Scientific Papers

Airborne transmission of common swine viruses | Porcine Health Management


  • Kedkovid R, Sirisereewan C, Thanawongnuwech R. Major swine viral diseases: an Asian perspective after the African swine fever introduction. Porcine Health Manag. 2020;6:20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alarcón LV, Allepuz A, Mateu E. Biosecurity in pig farms: a review. Porcine Health Manag. 2021;7(1):5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • StÄRk KDC. The role of infectious aerosols in disease transmission in pigs. Vet J. 1999;158(3):164–81.

    Article 
    PubMed 

    Google Scholar
     

  • Jones RM, Brosseau LM. Aerosol transmission of infectious disease. J Occup Environ Med. 2015;57(5):501–8.

    Article 
    PubMed 

    Google Scholar
     

  • Chao CYH, Wan MP, Morawska L, Johnson GR, Ristovski ZD, Hargreaves M, Mengersen K, Corbett S, Li Y, Xie X, et al. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J Aerosol Sci. 2009;40(2):122–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones AM, Harrison RM. The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Sci Total Environ. 2004;326(1–3):151–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlesinger RB, Cassee F. Atmospheric secondary inorganic particulate matter: the toxicological perspective as a basis for health effects risk assessment. Inhal Toxicol. 2003;15(3):197–235.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stark KD. The role of infectious aerosols in disease transmission in pigs. Vet J. 1999;158(3):164–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duchaine C, Roy CJ. Bioaerosols and airborne transmission: integrating biological complexity into our perspective. Sci Total Environ. 2022;825: 154117.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang CC, Prather KA, Sznitman J, Jimenez JL, Lakdawala SS, Tufekci Z, Marr LC. Airborne transmission of respiratory viruses. Science. 2021;373:6558.

    Article 

    Google Scholar
     

  • Roy CJ, Milton DK. Airborne transmission of communicable infection—the elusive pathway. N Engl J Med. 2004;350(17):1710–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bischoff W, Russell G, Willard E, Stehle J Jr. Impact of a novel mobile high-efficiency particulate air-ultraviolet air recirculation system on the bacterial air burden during routine care. Am J Infect Control. 2019;47(8):1025–7.

    Article 
    PubMed 

    Google Scholar
     

  • Belsham GJ. Distinctive features of foot-and-mouth disease virus, a member of the picornavirus family; aspects of virus protein synthesis, protein processing and structure. Prog Biophys Mol Biol. 1993;60(3):241–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donaldson AI, Gloster J, Harvey LD, Deans DH. Use of prediction models to forecast and analyse airborne spread during the foot-and-mouth disease outbreaks in Brittany, Jersey and the Isle of Wight in 1981. Vet Rec. 1982;110(3):53–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sørensen JH, Mackay DK, Jensen CO, Donaldson AI. An integrated model to predict the atmospheric spread of foot-and-mouth disease virus. Epidemiol Infect. 2000;124(3):577–90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sørensen JH, Jensen CØ, Mikkelsen T, Mackay DKJ, Donaldson AI. Modelling the atmospheric dispersion of foot-and-mouth disease virus for emergency preparedness. Phys Chem Earth Part B. 2001;26(2):93–7.

    Article 

    Google Scholar
     

  • Hugh-Jones ME, Wright PB. Studies on the 1967–8 foot-and-mouth disease epidemic. The relation of weather to the spread of disease. J Hyg (Lond). 1970;68(2):253–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donaldson AI, Alexandersen S. Predicting the spread of foot and mouth disease by airborne virus. Rev Sci Tech. 2002;21(3):569–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gloster J, Sellers RF, Donaldson AI. Long distance transport of foot-and-mouth disease virus over the sea. Vet Rec. 1982;110(3):47–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitching RP, Hutber AM, Thrusfield MV. A review of foot-and-mouth disease with special consideration for the clinical and epidemiological factors relevant to predictive modelling of the disease. Vet J. 2005;169(2):197–209.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alexandersen S, Brotherhood I, Donaldson AI. Natural aerosol transmission of foot-and-mouth disease virus to pigs: minimal infectious dose for strain O1 Lausanne. Epidemiol Infect. 2002;128(2):301–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pacheco JM, Tucker M, Hartwig E, Bishop E, Arzt J, Rodriguez LL. Direct contact transmission of three different foot-and-mouth disease virus strains in swine demonstrates important strain-specific differences. Vet J. 2012;193(2):456–63.

    Article 
    PubMed 

    Google Scholar
     

  • Sellers RF, Parker J. Airborne excretion of foot-and-mouth disease virus. J Hyg (Lond). 1969;67(4):671–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Alexandersen S, Donaldson AI. Further studies to quantify the dose of natural aerosols of foot-and-mouth disease virus for pigs. Epidemiol Infect. 2002;128(2):313–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eble P, de Koeijer A, Bouma A, Stegeman A, Dekker A. Quantification of within- and between-pen transmission of foot-and-mouth disease virus in pigs. Vet Res. 2006;37(5):647–54.

    Article 
    PubMed 

    Google Scholar
     

  • Bartley LM, Donnelly CA, Anderson RM. Review of foot-and-mouth disease virus survival in animal excretions and on fomites. Vet Rec. 2002;151(22):667–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veit M, Matczuk AK, Sinhadri BC, Krause E, Thaa B. Membrane proteins of arterivirus particles: structure, topology, processing and function. Virus Res. 2014;194:16–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kristensen CS, Botner A, Takai H, Nielsen JP, Jorsal SE. Experimental airborne transmission of PRRS virus. Vet Microbiol. 2004;99(3–4):197–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dee SA, Deen J, Jacobson L, Rossow KD, Mahlum C, Pijoan C. Laboratory model to evaluate the role of aerosols in the transport of porcine reproductive and respiratory syndrome virus. Vet Rec. 2005;156(16):501–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Otake S, Dee S, Corzo C, Oliveira S, Deen J. Long-distance airborne transport of infectious PRRSV and Mycoplasma hyopneumoniae from a swine population infected with multiple viral variants. Vet Microbiol. 2010;145(3–4):198–208.

    Article 
    PubMed 

    Google Scholar
     

  • Torremorell M, Pijoan C, Janni K, Walker R, Joo HS. Airborne transmission of Actinobacillus pleuropneumoniae and porcine reproductive and respiratory syndrome virus in nursery pigs. Am J Vet Res. 1997;58(8):828–32.

    CAS 
    PubMed 

    Google Scholar
     

  • Cho JG, Deen J, Dee SA. Influence of isolate pathogenicity on the aerosol transmission of Porcine reproductive and respiratory syndrome virus. Can J Vet Res. 2007;71(1):23–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho JG, Dee SA, Deen J, Trincado C, Fano E, Jiang Y, Faaberg K, Murtaugh MP, Guedes A, Collins JE, et al. The impact of animal age, bacterial coinfection, and isolate pathogenicity on the shedding of porcine reproductive and respiratory syndrome virus in aerosols from experimentally infected pigs. Can J Vet Res. 2006;70(4):297–301.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brockmeier SL, Palmer MV, Bolin SR. Effects of intranasal inoculation of porcine reproductive and respiratory syndrome virus, Bordetella bronchiseptica, or a combination of both organisms in pigs. Am J Vet Res. 2000;61(8):892–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alonso C, Raynor PC, Davies PR, Torremorell M. Concentration, size distribution, and infectivity of airborne particles carrying swine viruses. PLoS ONE. 2015;10(8): e0135675.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hermann J, Hoff S, Munoz-Zanzi C, Yoon KJ, Roof M, Burkhardt A, Zimmerman J. Effect of temperature and relative humidity on the stability of infectious porcine reproductive and respiratory syndrome virus in aerosols. Vet Res. 2007;38(1):81–93.

    Article 
    PubMed 

    Google Scholar
     

  • Huang QJ, Song K, Xu C, Bolon DNA, Wang JP, Finberg RW, Schiffer CA, Somasundaran M. Quantitative structural analysis of influenza virus by cryo-electron tomography and convolutional neural networks. Structure. 2022;30(5):777-86e3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prost K, Kloeze H, Mukhi S, Bozek K, Poljak Z, Mubareka S. Bioaerosol and surface sampling for the surveillance of influenza A virus in swine. Transbound Emerg Dis. 2019;66(3):1210–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neira V, Rabinowitz P, Rendahl A, Paccha B, Gibbs SG, Torremorell M. Characterization of viral load, viability and persistence of influenza a virus in air and on surfaces of swine production facilities. PLoS ONE. 2016;11(1): e0146616.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corzo CA, Culhane M, Dee S, Morrison RB, Torremorell M. Airborne detection and quantification of swine influenza a virus in air samples collected inside, outside and downwind from swine barns. PLoS ONE. 2013;8(8): e71444.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Li X, Ma R, Li X, Zhou Y, Dong H, Li X, Li Q, Zhang M, Liu Z, et al. Airborne spread and infection of a novel swine-origin influenza A (H1N1) virus. Virol J. 2013;10:204.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mubareka S, Lowen AC, Steel J, Coates AL, García-Sastre A, Palese P. Transmission of influenza virus via aerosols and fomites in the guinea pig model. J Infect Dis. 2009;199(6):858–65.

    Article 
    PubMed 

    Google Scholar
     

  • Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, Munster VJ, Sorrell EM, Bestebroer TM, Burke DF, Smith DJ, et al. Airborne transmission of influenza A/H5N1 virus between ferrets. Science. 2012;336(6088):1534–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv J, Wei L, Yang Y, Wang B, Liang W, Gao Y, Xia X, Gao L, Cai Y, Hou P, et al. Amino acid substitutions in the neuraminidase protein of an H9N2 avian influenza virus affect its airborne transmission in chickens. Vet Res. 2015;46(1):44.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang W, Shi Y, Lu X, Shu Y, Qi J, Gao GF. An airborne transmissible avian influenza H5 hemagglutinin seen at the atomic level. Science. 2013;340(6139):1463–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weber TP, Stilianakis NI. Inactivation of influenza A viruses in the environment and modes of transmission: a critical review. J Infect. 2008;57(5):361–73.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowen AC, Mubareka S, Steel J, Palese P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog. 2007;3(10):1470–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindsley WG, Blachere FM, Thewlis RE, Vishnu A, Davis KA, Cao G, Palmer JE, Clark KE, Fisher MA, Khakoo R, et al. Measurements of airborne influenza virus in aerosol particles from human coughs. PLoS ONE. 2010;5(11): e15100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pensaert MB, de Bouck P. A new coronavirus-like particle associated with diarrhea in swine. Arch Virol. 1978;58(3):243–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun J, Li Q, Shao C, Ma Y, He H, Jiang S, Zhou Y, Wu Y, Ba S, Shi L, et al. Isolation and characterization of Chinese porcine epidemic diarrhea virus with novel mutations and deletions in the S gene. Vet Microbiol. 2018;221:81–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alonso C, Goede DP, Morrison RB, Davies PR, Rovira A, Marthaler DG, Torremorell M. Evidence of infectivity of airborne porcine epidemic diarrhea virus and detection of airborne viral RNA at long distances from infected herds. Vet Res. 2014;45(1):73.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung K, Saif LJ, Wang Q. Porcine epidemic diarrhea virus (PEDV): an update on etiology, transmission, pathogenesis, and prevention and control. Virus Res. 2020;286: 198045.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tun HM, Cai Z, Khafipour E. Monitoring survivability and infectivity of porcine epidemic Diarrhea virus (PEDv) in the infected on-farm earthen manure storages (EMS). Front Microbiol. 2016;7:265.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallien S, Andraud M, Moro A, Lediguerher G, Morin N, Gauger PC, Bigault L, Paboeuf F, Berri M, Rose N, et al. Better horizontal transmission of a US non-InDel strain compared with a French InDel strain of porcine epidemic diarrhoea virus. Transbound Emerg Dis. 2018;65(6):1720–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beam A, Goede D, Fox A, McCool MJ, Wall G, Haley C, Morrison R. A porcine epidemic Diarrhea virus outbreak in one geographic region of the United States: descriptive epidemiology and investigation of the possibility of airborne virus spread. PLoS ONE. 2015;10(12): e0144818.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Wu Q, Huang L, Yuan C, Wang J, Yang Q. An alternative pathway of enteric PEDV dissemination from nasal cavity to intestinal mucosa in swine. Nat Commun. 2018;9(1):3811.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niederwerder MC, Nietfeld JC, Bai J, Peddireddi L, Breazeale B, Anderson J, Kerrigan MA, An B, Oberst RD, Crawford K, et al. Tissue localization, shedding, virus carriage, antibody response, and aerosol transmission of Porcine epidemic diarrhea virus following inoculation of 4-week-old feeder pigs. J Vet Diagn Invest. 2016;28(6):671–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng HH, Fu PF, Chen HY, Wang ZY. Pseudorabies virus: from pathogenesis to prevention strategies. Viruses. 2022;14(8):1638.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donaldson AI, Wardley RC, Martin S, Ferris NP. Experimental Aujeszky’s disease in pigs: excretion, survival and transmission of the virus. Vet Rec. 1983;113(21):490–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grant RH, Scheidt AB, Rueff LR. Aerosol transmission of a viable virus affecting swine: explanation of an epizootic of pseudorabies. Int J Biometeorol. 1994;38(1):33–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christensen LS, Mousing J, Mortensen S, Soerensen KJ, Strandbygaard SB, Henriksen CA, Andersen JB. Evidence of long distance airborne transmission of Aujeszky’s disease (pseudorabies) virus. Vet Rec. 1990;127(19):471–4.

    CAS 
    PubMed 

    Google Scholar
     

  • Christensen LS, Mortensen S, Botner A, Strandbygaard BS, Ronsholt L, Henriksen CA, Andersen JB. Further evidence of long distance airborne transmission of Aujeszky’s disease (pseudorabies) virus. Vet Rec. 1993;132(13):317–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Min G, Li M, Teng J, Ding M. Study on the morphological processing of classical swine fever virus in cultured cells. Wei Sheng Wu Xue Bao. 2000;40(3):237–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Elbers AR, Stegeman JA, de Jong MC. Factors associated with the introduction of classical swine fever virus into pig herds in the central area of the 1997/98 epidemic in The Netherlands. Vet Rec. 2001;149(13):377–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonzalez C, Pijoan C, Ciprian A, Correa P, Mendoza S. The effect of vaccination with the PAV-250 strain classical swine fever (CSF) virus on the airborne transmission of CSF virus. J Vet Med Sci. 2001;63(9):991–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu X, Ward MP. Spatiotemporal analysis of reported classical swine fever outbreaks in China (2005–2018) and the influence of weather. Transbound Emerg Dis. 2022;69(5):e3183–95.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laevens H, Koenen F, Deluyker H, Berkvens D, de Kruif A. An experimental infection with classical swine fever virus in weaner pigs. I. Transmission of the virus, course of the disease, and antibody response. Vet Q. 1998;20(2):41–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laevens H, Koenen F, Deluyker H, de Kruif A. Experimental infection of slaughter pigs with classical swine fever virus: transmission of the virus, course of the disease and antibody response. Vet Rec. 1999;145(9):243–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weesendorp E, Backer J, Loeffen W. Quantification of different classical swine fever virus transmission routes within a single compartment. Vet Microbiol. 2014;174(3–4):353–61.

    Article 
    PubMed 

    Google Scholar
     

  • Weesendorp E, Stegeman A, Loeffen WL. Quantification of classical swine fever virus in aerosols originating from pigs infected with strains of high, moderate or low virulence. Vet Microbiol. 2009;135(3–4):222–30.

    Article 
    PubMed 

    Google Scholar
     

  • Weesendorp E, Landman WJ, Stegeman A, Loeffen WL. Detection and quantification of classical swine fever virus in air samples originating from infected pigs and experimentally produced aerosols. Vet Microbiol. 2008;127(1–2):50–62.

    Article 
    PubMed 

    Google Scholar
     

  • Andres G, Simon-Mateo C, Vinuela E. Assembly of African swine fever virus: role of polyprotein pp220. J Virol. 1997;71(3):2331–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue Q, Liu H, Zhu Z, Yang F, Song Y, Li Z, Xue Z, Cao W, Liu X, Zheng H. African swine fever virus regulates host energy and amino acid metabolism to promote viral replication. J Virol. 2022;96(4): e0191921.

    Article 
    PubMed 

    Google Scholar
     

  • Sánchez-Vizcaíno JM, Mur L, Gomez-Villamandos JC, Carrasco L. An update on the epidemiology and pathology of African swine fever. J Comp Pathol. 2015;152(1):9–21.

    Article 
    PubMed 

    Google Scholar
     

  • Penrith ML, Vosloo W. Review of African swine fever: transmission, spread and control. J S Afr Vet Assoc. 2009;80(2):58–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilkinson PJ, Donaldson AI. Transmission studies with African swine fever virus. The early distribution of virus in pigs infected by airborne virus. J Comp Pathol. 1977;87(3):497–501.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olesen AS, Lohse L, Boklund A, Halasa T, Gallardo C, Pejsak Z, Belsham GJ, Rasmussen TB, Botner A. Transmission of African swine fever virus from infected pigs by direct contact and aerosol routes. Vet Microbiol. 2017;211:92–102.

    Article 
    PubMed 

    Google Scholar
     

  • Li X, Hu Z, Fan M, Tian X, Wu W, Gao W, Bian L, Jiang X. Evidence of aerosol transmission of African swine fever virus between two piggeries under field conditions: a case study. Front Vet Sci. 2023;10:1201503.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Zhang X, Qi W, Yang Y, Liu Z, An T, Wu X, Chen J. Prevention and control strategies of African swine fever and progress on pig farm repopulation in China. Viruses. 2021;13(12):2552.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pietschmann J, Guinat C, Beer M, Pronin V, Tauscher K, Petrov A, Keil G, Blome S. Course and transmission characteristics of oral low-dose infection of domestic pigs and European wild boar with a Caucasian African swine fever virus isolate. Arch Virol. 2015;160(7):1657–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Carvalho Ferreira HC, Weesendorp E, Quak S, Stegeman JA, Loeffen WL. Quantification of airborne African swine fever virus after experimental infection. Vet Microbiol. 2013;165(3–4):243–51.

    Article 
    PubMed 

    Google Scholar
     

  • Allan GM, McNeilly F, Kennedy S, Daft B, Clarke EG, Ellis JA, Haines DM, Meehan BM, Adair BM. Isolation of porcine circovirus-like viruses from pigs with a wasting disease in the USA and Europe. J Vet Diagn Invest. 1998;10(1):3–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Segalés J. Porcine circovirus type 2 (PCV2) infections: clinical signs, pathology and laboratory diagnosis. Virus Res. 2012;164(1–2):10–9.

    Article 
    PubMed 

    Google Scholar
     

  • Verreault D, Letourneau V, Gendron L, Masse D, Gagnon CA, Duchaine C. Airborne porcine circovirus in Canadian swine confinement buildings. Vet Microbiol. 2010;141(3–4):224–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhai SL, Lu SS, Wei WK, Lv DH, Wen XH, Zhai Q, Chen QL, Sun YW, Xi Y. Reservoirs of porcine circoviruses: a mini review. Front Vet Sci. 2019;6:319.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borkenhagen LK, Mallinson KA, Tsao RW, Ha SJ, Lim WH, Toh TH, Anderson BD, Fieldhouse JK, Philo SE, Chong KS, et al. Surveillance for respiratory and diarrheal pathogens at the human-pig interface in Sarawak, Malaysia. PLoS ONE. 2018;13(7): e0201295.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin F, Kitching RP. Swine vesicular disease: an overview. Vet J. 2000;160(3):192–201.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liebermann H, Schulze P, Riebe R, Koitzsch R. Physico-chemical properties of swine vesicular disease virus. Arch Exp Veterinarmed. 1976;30(3):433–40.

    CAS 
    PubMed 

    Google Scholar
     

  • Sellers RF, Herniman KA. The airborne excretion by pigs of swine vesicular disease virus. J Hyg (Lond). 1974;72(1):61–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dekker A, Moonen P, de Boer-Luijtze EA, Terpstra C. Pathogenesis of swine vesicular disease after exposure of pigs to an infected environment. Vet Microbiol. 1995;45(2–3):243–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sellers RF, Herniman KA. The effects of spraying on the amounts of airborne foot-and-mouth disease virus present in loose-boxes. J Hyg (Lond). 1972;70(3):551–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okuno Y, Igarashi A, Fukunaga T, Tadano M, Fukai K. Electron microscopic observation of a newly isolated flavivirus-like virus from field-caught mosquitoes. J Gen Virol. 1984;65(Pt 4):803–7.

    Article 
    PubMed 

    Google Scholar
     

  • Garcia-Nicolas O, Braun RO, Milona P, Lewandowska M, Dijkman R, Alves MP, Summerfield A. Targeting of the nasal mucosa by japanese encephalitis virus for non-vector-borne transmission. J Virol. 2018;92:24.

    Article 

    Google Scholar
     

  • Lyons AC, Huang YS, Park SL, Ayers VB, Hettenbach SM, Higgs S, McVey DS, Noronha L, Hsu WW, Vanlandingham DL. Shedding of Japanese encephalitis virus in oral fluid of infected swine. Vector Borne Zoonotic Dis. 2018;18(9):469–74.

    Article 
    PubMed 

    Google Scholar
     

  • Park SL, Huang YS, Lyons AC, Ayers VB, Hettenbach SM, McVey DS, Burton KR, Higgs S, Vanlandingham DL. North American domestic pigs are susceptible to experimental infection with Japanese encephalitis virus. Sci Rep. 2018;8(1):7951.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ricklin ME, Garcia-Nicolas O, Brechbuhl D, Python S, Zumkehr B, Nougairede A, Charrel RN, Posthaus H, Oevermann A, Summerfield A. Vector-free transmission and persistence of Japanese encephalitis virus in pigs. Nat Commun. 2016;7:10832.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chai C, Palinski R, Xu Y, Wang Q, Cao S, Geng Y, Zhao Q, Wen Y, Huang X, Yan Q, et al. Aerosol and contact transmission following intranasal infection of mice with Japanese encephalitis virus. Viruses. 2019;11(1):87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turlewicz-Podbielska H, Pomorska-Mol M. Porcine coronaviruses: overview of the state of the art. Virol Sin. 2021;36(5):833–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cantero M, Carlero D, Chichon FJ, Martin-Benito J, De Pablo PJ. Monitoring SARS-CoV-2 surrogate TGEV individual virions structure survival under harsh physicochemical environments. Cells. 2022;11(11):1759.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laude H, Van Reeth K, Pensaert M. Porcine respiratory coronavirus: molecular features and virus-host interactions. Vet Res. 1993;24(2):125–50.

    CAS 
    PubMed 

    Google Scholar
     

  • Jung K, Alekseev KP, Zhang X, Cheon DS, Vlasova AN, Saif LJ. Altered pathogenesis of porcine respiratory coronavirus in pigs due to immunosuppressive effects of dexamethasone: implications for corticosteroid use in treatment of severe acute respiratory syndrome coronavirus. J Virol. 2007;81(24):13681–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Reeth K, Labarque G, Nauwynck H, Pensaert M. Differential production of proinflammatory cytokines in the pig lung during different respiratory virus infections: correlations with pathogenicity. Res Vet Sci. 1999;67(1):47–52.

    Article 
    PubMed 

    Google Scholar
     

  • Costantini V, Lewis P, Alsop J, Templeton C, Saif LJ. Respiratory and fecal shedding of porcine respiratory coronavirus (PRCV) in sentinel weaned pigs and sequence of the partial S-gene of the PRCV isolates. Arch Virol. 2004;149(5):957–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bourgueil E, Hutet E, Cariolet R, Vannier P. Experimental infection of pigs with the porcine respiratory coronavirus (PRCV): measure of viral excretion. Vet Microbiol. 1992;31(1):11–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cox E, Hooyberghs J, Pensaert MB. Sites of replication of a porcine respiratory coronavirus related to transmissible gastroenteritis virus. Res Vet Sci. 1990;48(2):165–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keep S, Carr BV, Lean FZX, Fones A, Newman J, Dowgier G, Freimanis G, Vatzia E, Polo N, Everest H, et al. Porcine respiratory coronavirus as a model for acute respiratory coronavirus disease. Front Immunol. 2022;13: 867707.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cox CS. Airborne bacteria and viruses. Sci Prog. 1989;73(292 Pt 4):469–99.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Li X, Lyu K, Zhao X, Zhang F, Liu D, Zhao Y, Gao F, Hu J, Xu D. Exploring the transmission path, influencing factors and risk of aerosol transmission of SARS-CoV-2 at Xi’an Xianyang International Airport. Int J Environ Res Public Health. 2023;20(1):865.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brownstein JS, Holford TR, Fish D. Enhancing West Nile virus surveillance. U S Emerg Infect Dis. 2004;10(6):1129–33.

    Article 
    PubMed 

    Google Scholar
     

  • Silva RR, Ribeiro CJN, Moura TR, Santos MB, Santos AD, Tavares DS, Santos PL. Basic sanitation: a new indicator for the spread of COVID-19? Trans R Soc Trop Med Hyg. 2021;115(7):832–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson BD, Lednicky JA, Torremorell M, Gray GC. The use of bioaerosol sampling for airborne virus surveillance in swine production facilities: a mini review. Front Vet Sci. 2017;4:121.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu X, Xiao L, Lin H, Chen S, Yang M, An W, Wang Y, Yang Z, Yao X, Tang Z. Development and application of a droplet digital polymerase chain reaction (ddPCR) for detection and investigation of African swine fever virus. Can J Vet Res. 2018;82(1):70–4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou T, Deng J, Li X, Zhang S, Chen L, Hao L, Zhuang J, Wang H, Zhang G, Ge S, et al. Development of a fluorescent probe hydrolysis-insulated isothermal PCR for rapid and sensitive on-site detection of African swine fever virus. Virol Sin. 2022;37(3):462–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee I, Seok Y, Jung H, Yang B, Lee J, Kim J, Pyo H, Song CS, Choi W, Kim MG, et al. Integrated bioaerosol sampling/monitoring platform: field-deployable and rapid detection of airborne viruses. ACS Sens. 2020;5(12):3915–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li S, Li B, Li X, Liu C, Qi X, Gu Y, Lin B, Sun L, Chen L, Han B, et al. An ultrasensitive and rapid “sample-to-answer” microsystem for on-site monitoring of SARS-CoV-2 in aerosols using “in situ” tetra-primer recombinase polymerase amplification. Biosens Bioelectron. 2023;219: 114816.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alonso C, Murtaugh MP, Dee SA, Davies PR. Epidemiological study of air filtration systems for preventing PRRSV infection in large sow herds. Prev Vet Med. 2013;112(1–2):109–17.

    Article 
    PubMed 

    Google Scholar
     

  • Alonso C, Davies PR, Polson DD, Dee SA, Lazarus WF. Financial implications of installing air filtration systems to prevent PRRSV infection in large sow herds. Prev Vet Med. 2013;111(3–4):268–77.

    Article 
    PubMed 

    Google Scholar
     

  • Boonrattanakij N, Yomchinda S, Lin FJ, Bellotindos LM, Lu MC. Investigation and disinfection of bacteria and fungi in sports fitness center. Environ Sci Pollut Res Int. 2021;28(37):52576–86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jefri U, Khan A, Lim YC, Lee KS, Liew KB, Kassab YW, Choo CY, Al-Worafi YM, Ming LC, Kalusalingam A. A systematic review on chlorine dioxide as a disinfectant. J Med Life. 2022;15(3):313–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei R, Wang X, Cao Y, Gong L, Liu X, Zhang G, Guo C. Chlorine dioxide inhibits African swine fever virus by blocking viral attachment and destroying viral nucleic acids and proteins. Front Vet Sci. 2022;9: 844058.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng Z, Cao SJ, Wang J, Kumar P, Haghighat F. Indoor airborne disinfection with electrostatic disinfector (ESD): numerical simulations of ESD performance and reduction of computing time. Build Environ. 2021;200: 107956.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao J, Zhang Y, Chen Q, Yao M, Pei R, Wang Y, Yue Y, Huang Y, Wang J, Guan W. Ozone gas inhibits SARS-CoV-2 transmission and provides possible control measures. Aerosol Sci Eng. 2021;5(4):516–23.

    Article 

    Google Scholar
     

  • Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol. 2006;6(2):148–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link