Scientific Papers

Harnessing technology and gamification to increase adult physical activity: a cluster randomized controlled trial of the Columbia Moves pilot | International Journal of Behavioral Nutrition and Physical Activity

Description of Image

  • Tudor-Locke C, Leonardi C, Johnson WD, Katzmarzyk PT, Church TS. Accelerometer steps/day translation of moderate-to-vigorous activity. Prev Med. 2011;53(1–2):31–3.

    Article 
    PubMed 

    Google Scholar
     

  • 2018 Physical Activity Guidelines Advisory Committee Scientific Report. https://health.gov/sites/default/files/2019-09/PAG_Advisory_Committee_Report.pdf. Accessed 1 May 2023.

  • del Pozo CB, Ahmadi MN, Lee IM, Stamatakis E. Prospective associations of daily step counts and intensity with cancer and cardiovascular disease incidence and mortality and all-cause mortality. JAMA Internal Med. 2022;182(11):1139–48.

    Article 

    Google Scholar
     

  • Physical activity among adults aged 18 and over: United States, 2020. https://www.cdc.gov/nchs/products/databriefs/db443.htm#section_1. Accessed 1 May 2023.

  • Zenko Z, Willis EA, White DA. Proportion of adults meeting the 2018 physical activity guidelines for Americans according to accelerometers. Front Public Health. 2019;7(7):135.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lear SA, Hu W, Rangarajan S, Gasevic D, Leong D, Iqbal R, et al. The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: the PURE study. Lancet. 2017;390(10113):2643–54.

    Article 
    PubMed 

    Google Scholar
     

  • Carlson SA, Fulton JE, Pratt M, Yang Z, Adams EK. Inadequate physical activity and health care expenditures in the United States. Prog Cardiovasc Dis. 2015;57(4):315–23.

    Article 
    PubMed 

    Google Scholar
     

  • Vetrovsky T, Borowiec A, Juřík R, Wahlich C, Śmigielski W, Steffl M, et al. Do physical activity interventions combining self-monitoring with other components provide an additional benefit compared with self-monitoring alone? A systematic review and meta-analysis. Br J Sports Med. 2022;56(23):1366–74.

    Article 
    PubMed 

    Google Scholar
     

  • Ferguson T, Olds T, Curtis R, Blake H, Crozier AJ, Dankiw K, et al. Effectiveness of wearable activity trackers to increase physical activity and improve health: a systematic review of systematic reviews and meta-analyses. Lancet Digit Health. 2022;4(8):e615–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reis RS, Salvo D, Ogilvie D, Lambert EV, Goenka S, Brownson RC. Scaling up physical activity interventions worldwide: stepping up to larger and smarter approaches to get people moving. Lancet. 2016;388(10051):1337–48.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love R, Adams J, van Sluijs EM, Foster C, Humphreys D. A cumulative meta-analysis of the effects of individual physical activity interventions targeting healthy adults. Obes Rev. 2018;19(8):1164–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fjeldsoe B, Neuhaus M, Winkler E, Eakin E. Systematic review of maintenance of behavior change following physical activity and dietary interventions. Health Psychol. 2011;30(1):99.

    Article 
    PubMed 

    Google Scholar
     

  • Marcus BH, Forsyth LH, Stone EJ, Dubbert PM, McKenzie TL, Dunn AL, et al. Physical activity behavior change: issues in adoption and maintenance. Health Psychol. 2000;19(1S):32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murray JM, Brennan SF, French DP, Patterson CC, Kee F, Hunter RF. Effectiveness of physical activity interventions in achieving behaviour change maintenance in young and middle aged adults: a systematic review and meta-analysis. Soc Sci Med. 2017;1(192):125–33.

    Article 

    Google Scholar
     

  • Howlett N, Trivedi D, Troop NA, Chater AM. Are physical activity interventions for healthy inactive adults effective in promoting behavior change and maintenance, and which behavior change techniques are effective? A systematic review and meta-analysis. Transl Behav Med. 2019;9(1):147–57.

    Article 
    PubMed 

    Google Scholar
     

  • Lewis BA, Napolitano MA, Buman MP, Williams DM, Nigg CR. Future directions in physical activity intervention research: expanding our focus to sedentary behaviors, technology, and dissemination. J Behav Med. 2017;40:112–26.

    Article 
    PubMed 

    Google Scholar
     

  • Vandelanotte C, Müller AM, Short CE, Hingle M, Nathan N, Williams SL, et al. Past, present, and future of eHealth and mHealth research to improve physical activity and dietary behaviors. J Nutr Educ Behav. 2016;48(3):219–28.

    Article 
    PubMed 

    Google Scholar
     

  • Sallis J, Bauman A, Pratt M. Environmental and policy interventions to promote physical activity. Am J Prev Med. 1998;15(4):379–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rovniak LS, Kong L, Hovell MF, Ding D, Sallis JF, Ray CA, et al. Engineering online and in-person social networks for physical activity: a randomized trial. Ann Behav Med. 2016;50(6):885–97.

    Article 
    PubMed 

    Google Scholar
     

  • Kahn EB, Ramsey LT, Brownson RC, Heath GW, Howze EH, Powell KE, et al. The effectiveness of interventions to increase physical activity: a systematic review. Am J Prev Med. 2002;22(4):73–107.

    Article 
    PubMed 

    Google Scholar
     

  • Trost SG, Owen N, Bauman AE, Sallis JF, Brown W. Correlates of adults’ participation in physical activity: review and update. Med Sci Sports Exerc. 2002;34(12):1996–2001.

    Article 
    PubMed 

    Google Scholar
     

  • Feeney BC, Collins NL. A new look at social support: A theoretical perspective on thriving through relationships. Pers Soc Psychol Rev. 2015;19(2):113–47.

    Article 
    PubMed 

    Google Scholar
     

  • Scarapicchia TM, Amireault S, Faulkner G, Sabiston CM. Social support and physical activity participation among healthy adults: a systematic review of prospective studies. Int J Sport Exerc Psychol. 2017;10(1):50–83.

    Article 

    Google Scholar
     

  • Tamers SL, Beresford SA, Cheadle AD, Zheng Y, Bishop SK, Thompson B. The association between worksite social support, diet, physical activity and body mass index. Prev Med. 2011;53(1–2):53–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bauman AE, Reis RS, Sallis JF, Wells JC, Loos RJ, Martin BW. Correlates of physical activity: why are some people physically active and others not? Lancet. 2012;380(9838):258–71.

    Article 
    PubMed 

    Google Scholar
     

  • Sarkar S, Taylor WC, Lai D, Shegog R, Paxton RJ. Social support for physical activity: Comparison of family, friends, and coworkers. Work. 2016;55(4):893–9.

    Article 
    PubMed 

    Google Scholar
     

  • Haughton McNeill L, Wyrwich KW, Brownson RC, Clark EM, Kreuter MW. Individual, social environmental, and physical environmental influences on physical activity among black and white adults: a structural equation analysis. Ann Behav Med. 2006;31(1):36–44.

    Article 

    Google Scholar
     

  • Berkman LF, Glass T, Brissette I, Seeman TE. From social integration to health: Durkheim in the new millennium. Soc Sci Med. 2000;51(6):843–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Umberson D, Montez JK. Social relationships and health: a flashpoint for health policy. J Health Soc Behav. 2010;51(1_suppl):S54–66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray JM, Brennan SF, French DP, Patterson CC, Kee F, Hunter RF. Mediators of behavior change maintenance in physical activity interventions for young and middle-aged adults: a systematic review. Ann Beh Med. 2018;52(6):513–29.

    Article 

    Google Scholar
     

  • Hanson S, Jones A. Is there evidence that walking groups have health benefits? A systematic review and meta-analysis. Br J Sports Med. 2015;49(11):710–5.

    Article 
    PubMed 

    Google Scholar
     

  • Asch DA, Rosin R. Engineering social incentives for health. N Engl J Med. 2016;375(26):2511–3.

    Article 
    PubMed 

    Google Scholar
     

  • Kohl HW, Craig CL, Lambert EV, Inoue S, Alkandari JR, Leetongin G, et al. The pandemic of physical inactivity: global action for public health. Lancet. 2012;380(9838):294–305.

    Article 
    PubMed 

    Google Scholar
     

  • Maher CA, Lewis LK, Ferrar K, Marshall S, De Bourdeaudhuij I, Vandelanotte C. Are health behavior change interventions that use online social networks effective? A systematic review. J Med Internet Res. 2014;16(2):e40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forthofer M, Wilcox S, Kinnard D, Hutto B, Sharpe PA. Sumter County on the Move! Evaluation of a Walking Group Intervention to Promote Physical Activity Within Existing Social Networks. J Phys Act Health. 2019;16(1):22–8.

    Article 

    Google Scholar
     

  • Arden-Close E, McGrath N. Health behaviour change interventions for couples: A systematic review. Br J Health Psychol. 2017;22(2):215–37.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel MS, Benjamin EJ, Volpp KG, Fox CS, Small DS, Massaro JM, et al. Effect of a game-based intervention designed to enhance social incentives to increase physical activity among families: the BE FIT randomized clinical trial. JAMA Int Med. 2017;177(11):1586–93.

    Article 

    Google Scholar
     

  • Patel MS, Asch DA, Rosin R, Small DS, Bellamy SL, Eberbach K, et al. Individual versus team-based financial incentives to increase physical activity: a randomized, controlled trial. J Gen Int Med. 2016;31:746–54.

    Article 

    Google Scholar
     

  • Pedersen C, Halvari H, Williams GC. Worksite intervention effects on motivation, physical activity, and health: A cluster randomized controlled trial. Psychol Sport Exerc. 2018;1(35):171–80.

    Article 

    Google Scholar
     

  • Johannesson M, Östling R, Ranehill E. The effect of competition on physical activity: A randomized trial. The BE J Econ Anal Policy. 2010;10(1):1–29.


    Google Scholar
     

  • Leahey TM, Crane MM, Pinto AM, Weinberg B, Kumar R, Wing RR. Effect of teammates on changes in physical activity in a statewide campaign. Prev Med. 2010;51(1):45–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maher C, Ferguson M, Vandelanotte C, Plotnikoff R, De Bourdeaudhuij I, Thomas S, et al. A web-based, social networking physical activity intervention for insufficiently active adults delivered via Facebook app: randomized controlled trial. J Med Internet Res. 2015;17(7):e174.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kernot J, Lewis L, Olds T, Maher C. Effectiveness of a Facebook-delivered physical activity intervention for postpartum women: a randomized controlled trial. J Phys Act Health. 2019;16(2):125–33.

    Article 
    PubMed 

    Google Scholar
     

  • Story CR, Knutson D, Brown JB, Spears-Laniox E, Harvey IS, Gizlice Z, et al. Changes in social support over time in a faith-based physical activity intervention. Health Ed Res. 2017;32(6):513–23.

    Article 

    Google Scholar
     

  • Bopp M, Wilcox S, Laken M, Hooker SP, Parra-Medina D, Saunders R, et al. 8 steps to fitness: a faith-based, behavior change physical activity intervention for African Americans. J Phys Health. 2009;6(5):568–77.

    Article 

    Google Scholar
     

  • Frerichs L, Bess K, Young TL, Hoover SM, Calancie L, Wynn M, et al. A cluster randomized trial of a community-based intervention among African-American adults: effects on dietary and physical activity outcomes. Prev Sci. 2020;21:344–54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gotsis M, Wang H, Spruijt-Metz D, Jordan-Marsh M, Valente TW. Wellness partners: design and evaluation of a web-based physical activity diary with social gaming features for adults. JMIR Res Prot. 2013;2(1):e2132.


    Google Scholar
     

  • Dadaczynski K, Schiemann S, Backhaus O. Promoting physical activity in worksite settings: results of a German pilot study of the online intervention Healingo fit. BMC Public Health. 2017;17:1–9.

    Article 

    Google Scholar
     

  • Schrier E, Xiong N, Thompson E, Poort H, Schumer S, Liu JF, et al. Stepping into survivorship pilot study: Harnessing mobile health and principles of behavioral economics to increase physical activity in ovarian cancer survivors. Gyn Oncol. 2021;161(2):581–6.

    Article 

    Google Scholar
     

  • Waddell KJ, Patel MS, Clark K, Harrington TO, Greysen SR. Effect of gamification with social incentives on daily steps after stroke: a randomized clinical trial. JAMA Neuro. 2022;79(5):528–30.

    Article 

    Google Scholar
     

  • Greysen SR, Changolkar S, Small DS, Reale C, Rareshide CA, Mercede A, et al. Effect of behaviorally designed gamification with a social support partner to increase mobility after hospital discharge: a randomized clinical trial. JAMA Netw Open. 2021;4(3):e210952.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurtzman GW, Day SC, Small DS, Lynch M, Zhu J, Wang W, et al. Social incentives and gamification to promote weight loss: the LOSE IT randomized, controlled trial. J Gen Intern Med. 2018;33:1669–75.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edney SM, Olds TS, Ryan JC, Vandelanotte C, Plotnikoff RC, Curtis RG, et al. A social networking and gamified app to increase physical activity: cluster RCT. Am J Prev Med. 2020;58(2):e51-62.

    Article 
    PubMed 

    Google Scholar
     

  • Seo MW, Kim Y, Jung HC, Kim JH, Lee JM. Does online social connectivity promote physical activity in a wearable tracker-based intervention? A pilot randomized controlled study. Sustainability. 2020;12(21):8803.

    Article 

    Google Scholar
     

  • Tu R, Hsieh P, Feng W. Walking for fun or for “likes”? The impacts of different gamification orientations of fitness apps on consumers’ physical activities. Sport Man Rev. 2019;22(5):682–93.

    Article 

    Google Scholar
     

  • Deterding S, Dixon D, Khaled R, Nacke L. From game design elements to gamefulness: defining” gamification”. InProceedings of the 15th international academic MindTrek conference: Envisioning Future Media Environments. 2011. p. 9–15.


    Google Scholar
     

  • Koivisto J, Hamari J. Gamification of physical activity: A systematic literature review of comparison studies. In3rd International GamiFIN Conference, GamiFIN 2019 2019. CEUR-WS.

  • Looyestyn J, Kernot J, Boshoff K, Ryan J, Edney S, Maher C. Does gamification increase engagement with online programs? A systematic review. PLoS One. 2017;12(3):e0173403.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koivisto J, Hamari J. The rise of motivational information systems: A review of gamification research. Int J Info Man. 2019;1(45):191–210.

    Article 

    Google Scholar
     

  • Number of connected wearable devices worldwide from 2016 to 2022. https://www.statista.com/statistics/487291/global-connected-wearable-devices/. Accessed 1 May 2023.

  • Mobile fact sheet. https://www.pewresearch.org/internet/fact-sheet/mobile/. Accessed 1 May 2023.

  • Cotton V, Patel MS. Gamification use and design in popular health and fitness mobile applications. Am J Health Promot. 2019;33(3):448–51.

    Article 
    PubMed 

    Google Scholar
     

  • Mazeas A, Duclos M, Pereira B, Chalabaev A. Evaluating the effectiveness of gamification on physical activity: systematic review and meta-analysis of randomized controlled trials. J Med Internet Res. 2022;24(1):e26779.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu L, Shi H, Shen M, Ni Y, Zhang X, Pang Y, et al. The effects of mHealth-based gamification interventions on participation in physical activity: systematic review. JMIR mHealth uHealth. 2022;10(2):e27794.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Y, Hu H, Koenigstorfer J. Effects of Gamified Smartphone Applications on Physical Activity: A Systematic Review and Meta-Analysis. Am J Prev Med. 2022;62(4):602–13.

    Article 
    PubMed 

    Google Scholar
     

  • Patel MS, Small DS, Harrison JD, Hilbert V, Fortunato MP, Oon AL, et al. Effect of behaviorally designed gamification with social incentives on lifestyle modification among adults with uncontrolled diabetes: a randomized clinical trial. JAMA Netw Open. 2021;4(5):e2110255.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonze BD, Padovani RD, Simoes MD, Lauria V, Proença NL, Sperandio EF, et al. Use of a smartphone app to increase physical activity levels in insufficiently active adults: Feasibility Sequential Multiple Assignment Randomized Trial (SMART). JMIR Res Protoc. 2020;9(10):e14322.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tong X, Gupta A, Gromala D, Shaw CD, Neustaedter C, Choo A. Utilizing Gamification Approaches in Pervasive Health: How Can We Motivate Physical Activity Effectively? EAI Endorsed Trans Pervasive Health Technol. 2017;3(11):e3.

    Article 

    Google Scholar
     

  • Paul L, Wyke S, Brewster S, Sattar N, Gill JM, Alexander G, et al. Increasing physical activity in stroke survivors using STARFISH, an interactive mobile phone application: a pilot study. Top Stroke Rehabil. 2016;23(3):170–7.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang J, Brackbill D, Yang S, Becker J, Herbert N, Centola D. Support or competition? How online social networks increase physical activity: A randomized controlled trial. Prev Med Rep. 2016;1(4):453–8.

    Article 

    Google Scholar
     

  • Mamede A, Noordzij G, Jongerling J, Snijders M, Schop-Etman A, Denktas S. Combining web-based gamification and physical nudges with an APP (MoveMore) to promote walking breaks and reduce sedentary behavior of office workers: field study. J Med Internet Res. 2021;23(4):e19875.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Fang Y, Frank E, Walton MA, Burmeister M, Tewari A, et al. Effectiveness of gamified team competition as mHealth intervention for medical interns: a cluster micro-randomized trial. npj Dig Med. 2023;6(1):4.

    Article 

    Google Scholar
     

  • Patel MS, Small DS, Harrison JD, Fortunato MP, Oon AL, Rareshide CA, et al. Effectiveness of behaviorally designed gamification interventions with social incentives for increasing physical activity among overweight and obese adults across the United States: the STEP UP randomized clinical trial. JAMA Int Med. 2019;179(12):1624–32.

    Article 

    Google Scholar
     

  • Hajna S, Ross NA, Dasgupta K. Steps, moderate-to-vigorous physical activity, and cardiometabolic profiles. Prev Med. 2018;1(107):69–74.

    Article 

    Google Scholar
     

  • Tudor-Locke C, Hatano Y, Pangrazi RP, Kang M. Revisiting, “How many steps are enough?” Med Sci Sports Exer. 2008;40(7):S537–43.

    Article 

    Google Scholar
     

  • Glanz K, Rimer BK, Viswanath K. Health behavior: Theory, research, and practice. 5th ed. San Franciso: Josey-Bass; 2015.


    Google Scholar
     

  • Deci EL, Ryan RM. Self-determination theory: A macrotheory of human motivation, development, and health. Canadian Psychol. 2008;49(3):182.

    Article 

    Google Scholar
     

  • Rogers T, Milkman KL, Volpp KG. Commitment devices: using initiatives to change behavior. JAMA. 2014;311(20):2065–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt U, Zank H. What is loss aversion? J Risk Uncert. 2005;30:157–67.

    Article 

    Google Scholar
     

  • Dai H, Milkman KL, Riis J. The fresh start effect: Temporal landmarks motivate aspirational behavior. Man Sci. 2014;60(10):2563–82.

    Article 

    Google Scholar
     

  • Finkelstein EA, Haaland BA, Bilger M, Sahasranaman A, Sloan RA, Nang EE, et al. Effectiveness of activity trackers with and without incentives to increase physical activity (TRIPPA): a randomised controlled trial. Lancet Diabetes Endocrinol. 2016;4(12):983–95.

    Article 
    PubMed 

    Google Scholar
     

  • Mendoza JA, Baker KS, Moreno MA, Whitlock K, Abbey-Lambertz M, Waite A, et al. A Fitbit and Facebook mHealth intervention for promoting physical activity among adolescent and young adult childhood cancer survivors: A pilot study. Pediatr Blood Cancer. 2017;64(12):e26660.

    Article 

    Google Scholar
     

  • Johnson AM, Baker KS, Haviland MJ, Syrjala KL, Abbey-Lambertz M, Chow EJ, Mendoza JA. A pilot randomized controlled trial of a Fitbit-and Facebook-based physical activity intervention for young adult cancer survivors. J Adolesc Young Adult Oncol. 2022;11(4):379–88.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181.

    Article 
    PubMed 

    Google Scholar
     

  • Tudor-Locke C, Burkett L, Reis JP, Ainsworth BE, Macera CA, Wilson DK. How many days of pedometer monitoring predict weekly physical activity in adults? Prev Med. 2005;40(3):293–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trost SG, Mciver KL, Pate RR. Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc. 2005;37(11):S531.

    Article 
    PubMed 

    Google Scholar
     

  • Dowd KP, Szeklicki R, Minetto MA, Murphy MH, Polito A, Ghigo E, et al. A systematic literature review of reviews on techniques for physical activity measurement in adults: a DEDIPAC study. Int J Behav Nutr Phys Act. 2018;15(1):1–33.

    Article 

    Google Scholar
     

  • Matthews CE, Hagströmer M, Pober DM, Bowles HR. Best practices for using physical activity monitors in population-based research. Med Sci Sports Exerc. 2012;44(1 Suppl 1):S68.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao J, Tan CS, Lim N, Tan J, Chen C, Müller-Riemenschneider F. Number of daily measurements needed to estimate habitual step count levels using wrist-worn trackers and smartphones in 212,048 adults. Sci Rep. 2021;11(1):9633.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sallis JF, Grossman RM, Pinski RB, Patterson TL, Nader PR. The development of scales to measure social support for diet and exercise behaviors. Prev Med. 1987;16(6):825–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin G, Rodriguez RN. Weighted methods for analyzing missing data with the gee and causaltrt procedures. In: Proceedings of the SAS Global Forum 2014 Conference. Washington, D.C. http://support.sas.com/resources/papers/proceedings14/SAS166-2014.pdf; 2014.

  • Schafer JL. Analysis of Incomplete Multivariate Data. New York: Chapman and Hall; 1997.

    Book 

    Google Scholar
     

  • Mohr DC, Cuijpers P, Lehman K. Supportive accountability: a model for providing human support to enhance adherence to eHealth interventions. J Med Internet Res. 2011;13(1):e30.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Jemmott JB III. Mobile app-based small-group physical activity intervention for young African American women: a pilot randomized controlled trial. Prev Sci. 2019;15(20):863–72.

    Article 

    Google Scholar
     

  • Edney S, Ryan JC, Olds T, Monroe C, Fraysse F, Vandelanotte C, et al. User engagement and attrition in an app-based physical activity intervention: secondary analysis of a randomized controlled trial. J Med Internet Res. 2019;21(11):e14645.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allam A, Kostova Z, Nakamoto K, Schulz PJ. The effect of social support features and gamification on a Web-based intervention for rheumatoid arthritis patients: randomized controlled trial. J Med Internet Res. 2015;17(1):e3510.

    Article 

    Google Scholar
     

  • Paluch AE, Bajpai S, Bassett DR, Carnethon MR, Ekelund U, Evenson KR, et al. Daily steps and all-cause mortality: a meta-analysis of 15 international cohorts. Lancet Public Health. 2022;7(3):e219–28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Höchsmann C, Müller O, Ambühl M, Klenk C, Königstein K, Infanger D, et al. Novel smartphone game improves physical activity behavior in type 2 diabetes. Am J Prev Med. 2019;57(1):41–50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuckerman O, Gal-Oz A. Deconstructing gamification: evaluating the effectiveness of continuous measurement, virtual rewards, and social comparison for promoting physical activity. Personal Ubiq Comp. 2014;18:1705–19.

    Article 

    Google Scholar
     

  • Patel MS, Bachireddy C, Small DS, Harrison JD, Harrington TO, Oon AL, et al. Effect of Goal-Setting approaches within a Gamification intervention to increase physical activity among Economically disadvantaged adults at elevated risk for major adverse cardiovascular events: the engage randomized clinical trial. JAMA Cardiology. 2021;6(12):1387–96.

    Article 
    PubMed 

    Google Scholar
     

  • Agarwal AK, Waddell KJ, Small DS, Evans C, Harrington TO, Djaraher R, et al. Effect of gamification with and without financial incentives to increase physical activity among veterans classified as having obesity or overweight: a randomized clinical trial. JAMA Netw Open. 2021;4(7):e2116256.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gremaud AL, Carr LJ, Simmering JE, Evans NJ, Cremer JF, Segre AM, et al. Gamifying accelerometer use increases physical activity levels of sedentary office workers. J Am Heart Assoc. 2018;7(13):e007735.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho I, Kaplanidou K, Sato S. Gamified wearable fitness tracker for physical activity: a comprehensive literature review. Sustainability. 2021;13(13):7017.

    Article 

    Google Scholar
     

  • Spring B, Pfammatter AF, Marchese SH, Stump T, Pellegrini C, McFadden HG, et al. A factorial experiment to optimize remotely delivered behavioral treatment for obesity: results of the Opt-IN study. Obesity. 2020;28(9):1652–62.

    Article 
    PubMed 

    Google Scholar
     

  • Teixeira PJ, Carraça EV, Markland D, Silva MN, Ryan RM. Exercise, physical activity, and self-determination theory: a systematic review. Int J Behav Nutr Phys Act. 2012;9(1):1–30.

    Article 

    Google Scholar
     

  • Ryan RM, Deci EL. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am Psychol. 2000;55(1):68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Höchsmann C, Infanger D, Klenk C, Königstein K, Walz SP, Schmidt-Trucksäss A. Effectiveness of a behavior change technique–based smartphone game to improve intrinsic motivation and physical activity adherence in patients with type 2 diabetes: randomized controlled trial. JMIR Serious Games. 2019;7(1):e11444.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Houillon A, Lorenz RC, Böhmer W, Rapp MA, Heinz A, Gallinat J, et al. The effect of novelty on reinforcement learning. Progress Brain Res. 2013;1(202):415–39.

    Article 

    Google Scholar
     

  • Ang G, Edney SM, Tan CS, Lim N, Tan J, Mueller-Riemenschneider F, et al. Physical activity trends among adults in a national mobile health program: a population-based cohort study of 411,528 adults. Am J Epi. 2023;192(3):397–407.

    Article 

    Google Scholar
     

  • Behrens TK, Domina L, Fletcher GM. Evaluation of an employer-sponsored pedometer-based physical activity program. Percept Mot Skills. 2007;105(3):968–76.

    Article 
    PubMed 

    Google Scholar
     

  • Wyatt HR, Peters JC, Reed GW, Grunwald GK, Barry M, Thompson H, et al. Using electronic step counters to increase lifestyle physical activity: Colorado on the Move™. J Phys Act Health. 2004;1(3):181–90.

    Article 

    Google Scholar
     

  • Description of Image

    Source link