Scientific Papers

The influence of dapagliflozin on cardiac remodeling, myocardial function and metabolomics in type 1 diabetes mellitus rats | Diabetology & Metabolic Syndrome

Description of Image

  • Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, et al. Heart Disease and Stroke statistics—2023 update: a report from the American Heart Association. Circulation. 2023;147(8):e93–e621.

    Article 
    PubMed 

    Google Scholar
     

  • Phang RJ, Ritchie RH, Hausenloy DJ, Lees JG, Lim SY. Cellular interplay between cardiomyocytes and non-myocytes in diabetic cardiomyopathy. Cardiovasc Res. 2023;119(3):668–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dillmann WH. Diabetic cardiomyopathy: what is it and can it be fixed? Circ Res. 2019;124(8):1160–2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prandi FR, Evangelista I, Sergi D, Palazzuoli A, Romeo F. Mechanisms of cardiac dysfunction in diabetic cardiomyopathy: molecular abnormalities and phenotypical variants. Heart Fail Rev. 2022;28(3):597–606.

    Article 
    PubMed 

    Google Scholar
     

  • Dasari D, Goyal SG, Penmetsa A, Sriram D, Dhar A. Canagliflozin protects diabetic cardiomyopathy by mitigating fibrosis and preserving the myocardial integrity with improved mitochondrial function. Eur J Pharmacol. 2023;949:175720.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jankauskas SS, Kansakar U, Varzideh F, Wilson S, Mone P, Lombardi A, Gambardella J, et al. Heart Failure in Diabetes. Metabolism. 2021;125:154910.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braunwald E. SGLT2 inhibitors: the statins of the 21st century. Eur Heart J. 2022;43(11):1029–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Braunwald E. Gliflozins in the management of Cardiovascular Disease. N Engl J Med. 2022;386(21):2024–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, et al. Empagliflozin in Heart Failure with a preserved ejection fraction. N Engl J Med. 2021;385(16):1451–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solomon SD, McMurray JJV, Claggett B, De Boer RA, DeMets D, Hernandez AF, et al. Dapagliflozin in Heart Failure with mildly reduced or preserved ejection fraction. N Engl J Med. 2022;387(12):1089–98.

    Article 
    PubMed 

    Google Scholar
     

  • Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 Diabetes. N Engl J Med. 2019;380(4):347–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 Diabetes. N Engl J Med. 2015;373(22):2117–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol. 2020;17(12):761–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heerspink HJL, Perkins BA, Fitchett DH, Husain M, Cherney DZI. Sodium glucose cotransporter 2 inhibitors in the treatment of Diabetes Mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016;134(10):752–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salvatore T, Caturano A, Galiero R, Di Martino A, Albanese G, Vetrano E, et al. Cardiovascular benefits from gliflozins: effects on endothelial function. Biomedicines. 2021;9(10):1356.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bae JH, Park EG, Kim S, Kim SG, Hahn S, Kim NH. Effects of sodium-glucose cotransporter 2 inhibitors on renal outcomes in patients with type 2 Diabetes: a systematic review and meta-analysis of randomized controlled trials. Sci Rep. 2019;9(1):13009.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanz RL, Inserra F, García Menéndez S, Mazzei L, Ferder L, Manucha W. Metabolic syndrome and cardiac remodeling due to mitochondrial oxidative stress involving gliflozins and sirtuins. Curr Hypertens Rep. 2023;25(6):91–106.

    Article 
    PubMed 

    Google Scholar
     

  • Edwards K, Li X, Lingvay I. Clinical and safety outcomes with GLP-1 receptor agonists and SGLT2 inhibitors in type 1 Diabetes: a real-world study. J Clin Endocrinol Metab. 2023;108(4):920–30.

    Article 
    PubMed 

    Google Scholar
     

  • Liu H, Sridhar VS, Perkins BA, Rosenstock J, Cherney DZI. SGLT2 inhibition in type 1 Diabetes with diabetic Kidney Disease: potential cardiorenal benefits can outweigh preventable risk of diabetic ketoacidosis. Curr Diab Rep. 2022;22(7):317–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hughes MS, Bailey R, Calhoun P, Shah VN, Lyons SK, DeSalvo DJ. Off-label use of sodium glucose co‐transporter inhibitors among adults in type 1 Diabetes exchange registry. Diabetes Obes Metab. 2022;24(1):171–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao L, Ren C, Luo S, Huang C, Li X. Sodium–glucose cotransporter 2 inhibitors as an add-on therapy to insulin for type 1 Diabetes Mellitus: meta-analysis of randomized controlled trials. Acta Diabetol. 2021;58(7):869–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosa CM, Campos DHS, Reyes DRA, Damatto FC, Kurosaki LY, Pagan LU, et al. Effects of the SGLT2 inhibition on cardiac remodeling in streptozotocin-induced diabetic rats, a model of type 1 Diabetes Mellitus. Antioxidants. 2022;11(5):982.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salah HM, Verma S, Santos-Gallego CG, Bhatt AS, Vaduganathan M, Khan MS, et al. Sodium-glucose cotransporter 2 inhibitors and cardiac remodeling. J Cardiovasc Transl Res. 2022;15(5):944–56.

    Article 
    PubMed 

    Google Scholar
     

  • Baartscheer A, Schumacher CA, Wüst RCI, Fiolet JWT, Stienen GJM, Coronel R, Zuurbier CJ. Empagliflozin decreases myocardial cytoplasmic na + through inhibition of the cardiac Na+/H + exchanger in rats and rabbits. Diabetologia. 2017;60(3):568–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uthman L, Baartscheer A, Schumacher CA, Fiolet JWT, Kuschma MC, Hollmann MW, et al. Direct cardiac actions of sodium glucose cotransporter 2 inhibitors target pathogenic mechanisms underlying Heart Failure in diabetic patients. Front Physiol. 2018;9:1575.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamouda NN, Sydorenko V, Qureshi MA, Alkaabi JM, Oz M, Howarth FC. Dapagliflozin reduces the amplitude of shortening and Ca2+ transient in ventricular myocytes from streptozotocin-induced diabetic rats. Mol Cell Biochem. 2015;400(1–2):57–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sugizaki MM, Carvalho RF, Aragon FF, Padovani CR, Okoshi K, Okoshi MP, et al. Myocardial dysfunction induced by food restriction is related to morphological damage in normotensive middle-aged rats. J Biomed Sci. 2005;12(4):641–9.

    Article 
    PubMed 

    Google Scholar
     

  • Mengstie MA, Abebe EC, Teklemariam AB, Mulu AT, Teshome AA, Zewde EA, et al. Molecular and cellular mechanisms in diabetic Heart Failure: potential therapeutic targets. Front Endocrinol. 2022;13:947294.

    Article 

    Google Scholar
     

  • Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018;61(10):2108–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, Ishikawa K, Watanabe S, Picatoste B, et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic Heart Failure by enhancing myocardial energetics. J Am Coll Cardiol. 2019;73(15):1931–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yurista SR, Silljé HHW, Oberdorf-Maass SU, Schouten E, Pavez Giani MG, Hillebrands J, et al. Sodium–glucose co‐transporter 2 inhibition with empagliflozin improves cardiac function in non‐diabetic rats with left ventricular dysfunction after Myocardial Infarction. Eur J Heart Fail. 2019;21(7):862–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Minicucci MF, Azevedo PS, Martinez PF, Lima ARR, Bonomo C, Guizoni DM, et al. Critical infarct size to induce ventricular remodeling, cardiac dysfunction and Heart Failure in rats. Int J Cardiol. 2011;151(2):242–3.

    Article 
    PubMed 

    Google Scholar
     

  • Okoshi K, Ribeiro HB, Okoshi MP, Matsubara BB, Gonçalves G, Barros R, et al. Improved systolic ventricular function with normal myocardial mechanics in compensated cardiac hypertrophy. Jpn Heart J. 2004;45(4):647–56.

    Article 
    PubMed 

    Google Scholar
     

  • Cezar MDM, Damatto RL, Martinez PF, Lima ARR, Campos DHS, Rosa CM, et al. Aldosterone blockade reduces mortality without changing cardiac remodeling in spontaneously hypertensive rats. Cell Physiol Biochem. 2013;32(5):1275–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reyes DRA, Gomes MJ, Rosa CM, Pagan LU, Zanati SG, Damatto RL, et al. Exercise during transition from compensated left ventricular hypertrophy to Heart Failure in aortic stenosis rats. J Cell Mol Med. 2019;23(2):1235–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reyes DRA, Gomes MJ, Rosa CM, Pagan LU, Damatto FC, Damatto RL, et al. N-acetylcysteine influence on oxidative stress and cardiac remodeling in rats during transition from compensated left ventricular hypertrophy to Heart Failure. Cell Physiol Biochem. 2017;44(6):2310–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okoshi K, Cezar MDM, Polin MAM, Paladino JR, Martinez PF, Oliveira SA, et al. Influence of intermittent fasting on myocardial infarction-induced cardiac remodeling. BMC Cardiovasc Disord. 2019;19(1):126.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cicogna AC, Padovani CR, Okoshi K, Aragon FF, Okoshi MP. Myocardial function during chronic food restriction in isolated hypertrophied cardiac muscle. Am J Med Sci. 2000;320(4):244–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsubara LS, Matsubara BB, Okoshi MP, Franco M, Cicogna AC. Myocardial fibrosis rather than hypertrophy induces diastolic dysfunction in renovascular hypertensive rats. Can J Physiol Pharmacol. 1997;75(12):1328–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pagan LU, Gomes MJ, Damatto RL, Lima ARR, Cezar MDM, Damatto FC, et al. Aerobic exercise during advance stage of uncontrolled arterial Hypertension. Front Physiol. 2021;12:675778.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gimenes R, Gimenes C, Rosa CM, Xavier NP, Campos DHS, Fernandes AAH, et al. Influence of apocynin on cardiac remodeling in rats with streptozotocin-induced Diabetes Mellitus. Cardiovasc Diabetol. 2018;17(1):15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carvalho RF, Dariolli R, Justulin Junior LA, Sugizaki MM, Politi Okoshi M, Cicogna AC, et al. Heart Failure alters matrix metalloproteinase gene expression and activity in rat skeletal muscle. Int J Exp Pathol. 2006;87(6):437–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez PF, Bonomo C, Guizoni DM, Oliveira Junior SA, Damatto RL, Cezar MDM, et al. Influence of N- acetylcysteine on oxidative stress in slow-twitch soleus muscle of Heart Failure rats. Cell Physiol Biochem. 2015;35(1):148–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crabtree B, Newsholme EA. The activities of phosphorylase, hexokinase, phosphofructokinase, lactate dehydrogenase and the glycerol 3-phosphate dehydrogenase in muscles from vertebrates and invertebrates. Biochem J. 1972;126(1):49–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hengartner H, Harris JI. Purification by affinity chromatography, properties and crystallisation of phosphofructokinase from thermophilic micro-organisms. FEBS Lett. 1975;55(1–2):282–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cardenas JM, Dyson RD, Strandholm JJ. Bovine pyruvate kinases. I. Purification and characterization of the skeletal muscle isozyme. J Biol Chem. 1973;248(20):6931–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alp PR, Newsholme EA, Zammit VA. Activities of citrate synthase and NAD+-linked and NADP+-linked isocitrate dehydrogenase in muscle from vertebrates and invertebrates. Biochem J. 1976;154(3):689–700.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gillard P, Schnell O, Groop PH. The nephrological perspective on SGLT-2 inhibitors in type 1 Diabetes. Diabetes Res Clin Pract. 2020;170:108462.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosa CM, Gimenes R, Campos DHS, Guirado GN, Gimenes C, Fernandes AAH, et al. Apocynin influence on oxidative stress and cardiac remodeling of spontaneously hypertensive rats with Diabetes Mellitus. Cardiovasc Diabetol. 2016;15(1):126.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gimenes C, Gimenes R, Rosa CM, Xavier NP, Campos DHS, Fernandes AAH, et al. Low intensity physical exercise attenuates cardiac remodeling and myocardial oxidative stress and dysfunction in diabetic rats. J Diabetes Res. 2015;2015:1–10.

    Article 

    Google Scholar
     

  • Bamba R, Okamura T, Hashimoto Y, Majima S, Senmaru T, Ushigome E, et al. Extracellular lipidome change by an SGLT2 inhibitor, luseogliflozin, contributes to prevent skeletal muscle atrophy in db/db mice. J Cachexia Sarcopenia Muscle. 2022;13(1):574–88.

    Article 
    PubMed 

    Google Scholar
     

  • Madonna R, Moscato S, Cufaro MC, Pieragostino D, Mattii L, Del Boccio P, et al. Empagliflozin inhibits excessive autophagy through the AMPK/GSK3β signalling pathway in diabetic cardiomyopathy. Cardiovasc Res. 2023;119(5):1175–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seufert J, Lanzinger S, Danne T, Bramlage P, Schmid SM, Kopp F, et al. Real-world data of 12‐month adjunct sodium‐glucose co‐transporter‐2 inhibitor treatment in type 1 Diabetes from the German/Austrian DPV registry: improved HbA1c without diabetic ketoacidosis. Diabetes Obes Metab. 2022;24(4):742–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Lin X, Chu Y, Chen X, Du H, Zhang H, et al. Dapagliflozin: a sodium–glucose cotransporter 2 inhibitor, attenuates angiotensin II-induced cardiac fibrotic remodeling by regulating TGFβ1/Smad signaling. Cardiovasc Diabetol. 2021;20(1):121.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang CC, Li Y, Qian XQ, Zhao H, Wang D, Zuo GX, et al. Empagliflozin alleviates myocardial I/R injury and cardiomyocyte apoptosis via inhibiting ER stress-induced autophagy and the PERK/ATF4/Beclin1 pathway. J Drug Target. 2022;30(8):858–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okoshi MP, Okoshi K, Pai VD, Pai-Silva MD, Matsubara LS, Cicogna AC. Mechanical, biochemical, and morphological changes in the heart from chronic food-restricted rats. Can J Physiol Pharmacol. 2001;79(9):754–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guimaraes JFC, Muzio BP, Rosa CM, Nascimento AF, Sugizaki MM, Fernandes AAH, et al. Rutin administration attenuates myocardial dysfunction in diabetic rats. Cardiovasc Diabetol. 2015;14(1):90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pagan LU, Gomes MJ, Gatto M, Mota GAF, Okoshi K, Okoshi MP. The role of oxidative stress in the aging heart. Antioxidants. 2022;11(2):336.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noordali H, Loudon BL, Frenneaux MP, Madhani M. Cardiac metabolism — a promising therapeutic target for Heart Failure. Pharmacol Ther. 2018;182:95–114.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carpentier AC. Abnormal myocardial dietary fatty acid metabolism and diabetic cardiomyopathy. Can J Cardiol. 2018;34(5):605–14.

    Article 
    PubMed 

    Google Scholar
     

  • Rodrigues EA, Lima ARR, Gomes MJ, Souza LM, Pontes THD, Pagan LU, et al. Influence of isolated resistance exercise on cardiac remodeling, myocardial oxidative stress, and metabolism in infarcted rats. Antioxidants. 2023;12(4):896.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hundertmark MJ, Adler A, Antoniades C, Coleman R, Griffin JL, Holman RR, et al. Assessment of cardiac energy metabolism, function, and physiology in patients with Heart Failure taking empagliflozin: the randomized, controlled EMPA-VISION Trial. Circulation. 2023;147(22):1654–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Long JZ, Svensson KJ, Bateman LA, Lin H, Kamenecka T, Lokurkar IA, et al. The secreted enzyme PM20D1 regulates lipidated amino acid uncouplers of mitochondria. Cell. 2016;166(2):424–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sowton AP, Griffin JL, Murray AJ. Metabolic profiling of the diabetic heart: toward a richer picture. Front Physiol. 2019;10:639.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makino N, Dhalla KS, Elimban V, Dhalla NS. Sarcolemmal Ca2+ transport in streptozotocin-induced diabetic cardiomyopathy in rats. Am J Physiol-Endocrinol Metab. 1987;253(2):E202–7.

    Article 
    CAS 

    Google Scholar
     

  • Gholam MF, Liu LP, Searcy LA, Denslow ND, Alli AA. Dapagliflozin treatment augments bioactive phosphatidylethanolamine concentrations in kidney cortex membrane fractions of hypertensive diabetic db/db mice and alters the density of lipid rafts in mouse proximal tubule cells. Int J Mol Sci. 2023;24(2):1408.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aragón-Herrera A, Feijóo-Bandín S, Otero Santiago M, Barral L, Campos-Toimil M, Gil-Longo J, et al. Empagliflozin reduces the levels of CD36 and cardiotoxic lipids while improving autophagy in the hearts of Zucker diabetic fatty rats. Biochem Pharmacol. 2019;170:113677.

    Article 
    PubMed 

    Google Scholar
     

  • Farias RS, Silva-Aguiar RP, Teixeira DE, Gomes CP, Pinheiro AAS, Peruchetti DB, et al. Inhibition of SGLT2 co-transporter by dapagliflozin ameliorates tubular proteinuria and tubule-interstitial injury at the early stage of diabetic Kidney Disease. Eur J Pharmacol. 2023;942:175521.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Wang Y, Zhang J, Li X, Tan L, Huang H, et al. Dynamic evolution of left ventricular strain and microvascular perfusion assessed by speckle tracking echocardiography and myocardial contrast echocardiography in diabetic rats: effect of dapagliflozin. Front Cardiovasc Med. 2023;10:1109946.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai C, Kong B, Shuai W, Xiao Z, Qin T, Fang J, et al. Dapagliflozin reduces pulmonary vascular damage and susceptibility to atrial fibrillation in right Heart Disease. ESC Heart Fail. 2023;10(1):578–93.

    Article 
    PubMed 

    Google Scholar
     

  • Description of Image

    Source link