Scientific Papers

Reduced graphene oxide coated alginate scaffolds: potential for cardiac patch application | Biomaterials Research

Description of Image

  • Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, et al. Heart disease and stroke statistics-2022 update: a report from the American heart association. Circulation. 2022;145:E153-639.

    Article 

    Google Scholar
     

  • Cahill TJ, Kharbanda RK. Heart failure after myocardial infarction in the era of primary percutaneous coronary intervention: mechanisms, incidence and identification of patients at risk. World J Cardiol. 2017;9(5):407–15.

    Article 

    Google Scholar
     

  • Yu J, Christman KL, Chin E, Sievers RE, Saeed M, Lee RJ. Restoration of left ventricular geometry and improvement of left ventricular function in a rodent model of chronic ischemic cardiomyopathy. J Thorac Cardiovasc Surg. 2009;137(1):180–7.

    Article 

    Google Scholar
     

  • Mousavi A, Vahdat S, Baheiraei N, Razavi M, Norahan MH, Baharvand H. Multifunctional conductive biomaterials as promising platforms for cardiac tissue engineering. ACS Biomater Sci Eng. 2021;7(1):55–82.

    Article 
    CAS 

    Google Scholar
     

  • Liew LC, Ho BX, Soh BS. Mending a broken heart: current strategies and limitations of cell-based therapy. Stem Cell Res Ther. 2020;11:1–15.

  • Shin SR, Zihlmann C, Akbari M, Assawes P, Cheung L, Zhang K, et al. Reduced graphene oxide-GelMA hybrid hydrogels as scaffolds for cardiac tissue engineering. Small. 2016;12(27):3677–89.

    Article 
    CAS 

    Google Scholar
     

  • Bellamy V, Vanneaux V, Bel A, Nemetalla H, Emmanuelle Boitard S, Farouz Y, et al. Long-term functional benefits of human embryonic stem cell-derived cardiac progenitors embedded into a fibrin scaffold. J Hear Lung Transplant. 2015;34(9):1198–207.

    Article 

    Google Scholar
     

  • Liberski A, Latif N, Raynaud C, Bollensdorff C, Yacoub M. Alginate for cardiac regeneration: from seaweed to clinical trials. Glob Cardiol Sci Pract. 2016;2016(1):e201604. Cited 17 Aug 2023 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5642828/.


    Google Scholar
     

  • Choy JS, Leng S, Acevedo-Bolton G, Shaul S, Fu L, Guo X, et al. Efficacy of intramyocardial injection of Algisyl-LVR for the treatment of ischemic heart failure in swine. Int J Cardiol. 2018;255:129–35.

    Article 

    Google Scholar
     

  • Lee RJ, Hinson A, Bauernschmitt R, Matschke K, Fang Q, Mann DL, et al. The feasibility and safety of Algisyl-LVRTM as a method of left ventricular augmentation in patients with dilated cardiomyopathy: Initial first in man clinical results. Int J Cardiol. 2015;199:18–24.

    Article 

    Google Scholar
     

  • Anker SD, Coats AJS, Cristian G, Dragomir D, Pusineri E, Piredda M, et al. A prospective comparison of alginate-hydrogel with standard medical therapy to determine impact on functional capacity and clinical outcomes in patients with advanced heart failure (AUGMENT-HF trial). Eur Heart J. 2015;36:2297–309. https://doi.org/10.1093/eurheartj/ehv259. Cited 17 Aug 2023.

    Article 
    CAS 

    Google Scholar
     

  • Norahan MH, Amroon M, Ghahremanzadeh R, Mahmoodi M, Baheiraei N. Electroactive graphene oxide-incorporated collagen assisting vascularization for cardiac tissue engineering. J Biomed Mater Res Part A. 2019;107:204–19. https://doi.org/10.1002/jbm.a.36555. Cited 6 May 2023.

    Article 
    CAS 

    Google Scholar
     

  • Baheiraei N, Gharibi R, Yeganeh H, Miragoli M, Salvarani N, Di Pasquale E, et al. Electroactive polyurethane/siloxane derived from castor oil as a versatile cardiac patch, part II: HL-1 cytocompatibility and electrical characterizations. J Biomed Mater Res – Part A. 2016;104(6):1398–407.

    Article 
    CAS 

    Google Scholar
     

  • Baheiraei N, Gharibi R, Yeganeh H, Miragoli M, Salvarani N, Di Pasquale E, et al. Electroactive polyurethane/siloxane derived from castor oil as a versatile cardiac patch, part I: Synthesis, characterization, and myoblast proliferation and differentiation. J Biomed Mater Res – Part A. 2016;104(3):775–87.

    Article 
    CAS 

    Google Scholar
     

  • Baheiraei N, Yeganeh H, Ai J, Gharibi R, Azami M, Faghihi F. Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application. Mater Sci Eng C. 2014;44:24–37.

    Article 
    CAS 

    Google Scholar
     

  • Baheiraei N, Yeganeh H, Ai J, Gharibi R, Ebrahimi-Barough S, Azami M, et al. Preparation of a porous conductive scaffold from aniline pentamer-modified polyurethane/PCL blend for cardiac tissue engineering. J Biomed Mater Res – Part A. 2015;103(10):3179–87.

    Article 
    CAS 

    Google Scholar
     

  • Baei P, Hosseini M, Baharvand H, Pahlavan S. Electrically conductive materials for in vitro cardiac microtissue engineering. J Biomed Mater Res – Part A. 2020;108(5):1203–13.

    Article 
    CAS 

    Google Scholar
     

  • Parchehbaf-Kashani M, Sepantafar M, Talkhabi M, Sayahpour FA, Baharvand H, Pahlavan S, et al. Design and characterization of an electroconductive scaffold for cardiomyocytes based biomedical assays. Mater Sci Eng C. 2020;109:110603.

    Article 
    CAS 

    Google Scholar
     

  • Shin SR, Li YC, Jang HL, Khoshakhlagh P, Akbari M, Nasajpour A, et al. Graphene-based materials for tissue engineering. Adv Drug Deliv Rev. 2016;105:255–74.

  • Zargar SM, Mehdikhani M, Rafienia M. Reduced graphene oxide–reinforced gellan gum thermoresponsive hydrogels as a myocardial tissue engineering scaffold. 2019;34:331–45. https://doi.org/10.1177/0883911519876080. Cited 16 Aug 2023.

  • Vannozzi L, Catalano E, Telkhozhayeva M, Teblum E, Yarmolenko A, Avraham ES, et al. Graphene oxide and reduced graphene oxide nanoflakes coated with glycol chitosan, propylene glycol alginate, and polydopamine: characterization and cytotoxicity in human chondrocytes. Nanomater. 2021;11:2105. Available from: https://www.mdpi.com/2079-4991/11/8/2105/htm. Cited 17 Aug 2023.

  • Park J, Kim YS, Ryu S, Kang WS, Park S, Han J, et al. Graphene potentiates the myocardial repair efficacy of mesenchymal stem cells by stimulating the expression of angiogenic growth factors and gap junction protein. Adv Funct Mater. 2015;25(17):2590–600.

    Article 
    CAS 

    Google Scholar
     

  • Ahmad Raus R, Wan Nawawi WMF, Nasaruddin RR. Alginate and alginate composites for biomedical applications. Asian J Pharm Sci. 2021;16(3):280–306.

    Article 

    Google Scholar
     

  • Farshidfar N, Iravani S, Varma RS. Alginate-based biomaterials in tissue engineering and regenerative medicine. Mar Drugs. 2023;21(3):189.

    Article 
    CAS 

    Google Scholar
     

  • Khalaf Reyad Raslan A. Design and evaluation of novel electroconductive alginate hydrogels based on graphene oxide and reduced graphene oxide with applications in tissue engineering. 2022;1. Available from: https://dialnet.unirioja.es/servlet/tesis?codigo=315150&info=resumen&idioma=SPA. Cited 17 Aug 2023.

  • Mousavi A, Mashayekhan S, Baheiraei N, Pourjavadi A. Biohybrid oxidized alginate/myocardial extracellular matrix injectable hydrogels with improved electromechanical properties for cardiac tissue engineering. Int J Biol Macromol. 2021;180:692–708.

    Article 
    CAS 

    Google Scholar
     

  • Karimi Hajishoreh N, Baheiraei N, Naderi N, Salehnia M. Reduced graphene oxide facilitates biocompatibility of alginate for cardiac repair. J Bioact Compat Polym. 2020;35(4–5):363–77.

    Article 
    CAS 

    Google Scholar
     

  • Karimi Hajishoreh N, Baheiraei N, Naderi N, Salehnia M, Razavi M. Left ventricular geometry and angiogenesis improvement in rat chronic ischemic cardiomyopathy following injection of encapsulated mesenchymal stem cells. Cell J. 2022;24(12):741.


    Google Scholar
     

  • Mahmoudi M, Zhao M, Matsuura Y, Laurent S, Yang PC, Bernstein D, et al. Infection-resistant MRI-visible scaffolds for tissue engineering applications. BioImpacts. 2016;6(2):111.

    Article 
    CAS 

    Google Scholar
     

  • Geetha Bai R, Ninan N, Muthoosamy K, Manickam S. Graphene: a versatile platform for nanotheranostics and tissue engineering. Prog Mater Sci. 2018;91:24–69.

    Article 
    CAS 

    Google Scholar
     

  • Park J, Kim B, Han J, Oh J, Park S, Ryu S, et al. Graphene oxide flakes as a cellular adhesive: prevention of reactive oxygen species mediated death of implanted cells for cardiac repair. ACS Nano. 2015;9(5):4987–99.

    Article 
    CAS 

    Google Scholar
     

  • Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010;4(10):5731–6.

    Article 
    CAS 

    Google Scholar
     

  • Xu WP, Zhang LC, Li JP, Lu Y, Li HH, Ma YN, et al. Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. J Mater Chem. 2011;21(12):4593–7.

    Article 
    CAS 

    Google Scholar
     

  • Shuai C, Guo W, Wu P, Yang W, Hu S, Xia Y, et al. A graphene oxide-Ag co-dispersing nanosystem: dual synergistic effects on antibacterial activities and mechanical properties of polymer scaffolds. Chem Eng J. 2018;347:322–33.

    Article 
    CAS 

    Google Scholar
     

  • Qiu Y, Wang Z, Owens ACE, Kulaots I, Chen Y, Kane AB, et al. Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale. 2014;6(20):11744–55.

    Article 
    CAS 

    Google Scholar
     

  • Sun Y. Myocardial repair/remodelling following infarction: roles of local factors. Cardiovasc Res. 2009;81(3):482–90.

    Article 
    CAS 

    Google Scholar
     

  • Edrisi F, Baheiraei N, Razavi M, Roshanbinfar K, Imani R, Jalilinejad N. Potential of graphene-based nanomaterials for cardiac tissue engineering. J Mater Chem B. 2023;11:7280–99. Available from: https://pubs.rsc.org/en/content/articlehtml/2023/tb/d3tb00654a. Cited 17 Aug 2023.

  • Li C, Wang X, Chen F, Zhang C, Zhi X, Wang K, et al. The antifungal activity of graphene oxide-silver nanocomposites. Biomaterials. 2013;34(15):3882–90.

    Article 
    CAS 

    Google Scholar
     

  • Kanayama I, Miyaji H, Takita H, Nishida E, Tsuji M, Fugetsu B, et al. Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide. Int J Nanomedicine. 2014.

  • Jia L, Duan Z, Fan D, Mi Y, Hui J, Chang L. Human-like collagen/nano-hydroxyapatite scaffolds for the culture of chondrocytes. Mater Sci Eng C. 2013;2:727–34.

  • Norahan MH, Pourmokhtari M, Saeb MR, Bakhshi B, Soufi Zomorrod M, Baheiraei N. Electroactive cardiac patch containing reduced graphene oxide with potential antibacterial properties. Mater Sci Eng C. 2019;104:109921.

    Article 
    CAS 

    Google Scholar
     

  • Thangavel P, Kannan R, Ramachandran B, Moorthy G, Suguna L, Muthuvijayan V. Development of reduced graphene oxide (rGO)-isabgol nanocomposite dressings for enhanced vascularization and accelerated wound healing in normal and diabetic rats. J Colloid Interface Sci. 2018;517:251–64.

    Article 
    CAS 

    Google Scholar
     

  • Zare Jalise S, Baheiraei N, Bagheri F. The effects of strontium incorporation on a novel gelatin/bioactive glass bone graft: In vitro and in vivo characterization. Ceram Int. 2018;44:14217.

    Article 
    CAS 

    Google Scholar
     

  • Anggorowati N, Kurniasari CR, Damayanti K, Cahyanti T, Widodo I, Ghozali A, Romi MM, Sari DC, Arfian N. Histochemical and immunohistochemical study of α-SMA, collagen, and PCNA in epithelial ovarian neoplasm. Asian Pac J Cancer Prev. 2017;18(3):667.


    Google Scholar
     

  • Ahmad Fauzi MF, Wan Ahmad WS, Jamaluddin MF, Lee JT, Khor SY, Looi LM, Abas FS, Aldahoul N. Allred scoring of ER-IHC stained whole-slide images for hormone receptor status in breast carcinoma. Diagnostics. 2022;12(12):3093.

    Article 
    CAS 

    Google Scholar
     

  • Siburian R, Sihotang H, Lumban Raja S, Supeno M, Simanjuntak C. New route to synthesize of graphene nano sheets. Orient J Chem. 2018.

  • Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon N Y. 2013;53:38–49.

  • Wang F, Wu Y, Huang Y. Novel application of graphene oxide to improve hydrophilicity and mechanical strength of aramid nanofiber hybrid membrane. Compos Part A Appl Sci Manuf. 2018;110:126–32.

    Article 
    CAS 

    Google Scholar
     

  • Soltani S, Emadi R, Javanmard SH, Kharaziha M, Rahmati A, Thakur VK, et al. Development of an injectable shear-thinning nanocomposite hydrogel for cardiac tissue engineering. Gels. 2022;8(2):121.

    Article 
    CAS 

    Google Scholar
     

  • Wang Q, Hu X, Du Y, Kennedy JF. Alginate/starch blend fibers and their properties for drug controlled release. Carbohydr Polym. 2010.

  • Yang G, Zhang L, Peng T, Zhong W. Effects of Ca2+ bridge cross-linking on structure and pervaporation of cellulose/alginate blend membranes. J Memb Sci. 2000;175(1):53–60.

    Article 
    CAS 

    Google Scholar
     

  • Long R, Zhou S, Wiley BJ, Xiong Y. Oxidative etching for controlled synthesis of metal nanocrystals: Atomic addition and subtraction. Chem Soc Rev. 2014;43(17):6288–310.

    Article 
    CAS 

    Google Scholar
     

  • Fakhrali A, Nasari M, Poursharifi N, Semnani D, Salehi H, Ghane M, et al. Biocompatible graphene-embedded PCL/PGS-based nanofibrous scaffolds: a potential application for cardiac tissue regeneration. J Appl Polym Sci. 2021;138(40):51177.

    Article 
    CAS 

    Google Scholar
     

  • Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release. 2014;173:75–88.

    Article 
    CAS 

    Google Scholar
     

  • Syama S, Mohanan PV. Comprehensive application of graphene: emphasis on biomedical concerns. Nano-Micro Lett. 2019;11:1–31.

    Article 

    Google Scholar
     

  • Dattola E, Parrotta EI, Scalise S, Perozziello G, Limongi T, Candeloro P, et al. Development of 3D PVA scaffolds for cardiac tissue engineering and cell screening applications. RSC Adv. 2019;9:4246–57. Available from: https://pubs.rsc.org/en/content/articlehtml/2019/ra/c8ra08187e. Cited 19 Aug 2023.

  • Salem AK, Stevens R, Pearson RG, Davies MC, Tendler SJB, Roberts CJ, et al. Interactions of 3T3 fibroblasts and endothelial cells with defined pore features. J Biomed Mater Res. 2002;61:212–7. https://doi.org/10.1002/jbm.10195. Cited 17 Aug 2023.

    Article 
    CAS 

    Google Scholar
     

  • Chakraborty S, Ponrasu T, Chandel S, Dixit M, Muthuvijayan V. Reduced graphene oxide-loaded nanocomposite scaffolds for enhancing angiogenesis in tissue engineering applications. [Cited 17 Aug 2023]; Available from: http://dx.doi.org/10.1098/rsos.172017Electronicsupplementarymaterialisavailableonlineat. https://dx.doi.org/10.6084/m9.figshare.c.4068755.

  • Tamada Y, Ikada Y. Fibroblast growth on polymer surfaces and biosynthesis of collagen. J Biomed Mater Res. 1994;28(7):783–9.

    Article 
    CAS 

    Google Scholar
     

  • Rivers TJ, Hudson TW, Schmidt CE. Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications. Adv Funct Mater. 2002;12(1):33–7.

    Article 
    CAS 

    Google Scholar
     

  • Kumar S, Raj S, Kolanthai E, Sood AK, Sampath S, Chatterjee K. Chemical functionalization of graphene to augment stem cell osteogenesis and inhibit biofilm formation on polymer composites for orthopedic applications. ACS Appl Mater Interfaces. 2015;7(5):3237–52.

    Article 
    CAS 

    Google Scholar
     

  • Wei X, Wang L, Duan C, Chen K, Li X, Guo X, et al. Cardiac patches made of brown adipose-derived stem cell sheets and conductive electrospun nanofibers restore infarcted heart for ischemic myocardial infarction. Bioact Mater. 2023;27:271–87.

    CAS 

    Google Scholar
     

  • Castilla-Cortázar I, Más-Estellés J, Meseguer-Dueñas JM, Escobar Ivirico JL, Marí B, Vidaurre A. Hydrolytic and enzymatic degradation of a poly(ε-caprolactone) network. Polym Degrad Stab. 2012;97:1241–8.

    Article 

    Google Scholar
     

  • Fukuzaki H, Yoshida M, Asano M, Kumakura M, Mashimo T, Yuasa H, et al. Synthesis of low-molecular-weight copoly(l-lactic acid/ɛ-caprolactone) by direct copolycondensation in the absence of catalysts, and enzymatic degradation of the polymers. Polymer (Guildf). 1990;31:2006–14.

    Article 
    CAS 

    Google Scholar
     

  • Gan Z, Liang Q, Zhang J, Jing X. Enzymatic degradation of poly(ε-caprolactone) film in phosphate buffer solution containing lipases. Polym Degrad Stab. 1997;56:209–13.

    Article 
    CAS 

    Google Scholar
     

  • Lee JW, Serna F, Nickels J, Schmidt CE. Carboxylic acid-functionalized conductive polypyrrole as a bioactive platform for cell adhesion. Biomacromol. 2006;7(6):1692–5.

    Article 
    CAS 

    Google Scholar
     

  • Shapira A, Feiner R, Dvir T. Composite biomaterial scaffolds for cardiac tissue engineering. Int Mater Rev. 2016;61(1):1–9.

    Article 
    CAS 

    Google Scholar
     

  • Vunjak-Novakovic G, Tandon N, Godier A, Maidhof R, Marsano A, Martens TP, et al. Challenges in cardiac tissue engineering. Tissue Eng Part B Rev. 2010;16(2):169–87.

    Article 

    Google Scholar
     

  • Zhang C, Wang X, Fan S, Lan P, Cao C, Zhang Y. Silk fibroin/reduced graphene oxide composite mats with enhanced mechanical properties and conductivity for tissue engineering. Colloids Surfaces B Biointerfaces. 2021;197:111444.

    Article 
    CAS 

    Google Scholar
     

  • Norahan MH, Amroon M, Ghahremanzadeh R, Rabiee N, Baheiraei N. Reduced graphene oxide: osteogenic potential for bone tissue engineering. IET Nanobiotechnol. 2019;13(7):720–5.

    Article 

    Google Scholar
     

  • Karimi SNH, Aghdam RM, Ebrahimi SAS, Chehrehsaz Y. Tri-layered alginate/poly(ε-caprolactone) electrospun scaffold for cardiac tissue engineering. Polym Int. 2022;71:1099–108. https://doi.org/10.1002/pi.6371. Cited 17 Aug 2023.

    Article 
    CAS 

    Google Scholar
     

  • Jawad H, Ali NN, Lyon AR, Chen QZ, Harding SE, Boccaccini AR. Myocardial tissue engineering: a review. J Tissue Eng Regen Med. 2007;1:327–42. https://doi.org/10.1002/term.46. Cited 17 Aug 2023.

    Article 
    CAS 

    Google Scholar
     

  • Roshanbinfar K, Vogt L, Ruther F, Roether JA, Boccaccini AR, Engel FB. Nanofibrous composite with tailorable electrical and mechanical properties for cardiac tissue engineering. Adv Funct Mater. 2020;30:1908612. https://doi.org/10.1002/adfm.201908612. Cited 17 Aug 2023.

    Article 
    CAS 

    Google Scholar
     

  • Shi X, Chang H, Chen S, Lai C, Khademhosseini A, Wu H. Regulating cellular behavior on few-layer reduced graphene oxide films with well-controlled reduction states. Adv Funct Mater. 2012;22(4):751–9.

    Article 
    CAS 

    Google Scholar
     

  • Jarosz A, Skoda M, Dudek I, Szukiewicz D. Oxidative stress and mitochondrial activation as the main mechanisms underlying graphene toxicity against human cancer Cells. Oxid Med Cell Longev. 2016.

  • Sasidharan A, Swaroop S, Chandran P, Nair S, Koyakutty M. Cellular and molecular mechanistic insight into the DNA-damaging potential of few-layer graphene in human primary endothelial cells. Nanomedicine Nanotechnology Biol Med. 2016;12(5):1347–55.

    Article 
    CAS 

    Google Scholar
     

  • Mukherjee S, Sriram P, Barui AK, Nethi SK, Veeriah V, Chatterjee S, et al. Graphene oxides show angiogenic properties. Adv Healthc Mater. 2015;4(11):1722–32.

    Article 
    CAS 

    Google Scholar
     

  • Thygesen K, Alpert JS, White HD. Universal definition of myocardial infarction. J Am Coll Cardiol. 2007;116(22):2634–53.


    Google Scholar
     

  • Ma N, Stamm C, Kaminski A, Li W, Kleine HD, Müller-Hilke B, et al. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res. 2005;66(1):45–54.

    Article 
    CAS 

    Google Scholar
     

  • Mehrabi A, Baheiraei N, Adabi M, Amirkhani Z. Development of a novel electroactive cardiac patch based on carbon nanofibers and gelatin encouraging vascularization. Appl Biochem Biotechnol. 2020;190:931–48.

    Article 

    Google Scholar
     

  • Ur Rehman SR, Augustine R, Zahid AA, Ahmed R, Tariq M, Hasan A. Reduced graphene oxide incorporated gelma hydrogel promotes angiogenesis for wound healing applications. Int J Nanomedicine. 2019.

  • Riela L, Cucci LM, Hansson Ö, Marzo T, La Mendola D, Satriano C. A graphene oxide-angiogenin theranostic nanoplatform for the therapeutic targeting of angiogenic processes: the effect of copper-supplemented medium. Inorganics. 2022;11:188–202.

    Article 
    CAS 

    Google Scholar
     

  • McDonald JR. Acute infective endocarditis. Infect Dis Clin North Am. 2009;23(3):643–64.

    Article 

    Google Scholar
     

  • Rangarajan D, Ramakrishnan S, Patro KC, Devaraj S, Krishnamurthy V, Kothari Y, et al. Native valve Escherichia coli endocarditis following urosepsis. Indian J Nephrol. 2013;23(3):232.

    Article 
    CAS 

    Google Scholar
     

  • Hu W, Peng C, Luo W, Lv M, Li X, Li D, et al. Graphene-based antibacterial paper. ACS Nano. 2010;4(7):4317–23.

    Article 
    CAS 

    Google Scholar
     

  • Palmieri V, Barba M, Di Pietro L, Gentilini S, Braidotti MC, Ciancico C, et al. Reduction and shaping of graphene-oxide by laser-printing for controlled bone tissue regeneration and bacterial killing. 2D Mater. 2018;5(1):015027.

    Article 

    Google Scholar
     

  • Pulingam T, Thong KL, Ali ME, Appaturi JN, Dinshaw IJ, Ong ZY, et al. Graphene oxide exhibits differential mechanistic action towards Gram-positive and Gram-negative bacteria. Colloids Surfaces B Biointerfaces. 2019;181:6–15.

    Article 
    CAS 

    Google Scholar
     

  • Ruiz ON, Fernando KAS, Wang B, Brown NA, Luo PG, McNamara ND, et al. Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano. 2011;5(10):8100–7.

    Article 
    CAS 

    Google Scholar
     

  • Chen J, Peng H, Wang X, Shao F, Yuan Z, Han H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale. 2014;6(3):1879–89.

    Article 
    CAS 

    Google Scholar
     

  • Sun Q, Ma H, Zhang J, You B, Gong X, Zhou X, et al. A self-sustaining antioxidant strategy for effective treatment of myocardial infarction. Adv Sci. 2023;10:2204999. https://doi.org/10.1002/advs.202204999. Cited 17 Aug 2023.

    Article 
    CAS 

    Google Scholar
     

  • Choe G, Kim SW, Park J, Park J, Kim S, Kim YS, et al. Anti-oxidant activity reinforced reduced graphene oxide/alginate microgels: mesenchymal stem cell encapsulation and regeneration of infarcted hearts. Biomaterials. 2019;225:119513.

    Article 
    CAS 

    Google Scholar
     

  • Mei X, Cheng K. Recent development in therapeutic cardiac patches. Front Cardiovasc Med. 2020;7:294.

    Article 

    Google Scholar
     

  • Description of Image

    Source link