;116(2):335–48.

    Article 

    Google Scholar
     

  • Lee AM, Saether BE, Engen S. Demographic stochasticity, allee effects, and extinction: the influence of mating system and sex ratio. Am Nat. 2011;177(3):301–13.

    Article 
    PubMed 

    Google Scholar
     

  • Kristensen TN, Barker JSF, Pedersen KS, Loeschcke V. Extreme temperatures increase the deleterious consequences of inbreeding under laboratory and semi-natural conditions. Proc R Soc B Biol Sci. 2008;275:2055–61.

    Article 

    Google Scholar
     

  • Waqas MS, Lin L, Shoaib AAZ, Cheng X, Zhang Q, Elabasy ASS, Shi Z. Effect of Constant and Fluctuating Temperature on the Development, Reproduction, Survival, and Sex Ratio of Phenacoccus solenopsis (Hemiptera: Pseudococcidae). Environ Entomol. 2020;49(3):553–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lombaert E, Malausa T, Devred R, Estoup A. Phenotypic variation in invasive and biocontrol populations of the harlequin ladybird Harmonia axyridis. BioControl. 2008;53:89–102.

    Article 

    Google Scholar
     

  • Rodrigues LR, McDermott HA, Villanueva I, Djukarić J, Ruf LC, Amcoff M, Snook RR. Fluctuating heat stress during development exposes reproductive costs and putative benefits. J Anim Ecol. 2022;91(2):391–403.

    Article 
    PubMed 

    Google Scholar
     

  • Austin CJ, Moehring AJ. Local thermal adaptation detected during multiple life stages across populations of Drosophila melanogaster. J Evol Biol. 2019;32:1342–51.

    Article 
    PubMed 

    Google Scholar
     

  • Magalhães S, Matos M. Strengths and weaknesses of experimental evolution. Trends Ecol Evol. 2012;27:649–50.

    Article 
    PubMed 

    Google Scholar
     

  • Matos M, Simões P, Santos MA, Seabra SG, Faria GS, Vala F, Santos J, Fragata I. History, chance and selection during phenotypic and genomic experimental evolution: replaying the tape of life at different levels. Front Genet. 2015;6:71.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schou MF, Kristensen TN, Kellermann V, Schlötterer C, Loeschcke V. A Drosophila laboratory evolution experiment points to low evolutionary potential under increased temperatures likely to be experienced in the future. J Evol Biol. 2014;27(9):1859–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kinzner MC, Gamisch A, Hoffmann AA, Seifert B, Haider M, Arthofer W, Schlick-Steiner BC, Steiner FM. Major range loss predicted from lack of heat adaptability in an alpine Drosophila species. Sci Total Environ. 2019;695:133753.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Heerwaarden B, Sgrò CM. Male fertility thermal limits predict vulnerability to climate warming. Nat Commun. 2021;12:2214.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fisher DN, Rowan JD, Price TAR. True polyandry and pseudopolyandry: why does a monandrous fly remate? BMC Evol Biol. 2013;13:157.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rezende EEL, Balanyà J, Rodríguez-Trelles F, Rego C, Fragata I, Matos M, Serra L, Santos M. Climate change and chromosomal inversions in Drosophila subobscura. Clim Res. 2010;43:103–14.

    Article 

    Google Scholar
     

  • Fragata I, Lopes-Cunha M, Bárbaro M, Kellen B, Lima M, Santos MA, Faria GS, Santos M, Matos M, Simões P. How much can history constrain adaptive evolution? A real-time evolutionary approach of inversion polymorphisms in Drosophila subobscura. J Evol Biol. 2014;27(12):2727–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santos J, Pascual M, Fragata I, Simões P, Santos MA, Lima M, Marques A, Lopes-Cunha M, Kellen B, Balanyà J, Rose MR, Matos M. Tracking changes in chromosomal arrangements and their genetic content during adaptation. J Evol Biol. 2016;29(6):1151–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fragata I, Lopes-Cunha M, Bárbaro M, Kellen B, Lima M, Faria GS, Seabra SG, Santos M, Simões P, Matos M. Keeping your options open: maintenance of thermal plasticity during adaptation to a stable environment. Evolution. 2016;70(1):195–206.

    Article 
    PubMed 

    Google Scholar
     

  • Porcelli D, Gaston KJ, Butlin RK, Snook RR. Local adaptation of reproductive performance during thermal stress. J Evol Biol. 2017;30(2):422–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santos MA, Carromeu-Santos A, Quina AS, Santos M, Matos M, Simões P. No evidence for short-term evolutionary response to a warming environment in Drosophila. Evolution. 2021;75(11):2816–29.

    Article 
    PubMed 

    Google Scholar
     

  • Schou MF, Mouridsen MB, Sørensen JG, Loeschcke V. Linear reaction norms of thermal limits in Drosophila: predictable plasticity in cold but not in heat tolerance. Funct Ecol. 2017;31:934–45.

    Article 

    Google Scholar
     

  • MacLean HJ, Sørensen JG, Kristensen TN, Loeschcke V, Beedholm K, Kellermann V, Overgaard J. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species. Philos Trans R Soc Lond B Biol Sci. 2019;374(1778):20180548.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castañeda LE, Romero-Soriano V, Mesas A, Roff DA, Santos M. Evolutionary potential of thermal preference and heat tolerance in Drosophila subobscura. J Evol Biol. 2019;32(8):818–24.

    Article 
    PubMed 

    Google Scholar
     

  • Mesas A, Jaramillo A, Castañeda LE. Experimental evolution on heat tolerance and thermal performance curves under contrasting thermal selection in Drosophila subobscura. J Evol Biol. 2021;34:767–78.

    Article 
    PubMed 

    Google Scholar
     

  • Santos MA, Antunes MA, Grandela A, Carromeu-Santos A, Quina AS, Santos M, Matos M, Simões P. Past history shapes evolution of reproductive success in a global warming scenario. J Therm Biol. 2023;112:103478.

    Article 
    PubMed 

    Google Scholar
     

  • Simões P, Santos J, Matos M. Experimental evolutionary domestication. In: Garland MR Jr, Rose T, editors. Experimental evolution: concepts, methods, and applications of selection experiments. Berkeley: University of California Press; 2009. p. 89–110.


    Google Scholar
     

  • Simões P, Fragata I, Seabra SG, Faria GS, Santos M, Rose MR, Santos M, Matos M. Predictable phenotypic, but not karyotypic, evolution of historically differentiated populations. Sci Rep. 2017;7:913.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • David JR, Araripe LO, Chakir M, Legout H, Lemos B, Pétavy G, Rohmer C, Joly D, Moreteau B. Male sterility at extreme temperatures: a significant but neglected phenomenon for understanding Drosophila climatic adaptations. J Evol Biol. 2005;18(4):838–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sokoloff A. Competition between sibling species of the Pseudoobscura subgroup of Drosophila. Ecol Monogr. 1955;25:387–409.

    Article 

    Google Scholar
     

  • Andersen FS. Effect of density on animal sex ratio. Oikos. 1961;12:1–16.

    Article 

    Google Scholar
     

  • Walsh BS, Mannion NLM, Price TAR, Parratt SR. Sex-specific sterility caused by extreme temperatures is likely to create cryptic changes to the operational sex ratio in Drosophila virilis. Curr Zool. 2020;67(3):341–3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walsh BS, Parratt SR, Atkinson D, Snook RR, Bretman A, Price TAR. Integrated approaches to studying male and female thermal fertility limits. Trends Ecol Evol. 2019;34(6):492–3.

    Article 
    PubMed 

    Google Scholar
     

  • Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Mächler M, Bolker BM. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R Journal. 2017;2:378–400.

    Article 

    Google Scholar
     

  • Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016.

    Book 

    Google Scholar
     

  • Description of Image

    Source link