Scientific Papers

A critical role of outer membrane vesicles in antibiotic resistance in carbapenem-resistant Klebsiella pneumoniae | Annals of Clinical Microbiology and Antimicrobials

Description of Image

  • Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017;215(Suppl_1):S28–36.

  • van Duin D, Doi Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence. 2017;8(4):460–9.

  • Zhang R, Liu L, Zhou H, Chan EW, Li J, Fang Y, et al. Nationwide surveillance of clinical carbapenem-resistant enterobacteriaceae (CRE) strains in China. EBioMedicine. 2017;19:98–106.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang R, Chan EW, Zhou H, Chen S. Prevalence and genetic characteristics of carbapenem-resistant Enterobacteriaceae strains in China. Lancet Infect Dis. 2017;17(3):256–7.

    Article 
    PubMed 

    Google Scholar
     

  • Yang Q, Jia X, Zhou M, Zhang H, Yang W, Kudinha T, et al. Emergence of ST11-K47 and ST11-K64 hypervirulent carbapenem-resistant Klebsiella pneumoniae in bacterial liver abscesses from China: a molecular, biological, and epidemiological study. Emerg Microbes Infect. 2020;9(1):320–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Y, Wu C, Wang B, Xu Y, Zhao H, Guo Y, et al. Characterization difference of typical KL1, KL2 and ST11-KL64 hypervirulent and carbapenem-resistant Klebsiella pneumoniae. Drug Resist Updates. 2023;67: 100918.

    Article 
    CAS 

    Google Scholar
     

  • Briaud P, Carroll RK. Extracellular vesicle biogenesis and functions in gram-positive bacteria. Infect Immun. 2020;88(12):e00433–20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deo P, Chow SH, Han ML, Speir M, Huang C, Schittenhelm RB, et al. Mitochondrial dysfunction caused by outer membrane vesicles from Gram-negative bacteria activates intrinsic apoptosis and inflammation. Nat Microbiol. 2020;5(11):1418–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol. 2015;13(10):605–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulkarni HM, Jagannadham MV. Biogenesis and multifaceted roles of outer membrane vesicles from Gram-negative bacteria. Microbiology (Reading, England). 2014;160(Pt 10):2109–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol. 2019;17(1):13–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ciofu O, Beveridge TJ, Kadurugamuwa J, Walther-Rasmussen J, Høiby N. Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J Antimicrob Chemother. 2000;45(1):9–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martínez MMB, Bonomo RA, Vila AJ, Maffía PC, González LJ. On the offensive: the role of outer membrane vesicles in the successful dissemination of New Delhi metallo-β-lactamase (NDM-1). mBio. 2021;12(5):e0183621.

  • Zhang X, Qian C, Tang M, Zeng W, Kong J, Fu C, et al. Carbapenemase-loaded outer membrane vesicles protect Pseudomonas aeruginosa by degrading imipenem and promoting mutation of antimicrobial resistance gene. Drug Resist Updates. 2023;68: 100952.

    Article 
    CAS 

    Google Scholar
     

  • Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol. 2005;43(8):4178–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang M, Liu X, Luo Q, Xu L, Chen F. An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy. J Nanobiotechnology. 2020;18(1):100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei ZQ, Du XX, Yu YS, Shen P, Chen YG, Li LJ. Plasmid-mediated KPC-2 in a Klebsiella pneumoniae isolate from China. Antimicrob Agents Chemother. 2007;51(2):763–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayakawa K, Nakano R, Hase R, Shimatani M, Kato H, Hasumi J, et al. Comparison between IMP carbapenemase-producing Enterobacteriaceae and non-carbapenemase-producing Enterobacteriaceae: a multicentre prospective study of the clinical and molecular epidemiology of carbapenem-resistant Enterobacteriaceae. J Antimicrob Chemother. 2020;75(3):697–708.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hagiya H, Yamamoto N, Kawahara R, Akeda Y, Shanmugakani RK, Ueda A, et al. Risk factors for fecal carriage of IMP-6-producing Enterobacteriaceae at a long-term care hospital in Japan: a follow-up report from the northern Osaka multicentre study group. J Infect Chemother. 2018;24(9):769–72.

    Article 
    PubMed 

    Google Scholar
     

  • Liu Y, Long D, Xiang TX, Du FL, Wei DD, Wan LG, et al. Whole genome assembly and functional portrait of hypervirulent extensively drug-resistant NDM-1 and KPC-2 co-producing Klebsiella pneumoniae of capsular serotype K2 and ST86. J Antimicrob Chemother. 2019;74(5):1233–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao W, De Wang L, Li D, Du FL, Long D, Liu Y, et al. High prevalence of 16s rRNA methylase genes among carbapenem-resistant hypervirulent Klebsiella pneumoniae isolates in a Chinese Tertiary Hospital. Microbial drug resistance (Larchmont, NY). 2021;27(1):44–52.

    Article 
    CAS 

    Google Scholar
     

  • Liu J, Du SX, Zhang JN, Liu SH, Zhou YY, Wang XR. Spreading of extended-spectrum β-lactamase-producing Escherichia coli ST131 and Klebsiella pneumoniae ST11 in patients with pneumonia: a molecular epidemiological study. Chin Med J. 2019;132(16):1894–902.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu W, Espedido B, Feng Y, Zong Z. Citrobacter freundii carrying blaKPC-2 and blaNDM-1: characterization by whole genome sequencing. Sci Rep. 2016;6:30670.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marsh JW, Mustapha MM, Griffith MP, Evans DR, Ezeonwuka C, Pasculle AW, et al. Evolution of outbreak-causing carbapenem-resistant Klebsiella pneumoniae ST258 at a tertiary care hospital over 8 years. mBio. 2019;10(5):e01945–19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao W, Liu Y, Zhang W. Virulence evolution, molecular mechanisms of resistance and prevalence of ST11 carbapenem-resistant Klebsiella pneumoniae in China: a review over the last 10 years. J Glob Antimicrob Resist. 2020;23:174–80.

    Article 
    PubMed 

    Google Scholar
     

  • Han Y, Huang L, Liu C, Huang X, Zheng R, Lu Y, et al. Characterization of carbapenem-resistant Klebsiella pneumoniae ST15 clone coproducing KPC-2, CTX-M-15 and SHV-28 spread in an intensive care unit of a Tertiary Hospital. Infect Drug Resist. 2021;14:767–73.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Hu C, Wang R, Li F, Sun G, Yang M, et al. Shift in the dominant sequence type of carbapenem-resistant Klebsiella pneumoniae bloodstream infection from ST11 to ST15 at a Medical Center in Northeast China, 2015–2020. Infect Drug Resist. 2021;14:1855–63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Q, Han R, Guo Y, Zheng Y, Yang Y, Yin D, et al. Emergence of ST15 Klebsiella pneumoniae clinical isolates producing plasmids-mediated RmtF and OXA-232 in China. Infect Drug Resist. 2020;13:3125–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schweizer C, Bischoff P, Bender J, Kola A, Gastmeier P, Hummel M, et al. Plasmid-mediated transmission of KPC-2 carbapenemase in enterobacteriaceae in critically ill patients. Front Microbiol. 2019;10:276.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang Y, Zhou Y, Meng C, Huang Y, Jiang X. Co-occurrence of a novel VIM-1 and FosA3-encoding multidrug-resistant plasmid and a KPC-2-encoding pKP048-like plasmid in a clinical isolate of Klebsiella pneumoniae sequence type 11. Infect Genet Evolut. 2020;85: 104479.

    Article 
    CAS 

    Google Scholar
     

  • Wu W, Feng Y, Tang G, Qiao F, McNally A, Zong Z. NDM Metallo-β-lactamases and their bacterial producers in health care settings. Clin Microbiol Rev. 2019;32(2):e00115–18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • An J, Guo L, Zhou L, Ma Y, Luo Y, Tao C, et al. NDM-producing Enterobacteriaceae in a Chinese hospital, 2014–2015: identification of NDM-producing Citrobacterwerkmanii and acquisition of blaNDM-1-carrying plasmid in vivo in a clinical Escherichia coli isolate. J Med Microbiol. 2016;65(11):1253–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Tong MK, Chow KH, Cheng VC, Tse CW, Wu AK, et al. Occurrence of highly conjugative IncX3 epidemic plasmid carrying bla (NDM) in Enterobacteriaceae isolates in geographically widespread areas. Front Microbiol. 2018;9:2272.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bielaszewska M, Daniel O, Karch H, Mellmann A. Dissemination of the blaCTX-M-15 gene among Enterobacteriaceae via outer membrane vesicles. J Antimicrob Chemother. 2020;75(9):2442–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao YT, Kuo SC, Chiang MH, Lee YT, Sung WC, Chen YH, et al. Acinetobacter baumannii Extracellular OXA-58 is primarily and selectively released via outer membrane vesicles after sec-dependent periplasmic translocation. Antimicrob Agents Chemother. 2015;59(12):7346–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devos S, Stremersch S, Raemdonck K, Braeckmans K, Devreese B. Intra- and interspecies effects of outer membrane vesicles from Stenotrophomonas maltophilia on β-lactam resistance. Antimicrob Agents Chemother. 2016;60(4):2516–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • González LJ, Bahr G, Nakashige TG, Nolan EM, Bonomo RA, Vila AJ. Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase. Nat Chem Biol. 2016;12(7):516–22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Eagen WJ, Lee JC. Orchestration of human macrophage NLRP3 inflammasome activation by Staphylococcus aureus extracellular vesicles. Proc Natl Acad Sci USA. 2020;117(6):3174–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z, Wen Z, Jiang M, Xia F, Wang M, Zhuge X, et al. Dissemination of virulence and resistance genes among Klebsiella pneumoniae via outer membrane vesicle: an important plasmid transfer mechanism to promote the emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Transbound Emerg Dis. 2022;69(5):e2661–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Description of Image

    Source link