Scientific Papers

High-precision detection and navigation surgery of colorectal cancer micrometastases | Journal of Nanobiotechnology

Description of Image

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. Ca-Cancer J Clin. 2021;71:209–49.

    Article 
    PubMed 

    Google Scholar
     

  • Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394:1467–80.

    Article 
    PubMed 

    Google Scholar
     

  • Orosco RK, Tapia VJ, Califano JA, Clary B, Cohen EEW, Kane C, Lippman SM, Messer K, Molinolo A, Murphy JD, et al. Positive surgical margins in the 10 most common solid cancers. Sci Rep. 2018;8:5686.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amri R, Bordeianou LG, Sylla P, Berger DL. Association of radial margin positivity with colon cancer. JAMA Surg. 2015;150:890–8.

    Article 
    PubMed 

    Google Scholar
     

  • Peeters KC, Marijnen CA, Nagtegaal ID, Kranenbarg EK, Putter H, Wiggers T, Rutten H, Pahlman L, Glimelius B, Leer JW, van de Velde CJ. The TME trial after a median follow-up of 6 years: increased local control but no survival benefit in irradiated patients with resectable rectal carcinoma. Ann Surg. 2007;246:693–701.

    Article 
    PubMed 

    Google Scholar
     

  • Morris VK, Kennedy EB, Baxter NN, Benson AB 3, Cercek A, Cho M, Ciombor KK, Cremolini C, Davis A, Deming DA, et al. Treatment of metastatic colorectal cancer: ASCO guideline. J Clin Oncol. 2023;41:678–700.

    Article 
    PubMed 

    Google Scholar
     

  • Quénet F, Elias D, Roca L, Goéré D, Ghouti L, Pocard M, Facy O, Arvieux C, Lorimier G, Pezet D, et al. Cytoreductive Surgery plus hyperthermic intraperitoneal chemotherapy versus cytoreductive Surgery alone for colorectal peritoneal metastases (PRODIGE 7): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22:256–66.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu S, Hu Z, Tian R, Yung BC, Yang Q, Zhao S, Kiesewetter DO, Niu G, Sun H, Antaris AL, Chen X. Repurposing cyanine NIR-I dyes accelerates clinical translation of Near-Infrared-II (NIR-II) bioimaging. Adv Mater. 2018;30:e1802546.

    Article 

    Google Scholar
     

  • Zhu S, Yung BC, Chandra S, Niu G, Antaris AL, Chen X, Near-Infrared. -II (NIR-II) Bioimaging via off-peak NIR-I fluorescence Emission. Theranostics. 2018;8:4141–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antaris AL, Chen H, Cheng K, Sun Y, Hong G, Qu C, Diao S, Deng Z, Hu X, Zhang B, et al. A small-molecule dye for NIR-II imaging. Nat Mater. 2016;15:235–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han T, Wang Y, Ma S, Li M, Zhu N, Tao S, Xu J, Sun B, Jia Y, Zhang Y, et al. Near-infrared carbonized polymer dots for NIR-II bioimaging. Adv Sci. 2022;9:e2203474.

    Article 

    Google Scholar
     

  • Tian R, Ma H, Zhu S, Lau J, Ma R, Liu Y, Lin L, Chandra S, Wang S, Zhu X, et al. Multiplexed NIR-II probes for lymph node-invaded cancer detection and imaging-guided surgery. Adv Mater. 2020;32:e1907365.

    Article 
    PubMed 

    Google Scholar
     

  • Hong G, Lee JC, Robinson JT, Raaz U, Xie L, Huang NF, Cooke JP, Dai H. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med. 2012;18:1841–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang R, Zhou L, Wang W, Li X, Zhang F. In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers. Nat Commun. 2017;8:14702.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJ, Frangioni JV. Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol. 2013;10:507–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan J, Wang S, Yan B, Tang Y, Zheng J, Ji H, Hu Y, Zhuang B, Deng H, Yan J. Indocyanine green for radical lymph node dissection in patients with sigmoid and rectal cancer: randomized clinical trial. BJS Open. 2022;6:zrac151.

    Article 
    PubMed Central 

    Google Scholar
     

  • Chen QY, Xie JW, Zhong Q, Wang JB, Lin JX, Lu J, Cao LL, Lin M, Tu RH, Huang ZN, et al. Safety and Efficacy of indocyanine green tracer-guided lymph node dissection during laparoscopic radical gastrectomy in patients with gastric cancer: a randomized clinical trial. JAMA Surg. 2020;155:300–11.

    Article 
    PubMed 

    Google Scholar
     

  • He K, Hong X, Chi C, Cai C, An Y, Li P, Liu X, Shan H, Tian J, Li J. Efficacy of near-Infrared fluorescence-guided hepatectomy for the detection of colorectal liver metastases: a randomized controlled trial. J Am Coll Surg. 2022;234:130–7.

    Article 
    PubMed 

    Google Scholar
     

  • van der Vorst JR, Schaafsma BE, Hutteman M, Verbeek FP, Liefers GJ, Hartgrink HH, Smit VT, Löwik CW, van de Velde CJ, Frangioni JV, Vahrmeijer AL. Near-infrared fluorescence-guided resection of colorectal liver metastases. Cancer. 2013;119:3411–8.

    Article 
    PubMed 

    Google Scholar
     

  • Handgraaf HJM, Boogerd LSF, Höppener DJ, Peloso A, Sibinga Mulder BG, Hoogstins CES, Hartgrink HH, van de Velde CJH, Mieog JSD, Swijnenburg RJ, et al. Long-term follow-up after near-infrared fluorescence-guided resection of colorectal liver metastases: a retrospective multicenter analysis. Eur J Surg Oncol. 2017;43:1463–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han SR, Lee CS, Bae JH, Lee HJ, Yoon MR, Al-Sawat A, Lee DS, Lee IK, Lee YS. Quantitative evaluation of colon perfusion after high versus low ligation in rectal Surgery by indocyanine green: a pilot study. Surg Endosc. 2022;36:3511–9.

    Article 
    PubMed 

    Google Scholar
     

  • Munechika T, Kajitani R, Matsumoto Y, Nagano H, Komono A, Aisu N, Morimoto M, Yoshimatsu G, Yoshida Y, Hasegawa S. Safety and effectiveness of high ligation of the inferior mesenteric artery for cancer of the descending colon under indocyanine green fluorescence imaging: a pilot study. Surg Endosc. 2021;35:1696–702.

    Article 
    PubMed 

    Google Scholar
     

  • De Nardi P, Elmore U, Maggi G, Maggiore R, Boni L, Cassinotti E, Fumagalli U, Gardani M, De Pascale S, Parise P, et al. Intraoperative angiography with indocyanine green to assess anastomosis perfusion in patients undergoing laparoscopic colorectal resection: results of a multicenter randomized controlled trial. Surg Endosc. 2020;34:53–60.

    Article 
    PubMed 

    Google Scholar
     

  • Carr JA, Franke D, Caram JR, Perkinson CF, Saif M, Askoxylakis V, Datta M, Fukumura D, Jain RK, Bawendi MG, Bruns OT. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci U S A. 2018;115:4465–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Z, Fang C, Li B, Zhang Z, Cao C, Cai M, Su S, Sun X, Shi X, Li C, et al. First-in-human liver-tumour Surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat Biomed Eng. 2020;4:259–71.

    Article 
    PubMed 

    Google Scholar
     

  • Cao C, Jin Z, Shi X, Zhang Z, Xiao A, Yang J, Ji N, Tian J, Hu Z. First Clinical investigation of near-infrared window IIa/IIb fluorescence imaging for precise surgical resection of gliomas. IEEE Trans Biomed Eng. 2022;69:2404–13.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang C, Liu T, Su Y, Luo S, Zhu Y, Tan X, Fan S, Zhang L, Zhou Y, Cheng T, Shi C. A near-infrared fluorescent heptamethine indocyanine dye with preferential Tumor accumulation for in vivo imaging. Biomaterials. 2010;31:6612–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu J, Han T, Wang Y, Zhang F, Li M, Bai L, Wang X, Sun B, Wang X, Du J, et al. Ultrabright renal-clearable cyanine-protein nanoprobes for high-quality NIR-II angiography and lymphography. Nano Lett. 2022;22:7965–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Q, Wang C, Cheng L, He W, Cheng Z, Liu Z. Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy. Biomaterials. 2014;35:2915–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peralta DV, Heidari Z, Dash S, Tarr MA. Hybrid paclitaxel and gold nanorod-loaded human serum albumin nanoparticles for simultaneous chemotherapeutic and photothermal therapy on 4T1 Breast cancer cells. ACS Appl Mater Interfaces. 2015;7:7101–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia B, Zhang W, Shi J, Xiao SJ. Engineered stealth porous silicon nanoparticles via surface encapsulation of bovine serum albumin for prolonging blood circulation in vivo. ACS Appl Mater Interfaces. 2013;5:11718–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Q, Ma Z, Wang H, Zhou B, Zhu S, Zhong Y, Wang J, Wan H, Antaris A, Ma R, et al. Rational design of molecular fluorophores for biological imaging in the NIR-II window. Adv Mater. 2017;29:1605497.

    Article 

    Google Scholar
     

  • Alifu N, Zebibula A, Qi J, Zhang H, Sun C, Yu X, Xue D, Lam JWY, Li G, Qian J, Tang BZ. Single-molecular near-Infrared-II theranostic systems: ultrastable aggregation-induced emission nanoparticles for long-term tracing and efficient photothermal therapy. ACS Nano. 2018;12:11282–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, Dai H. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol. 2009;4:773–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Wang M, Huang B, Zhu SW, Zhou JJ, Chen DR, Cui R, Zhang M, Sun ZJ. Theranostic near-infrared-IIb emitting nanoprobes for promoting immunogenic radiotherapy and abscopal effects against cancer Metastasis. Nat Commun. 2021;12:7149.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang M, Yue J, Cui R, Ma Z, Wan H, Wang F, Zhu S, Zhou Y, Kuang Y, Zhong Y, et al. Bright quantum dots emitting at 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc Natl Acad Sci U S A. 2018;115:6590–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu M, Yang X, Zhang Y, Yang H, Huang H, Wang Z, Dong J, Zhang R, Sun Z, Li C, Wang Q. Pb-Doped ag(2) Se Quantum dots with enhanced photoluminescence in the NIR-II window. Small. 2021;17:e2006111.

    Article 
    PubMed 

    Google Scholar
     

  • Wang FF, Qu LQ, Ren FQ, Baghdasaryan A, Jiang YY, Hsu R, Liang P, Li JC, Zhu GZ, Ma ZR, Dai HJ. High-precision tumor resection down to few-cell level guided by NIR-IIb molecular fluorescence imaging. Proc Natl Acad Sci U S A. 2022;119:2123.


    Google Scholar
     

  • Li M, Zheng X, Han T, Ma S, Wang Y, Sun B, Xu J, Wang X, Zhang S, Zhu S, Chen X. Near-infrared-II ratiometric fluorescence probes for non-invasive detection and precise navigation Surgery of metastatic sentinel lymph nodes. Theranostics. 2022;12:7191–202.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Delivery Rev. 2003;55:403–19.

    Article 
    CAS 

    Google Scholar
     

  • Liu X, Tao H, Yang K, Zhang S, Lee ST, Liu Z. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials. 2011;32:144–51.

    Article 
    PubMed 

    Google Scholar
     

  • van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, Sarantopoulos A, de Jong JS, Arts HJ, van der Zee AG, et al. Intraoperative tumor-specific fluorescence imaging in Ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med. 2011;17:1315–9.

    Article 
    PubMed 

    Google Scholar
     

  • Suo Y, Wu F, Xu P, Shi H, Wang T, Liu H, Cheng Z. NIR-II fluorescence endoscopy for targeted imaging of colorectal cancer. Adv Healthc Mater. 2019;8:e1900974.

    Article 
    PubMed 

    Google Scholar
     

  • Park S, Lim S-Y, Bae SM, Kim S-Y, Myung S-J, Kim H-J. Indocyanine-based activatable fluorescence Turn-On probe for γ-Glutamyltranspeptidase and its application to the mouse model of Colon Cancer. ACS Sens. 2016;1:579–83.

    Article 
    CAS 

    Google Scholar
     

  • Zhan Y, Ling S, Huang H, Zhang Y, Chen G, Huang S, Li C, Guo W, Wang Q. Rapid unperturbed-tissue analysis for intraoperative cancer diagnosis using an enzyme-activated NIR-II nanoprobe. Angew Chem Int Ed. 2021;60:2637–42.

    Article 
    CAS 

    Google Scholar
     

  • Jeong S, Song J, Lee W, Ryu YM, Jung Y, Kim SY, Kim K, Hong SC, Myung SJ, Kim S. Cancer-microenvironment-sensitive activatable quantum dot probe in the second near-infrared window. Nano Lett. 2017;17:1378–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blau R, Epshtein Y, Pisarevsky E, Tiram G, Israeli Dangoor S, Yeini E, Krivitsky A, Eldar-Boock A, Ben-Shushan D, Gibori H, et al. Image-guided Surgery using near-infrared Turn-ON fluorescent nanoprobes for precise detection of Tumor margins. Theranostics. 2018;8:3437–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Yao Q, Sun W, Shao K, Lu Y, Chung J, Kim D, Fan J, Long S, Du J, et al. Aminopeptidase N activatable fluorescent probe for tracking metastatic Cancer and image-guided Surgery via in situ spraying. J Am Chem Soc. 2020;142:6381–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li K, Lyu Y, Huang Y, Xu S, Liu HW, Chen L, Ren TB, Xiong M, Huan S, Yuan L, et al. A de novo strategy to develop NIR precipitating fluorochrome for long-term in situ cell membrane bioimaging. Proc Natl Acad Sci U S A. 2021;118: e2018033118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urano Y, Sakabe M, Kosaka N, Ogawa M, Mitsunaga M, Asanuma D, Kamiya M, Young MR, Nagano T, Choyke PL, Kobayashi H. Rapid cancer detection by topically spraying a γ-glutamyltranspeptidase-activated fluorescent probe. Sci Transl Med. 2011;3:110ra119.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao T, Huang G, Li Y, Yang S, Ramezani S, Lin Z, Wang Y, Ma X, Zeng Z, Luo M, et al. A transistor-like pH nanoprobe for tumour detection and image-guided surgery. Nat Biomed Eng. 2016;1: 0006.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Redy-Keisar O, Kisin-Finfer E, Ferber S, Satchi-Fainaro R, Shabat D. Synthesis and use of QCy7-derived modular probes for the detection and imaging of biologically relevant analytes. Nat Protoc. 2014;9:27–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan Y, Lei S, Zhang J, Qu J, Huang P, Lin J. Activatable NIR-II fluorescence probe for highly sensitive and selective visualization of glutathione in vivo. Anal Chem. 2021;93:17103–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun X, Liang X, Wang Y, Ma P, Xiong W, Qian S, Cui Y, Zhang H, Chen X, Tian F, et al. A Tumor microenvironment-activatable nanoplatform with phycocyanin-assisted in-situ nanoagent generation for synergistic treatment of colorectal cancer. Biomaterials. 2023;301:122263.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang J, Pu K. Activatable molecular probes for second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging. Angew Chem Int Ed. 2020;59:11717–31.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Zhang G, Zeng Z, Pu K. Activatable molecular probes for fluorescence-guided Surgery, endoscopy and tissue biopsy. Chem Soc Rev. 2022;51:566–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun Y, Qu C, Chen H, He M, Tang C, Shou K, Hong S, Yang M, Jiang Y, Ding B, et al. Novel benzo-bis(1,2,5-thiadiazole) fluorophores for in vivo NIR-II imaging of cancer. Chem Sci. 2016;7:6203–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu QJ, Zhang ZY, Guo XY, Yang JY, Cao CG, Li CJ, Zhang H, Xu PF, Hu ZH, Tian J. Novel multifunctional NIR-II aggregation-induced emission nanoparticles-assisted intraoperative identification and elimination of residual tumor. J Nanobiotechnol. 2022;20:143.

    Article 
    CAS 

    Google Scholar
     

  • Xu P, Kang F, Yang W, Zhang M, Dang R, Jiang P, Wang J. Molecular engineering of a high quantum yield NIR-II molecular fluorophore with aggregation-induced emission (AIE) characteristics for in vivo imaging. Nanoscale. 2020;12:5084–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang XD, Wang H, Antaris AL, Li L, Diao S, Ma R, Nguyen A, Hong G, Ma Z, Wang J, et al. Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv Mater. 2016;28:6872–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia R, Xu H, Wang C, Su L, Jing J, Xu S, Zhou Y, Sun W, Song J, Chen X, Chen H. NIR-II emissive AIEgen photosensitizers enable ultrasensitive imaging-guided surgery and phototherapy to fully inhibit orthotopic hepatic tumors. J Nanobiotechnol. 2021;19:1.

    Article 

    Google Scholar
     

  • Shou K, Qu C, Sun Y, Chen H, Chen S, Zhang L, Xu H, Hong X, Yu A, Cheng Z. Multifunctional biomedical imaging in physiological and pathological conditions using a NIR-II probe. Adv Funct Mater. 2017;27:1700995.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Description of Image

    Source link