Scientific Papers

A newly identified glycosyltransferase AsRCOM provides resistance to purple curl leaf disease in agave | BMC Genomics

Description of Image

  • Debnath M, Pandey M, Sharma R, Thakur GS, Lal P. Biotechnological intervention of Agave sisalana: a unique fiber yielding plant with medicinal property. J Med Plant Res. 2010;4:177–87.

    CAS 

    Google Scholar
     

  • Dalton R. Saving the agave. Nature. 2005;438:1070–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quiñones-Muñoz TA, Villanueva-Rodríguez SJ, Torruco-Uco JG. Nutraceutical properties of Medicago sativa L., Agave spp., Zea mays L. and Avena sativa L.: a review of metabolites and mechanisms. Metabolites. 2022; 12: 806.

  • Evdokimova OL, Alves CS, Whiffen RMK, Ortega Z, Tomás H, Rodrigues J. Cytocompatible cellulose nanofibers from invasive plant species Agave Americana L. and Ricinus communis L.: a renewable green source of highly crystalline nanocellulose. J Zhejiang Univ Sci B. 2021;22:450–61.

    Article 
    CAS 

    Google Scholar
     

  • Niechayev NA, Jones AM, Rosenthal DM, Davis SC. A model of environmental limitations on production of Agave Americana L. grown as a biofuel crop in semi-arid regions. J Exp Bot. 2019;70:6549–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vega-Ramos KL, Uvalle-Bueno JX, Gomez-Leyva JF. Molecular variability among isolates of Fusarium oxysporum associated with root rot disease of Agave tequilana. Biochem Genet. 2013;51:243–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luján R, Lledías F, Martínez LM, Barreto R, Cassab GI, Nieto-Sotelo J. Small heat-shock proteins and leaf cooling capacity account for the unusual heat tolerance of the central spike leaves in Agave tequilana var. Weber. Plant Cell Environ. 2009;32:1791–803.

    Article 
    PubMed 

    Google Scholar
     

  • Torres-García I, León-Jacinto A, Vega E, Moreno-Calles AI, Casas A. Integral projection models and sustainable forest management of Agave inaequidens in western Mexico. Front Plant Sci. 2020;11:1224.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Escobar-Flores JG, Sandoval S, Gámiz-Romero E. Unmanned aerial vehicle images in the machine learning for agave detection. Environ Sci Pollut Res Int. 2022;29:61662–73.

    Article 
    PubMed 

    Google Scholar
     

  • Peng-Peng L, Wei-Huai W, Jin-Long Z, Gui-Hua W, Chun-Ping H, Pei-Qun L, Xing H, Yan-Qiong L, Ke-Xian Y. Establishment and optimization of single-tube nested PCR detection technique for phytoplasma related to sisal purple leafroll disease. J Agri Biotec. 2021;29:1426–34.


    Google Scholar
     

  • Biao H, Rong Y, Li-hong X, Jia-liu Z. Etiology and pathogen identification of purple leaf roll virus and application of resistant seedlings. J Anhui Agri Sci. 2015;43:177–9.


    Google Scholar
     

  • Long ZY, Feng LJ, Sheng YQ, Biao HY, Feng L, Bo WJ, Ping LG, Jie Y. Research progress and prospects of three main diseases of sisal. Chin J TRO AGRI. 2020;40:72–82.


    Google Scholar
     

  • Bressan A, Purcell AH. Effect of benzothiadiazole on transmission of X-Disease phytoplasma by the vector colladonus montanus to Arabidopsis thaliana, a new experimental host plant. Plant Dis. 2005;89:1121–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen P, Zhang Y, Li Y, Yang Q, Li Q, Chen L, Chen Y, Ye X, Tan B, Zheng X, Cheng J, Wang W, Li J, Feng J. Jujube witches’ broom phytoplasma effector Zaofeng3, a homologous effector of SAP54, induces abnormal floral organ development and shoot proliferation. Phytopathology. 2023. https://doi.org/10.1094/PHYTO-10-21-0448-R

    Article 
    PubMed 

    Google Scholar
     

  • Chen P, Chen L, Ye X, Tan B, Zheng X, Cheng J, Wang W, Yang Q, Zhang Y, Li J, Feng J. Phytoplasma effector Zaofeng6 induces shoot proliferation by decreasing the expression of ZjTCP7 in Ziziphus jujuba. Hortic Res. 2022;9:uhab032.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Q, Li Q, Gu L, Chen P, Zhang Y, Li Y, Chen Y, Ye X, Tan B, Zheng X, et al. The jujube TCP transcription factor ZjTCP16 regulates plant growth and cell size by affecting the expression of genes involved in plant morphogenesis. Forests. 2022;13:723.

    Article 

    Google Scholar
     

  • Wang S, Wang S, Li M, Su Y, Sun Z, Ma H. Combined transcriptome and metabolome analysis of Nerium indicum L. elaborates the key pathways that are activated in response to witches’ broom disease. BMC Plant Biol. 2022;22:291.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu Y, Wang C, Kong D, Cao M, Zhang Q, Tahir M, Yang Y, Yang S, Bo W, Pang X. Identification of high tolerance to jujube witches’ broom in Indian jujube (Ziziphus mauritiana Lam.) And mining differentially expressed genes related to the tolerance through transcriptome analysis. Plants. 2023;12:2082.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu C, Dong X, Xu Y, Dong Q, Wang Y, Gai Y, Ji X. Transcriptome and DNA methylome reveal insights into phytoplasma infection responses in mulberry (Morus multicaulis Perr). Front Plant Sci. 2021;12:697702.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gai YP, Yuan SS, Liu ZY, Zhao HN, Liu Q, Qin RL, Fang LJ, Ji XL. Integrated phloem sap mRNA and protein expression analysis reveals phytoplasma-infection responses in mulberry. Mol Cell Proteomics. 2018;17:1702–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen JZ, Lu X, Hu YQ, Guo HH, Ma XL, Guo X, Jiang ZB, Wang F. Research progress on chemical constituents and pharmacological studies on root bark of Lycium barbarum. Zhongguo Zhong Yao Za Zhi. 2021;46:3066–75.

    PubMed 

    Google Scholar
     

  • Quiroz-Carreño S, Pastene-Navarrete E, Espinoza-Pinochet C, Muñoz-Núñez E, Devotto-Moreno L, Céspedes-Acuña CL, Alarcón-Enos J. Assessment of insecticidal activity of benzylisoquinoline alkaloids from chilean Rhamnaceae plants against fruit-fly Drosophila melanogaster and the Lepidopteran Crop Pest Cydia pomonella. Molecules. 2020;25:5094.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fatland BL, Ke J, Anderson MD, Mentzen WI, Cui LW, Allred CC, Johnston JL, Nikolau BJ, Wurtele ES. Molecular characterization of a heteromeric ATP-citrate lyase that generates cytosolic acetyl-coenzyme A in Arabidopsis. Plant Physiol. 2002;130:740–56.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Witz S, Panwar P, Schober M, Deppe J, Pasha FA, Lemieux MJ, Möhlmann T. Structure-function relationship of a plant NCS1 member–homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from Arabidopsis. PLoS ONE 9: e91343.

  • Kim MJ, Shin R, Schachtman DP. A nuclear factor regulates abscisic acid responses in Arabidopsis. Plant Physiol. 2009;151:1433–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Darnet S, Bard M, Rahier A. Functional identification of sterol-4alpha-methyl oxidase cDNAs from Arabidopsis thaliana by complementation of a yeast erg25 mutant lacking sterol-4alpha-methyl oxidation. FEBS Lett. 2001;508:39–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan M, Jiang Z, Bi G, Nomura K, Liu M, Wang Y, Cai B, Zhou JM, He SY, Xin XF. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature. 2021;592:105–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Posé D, Castanedo I, Borsani O, Nieto B, Rosado A, Taconnat L, Ferrer A, Dolan L, Valpuesta V, Botella MA. Identification of the Arabidopsis dry2/sqe1-5 mutant reveals a central role for sterols in drought tolerance and regulation of reactive oxygen species. Plant J. 2009;59:63–76.

    Article 
    PubMed 

    Google Scholar
     

  • Ebert B, Birdseye D, Liwanag AJM, Laursen T, Rennie EA, Guo X, Catena M, Rautengarten C, Stonebloom SH, Gluza P, Pidatala VR, Andersen MCF, Cheetamun R, Mortimer JC, Heazlewood JL, Bacic A, Clausen MH, Willats WGT, Scheller HV. The three members of the Arabidopsis glycosyltransferase family 92 are functional β-1,4-galactan synthases. Plant Cell Physiol. 2018;59:2624–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohnike L, Rekhter D, Huang W, Feussner K, Tian H, Herrfurth C, Zhang Y, Feussner I. The glycosyltransferase UGT76B1 modulates N-hydroxy-pipecolic acid homeostasis and plant immunity. Plant Cell. 2021;33:735–49.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang XX, Wang Y, Lin JS, Chen L, Li YJ, Liu Q, Wang GF, Xu F, Liu L, Hou BK. The novel pathogen-responsive glycosyltransferase UGT73C7 mediates the redirection of phenylpropanoid metabolism and promotes SNC1-dependent Arabidopsis immunity. Plant J. 2021;107:149–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang B, Zhao L, Feng Z, Wei F, Zhang Y, Zhang Y, Huo P, Cheng Y, Zhou J, Feng H. Galactosyltransferase GhRFS6 interacting with GhOPR9 involved in defense against Verticillium wilt in cotton. Plant Sci. 2023;328:111582.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ludwig-Müller J. What can we learn from -omics approaches to understand clubroot disease? Int J Mol Sci. 2022;23:6293.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campos MD, Félix MDR, Patanita M, Materatski P, Varanda C. High throughput sequencing unravels tomato-pathogen interactions towards a sustainable plant breeding. Hortic Res. 2021;8:171.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hren M, Nikolić P, Rotter A, Blejec A, Terrier N, Ravnikar M, Dermastia M, Gruden K. Bois noir’ phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genomics. 2009;10:460.

    Article 
    PubMed 

    Google Scholar
     

  • Fan G, Dong Y, Deng M, Zhao Z, Niu S, Xu E. Plant-pathogen interaction, circadian rhythm, and hormone-related gene expression provide indicators of phytoplasma infection in Paulownia fortunei. Int J Mol Sci. 2014;15:23141–62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buoso S, Pagliari L, Musetti R, Martini M, Marroni F, Schmidt W, Santi S. Candidatus Phytoplasma solani’ interferes with the distribution and uptake of iron in tomato. BMC Genomics. 2019;20:703.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weil T, Ometto L, Esteve-Codina A, Gómez-Garrido J, Oppedisano T, Lotti C, Dabad M, Alioto T, Vrhovsek U, Hogenhout S, Anfora G. Linking omics and ecology to dissect interactions between the apple proliferation phytoplasma and its psyllid vector Cacopsylla melanoneura. Insect Biochem Mol Biol. 2020;127:103474.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nejat N, Cahill DM, Vadamalai G, Ziemann M, Rookes J, Naderali N. Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection. Mol Genet Genomics. 2015;290:1899–910.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monavarfeshani A, Mirzaei M, Sarhadi E, Amirkhani A, Khayam Nekouei M, Haynes PA, Mardi M, Salekdeh GH. Shotgun proteomic analysis of the Mexican lime tree infected with Candidatus Phytoplasma aurantifolia. J Proteome Res. 2013;12:785–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Z, Hall JD, Mount DW. Arabidopsis UVH3 gene is a homolog of the Saccharomyces cerevisiae RAD2 and human XPG DNA repair genes. Plant J. 2001;26:329–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8’-hydroxylases: key enzymes in ABA catabolism. EMBO J. 2004;23:1647–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rowley MJ, Avrutsky MI, Sifuentes CJ, Pereira L, Wierzbicki AT. Independent chromatin binding of ARGONAUTE4 and SPT5L/KTF1 mediates transcriptional gene silencing. PLoS Genet. 2011;7:e1002120.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin JL, McMillan FM. SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol. 2002;12:783–93.

    Article 
    CAS 

    Google Scholar
     

  • Cui D, Zhao J, Jing Y, Fan M, Liu J, Wang Z, Xin W, Hu Y. The Arabidopsis IDD14, IDD15, and IDD16 cooperatively regulate lateral organ morphogenesis and gravitropism by promoting auxin biosynthesis and transport. PLoS Genet. 2013;9:e1003759.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lüscher M, Hochstrasser U, Vogel G, Aeschbacher R, Galati V, Nelson CJ, Boller T, Wiemken A. Cloning and functional analysis of sucrose: sucrose 1-fructosyltransferase from tall fescue. Plant Physiol. 2000;124:1217–28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin Y, Li J, Zhu Q, Du X, Liu F, Li Y, Ahmar S, Zhang X, Sun J, Xue F. GhAPC8 regulates leaf blade angle by modulating multiple hormones in cotton (Gossypium hirsutum L). Int J Biol Macromol. 2022;195:217–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lian J, Liu W, Sun Y, Men S, Wu J, Zeb A, Yang T, Ma LQ, Zhou Q. Nanotoxicological effects and transcriptome mechanisms of wheat (Triticum aestivum L.) under stress of polystyrene nanoplastics. J Hazard Mater. 2022;423:127241.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai H, Yu N, Liu Y, Wei X, Guo C. Meta-analysis of fungal plant pathogen Fusarium oxysporum infection-related gene profiles using transcriptome datasets. Front Microbiol. 2022;13:970477.

    Article 
    PubMed Central 

    Google Scholar
     

  • Chakraborty M, Mahmud NU, Ullah C, Rahman M, Islam T. Biological and biorational management of blast diseases in cereals caused by Magnaporthe oryzae. Crit Rev Biotechnol. 2021;41:994–1022.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu H, Yang S, Li T, Ma S, Wang P, Wang G, Su S, Ding Y, Yang L, Zhou X, Yang S. Design, synthesis and bioactivity evaluation of novel 2-(pyrazol-4-yl)-1,3,4-oxadiazoles containing an imidazole fragment as antibacterial agents. Molecules. 2023;28:2442.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao M, He Y, Yin X, Zhong X, Yan B, Wu Y, Chen J, Li X, Zhai K, Huang Y, Gong X, Chang H, Xie S, Liu J, Yue J, Xu J, Zhang G, Deng Y, Wang E, Tharreau D, Wang GL, Yang W, He Z. Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector. Cell. 2021;184:5391–404.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng X, Zhang S. MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol. 2013;51:245–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang X, Zhang L, Natarajan SK, Becker DF. Proline mechanisms of stress survival. Antioxid Redox Signal. 2013;19:998–1011.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dutta A, Chan SH, Pauli NT, Raina R. Hypersensitive response-like lesions 1 codes for AtPPT1 and regulates accumulation of ROS and defense against bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana. Antioxid Redox Signal. 2015;22:785–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Q, Chen Y, Zou W, Pan YB, Lin P, Xu L, Grisham MP, Ding Q, Su Y, Que Y. Genome-wide characterization of sugarcane catalase gene family identifies a ScCAT1 gene associated disease resistance. Int J Biol Macromol. 2023;232:123398.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou T, Xu W, Hirani AH, Liu Z, Tuan PA, Ayele BT, Daayf F, McVetty PBE, Duncan RW, Li G. Transcriptional insight into Brassica napus resistance genes LepR3 and Rlm2-mediated defense response against the Leptosphaeria maculans infection. Front Plant Sci. 2019;10:823.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao Z, Zhang R, Wang D, Zhang J, Zang S, Zou W, Feng A, You C, Su Y, Wu Q, Que Y. Dissecting the features of TGA gene family in Saccharum and the functions of under biotic stresses. Plant Physiol Biochem. 2023;200:107760.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matić S, Bagnaresi P, Biselli C, Orru’ L, Amaral Carneiro G, Siciliano I, Valé G, Gullino ML, Spadaro D. Comparative transcriptome profiling of resistant and susceptible rice genotypes in response to the seedborne pathogen Fusarium fujikuroi. BMC Genomics. 2016;17:608.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weng K, Li ZQ, Liu RQ, Wang L, Wang YJ, Xu Y. Transcriptome of Erysiphe necator-infected Vitis pseudoreticulata leaves provides insight into grapevine resistance to powdery mildew. Hortic Res. 2014;1:14049.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang H, Staton M, Xu Y, Xu T, Leboldus J. Comparative expression analysis of resistant and susceptible Populus clones inoculated with Septoria musiva. Plant Sci. 2014;223:69–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Lin J, Chang Y, Jiang CZ. Comparative transcriptomic analysis reveals that ethylene/H2O2-mediated hypersensitive response and programmed cell death determine the compatible interaction of sand pear and Alternaria alternata. Front Plant Sci. 2017;8:195.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown J, Pirrung M, McCue LA. FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics. 2017;33:3137–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa M, Goto S, KEGG. Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28:1947–51.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51:D587–D92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13:1194–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu S, Liu S, Wang M, Wei T, Meng C, Wang M, Xia G. A wheat SIMILAR TO RCD-ONE gene enhances seedling growth and abiotic stress resistance by modulating redox homeostasis and maintaining genomic integrity. Plant Cell. 2014;26:164–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Description of Image

    Source link