Scientific Papers

In-hospital fall prediction using machine learning algorithms and the Morse fall scale in patients with acute stroke: a nested case-control study | BMC Medical Informatics and Decision Making


  • Schoberer D, Breimaier HE, Zuschnegg J, Findling T, Schaffer S, Archan T. Fall prevention in hospitals and nursing homes: clinical practice guideline. Worldviews Evid Based Nurs. 2022;19:86–93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peel NM. Epidemiology of falls in older age. Can J Aging. 2011;30:7–19.

    Article 
    PubMed 

    Google Scholar
     

  • Morello RT, Barker AL, Watts JJ, Haines T, Zavarsek SS, Hill KD, et al. The extra resource burden of in-hospital falls: a cost of falls study. Med J Aust. 2015;203:367.

    Article 
    PubMed 

    Google Scholar
     

  • Shiffman J. A social explanation for the rise and fall of global health issues. Bull World Health Organ. 2009;87:608–13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quigley PA. Redesigned fall and injury management of patients with Stroke. Stroke. 2016;47:e92–4.

    Article 
    PubMed 

    Google Scholar
     

  • Nyberg L, Gustafson Y. Fall prediction index for patients in Stroke rehabilitation. Stroke. 1997;28:716–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tutuarima JA, van der Meulen JH, de Haan RJ, van Straten A, Limburg M. Risk factors for falls of hospitalized Stroke patients. Stroke. 1997;28:297–301.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joint Commission. Preventing falls and fall-related injuries in health care facilities. Sentin Event Alert. 2015;55:1–5.


    Google Scholar
     

  • Oliver D, Britton M, Seed P, Martin FC, Hopper AH. Development and evaluation of evidence based risk assessment tool (STRATIFY) to predict which elderly inpatients will fall: case-control and cohort studies. BMJ. 1997;315:1049–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hendrich A, Nyhuis A, Kippenbrock T, Soja ME. Hospital falls: development of a predictive model for clinical practice. Appl Nurs Res. 1995;8:129–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poe SS, Cvach M, Dawson PB, Straus H, Hill EE. The johns hopkins fall risk assessment tool: postimplementation evaluation. J Nurs Care Qual. 2007;22:293–8.

    Article 
    PubMed 

    Google Scholar
     

  • Jewell VD, Capistran K, Flecky K, Qi Y, Fellman S. Prediction of falls in acute care using the Morse fall risk scale. Occup Ther Health Care. 2020;34:307–19.

    Article 
    PubMed 

    Google Scholar
     

  • Choi EH, Ko MS, Yoo CS, Kim MK. Characteristics of fall events and fall risk factors among inpatients in general hospitals in Korea. J Korean Clin Nurs Res. 2017;23:350–60.


    Google Scholar
     

  • Morris R, O’Riordan S. Prevention of falls in hospital. Clin Med (Lond). 2017;17:360–2.

    Article 
    PubMed 

    Google Scholar
     

  • Baek S, Piao J, Jin Y, Lee SM. Validity of the Morse Fall Scale implemented in an electronic medical record system. J Clin Nurs. 2014;23:2434–40.

    Article 
    PubMed 

    Google Scholar
     

  • Chow SK, Lai CK, Wong TK, Suen LK, Kong SK, Chan CK, et al. Evaluation of the Morse fall scale: applicability in Chinese hospital populations. Int J Nurs Stud. 2007;44:556–65.

    Article 
    PubMed 

    Google Scholar
     

  • Kim KS, Kim JA, Choi YK, Kim YJ, Park MH, Kim HY, et al. A comparative study on the validity of fall risk assessment scales in Korean hospitals. Asian Nurs Res. 2011;5:28–37.

    Article 

    Google Scholar
     

  • Urbanetto JS, Pasa TS, Bittencout HR, Franz F, Rosa VP, Magnago TS. Analysis of risk prediction capability and validity of Morse fall scale Brazilian version. Rev Gaucha Enferm Brazilian Version. 2017;37:e62200.


    Google Scholar
     

  • Olsson E, Löfgren B, Gustafson Y, Nyberg L. Validation of a fall risk index in Stroke rehabilitation. J Stroke Cerebrovasc Dis. 2005;14:23–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Najafpour Z, Godarzi Z, Arab M, Yaseri M. Risk factors for falls in hospital in-patients: a prospective nested case control study. Int J Health Policy Manag. 2019;8:300–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weissler EH, Naumann T, Andersson T, Ranganath R, Elemento O, Luo Y, et al. The role of machine learning in clinical research: transforming the future of evidence generation. Trials. 2021;22:537.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park D, Kim BH, Lee SE, Kim DY, Kim M, Kwon HD, et al. Machine learning-based approach for Disease severity classification of carpal tunnel syndrome. Sci Rep. 2021;11:17464.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanchez-Martinez S, Camara O, Piella G, Cikes M, González-Ballester MÁ, Miron M, et al. Machine learning for clinical decision-making: challenges and opportunities in cardiovascular imaging. Front Cardiovasc Med. 2021;8:765693.

    Article 
    PubMed 

    Google Scholar
     

  • Lewanowicz A, Wiśniewski M, Oronowicz-Jaśkowiak W. The use of machine learning to support the therapeutic process – strengths and weaknesses. Postep Psychiatr Neurol. 2022;31:167–73.

    PubMed 

    Google Scholar
     

  • Adkins DE. Machine learning and electronic health records: a paradigm shift. Am J Psychiatry. 2017;174:93–4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cipriano LE. Evaluating the impact and potential impact of machine learning on medical decision making. Med Decis Making. 2023;43:147–9.

    Article 
    PubMed 

    Google Scholar
     

  • Park JH. Machine-learning algorithms based on screening tests for mild cognitive impairment. Am J Alzheimers Dis Other Demen. 2020;35:1533317520927163.

    Article 
    PubMed 

    Google Scholar
     

  • Park D, Jeong E, Kim H, Pyun HW, Kim H, Choi YJ et al. Machine learning-based three-month outcome prediction in acute ischemic Stroke: a single cerebrovascular-specialty hospital study in South Korea. Diagnostics (Basel) 2021;11.

  • Nakatani H, Nakao M, Uchiyama H, Toyoshiba H, Ochiai C. Predicting inpatient falls using natural language processing of nursing records obtained from Japanese electronic medical records: case-control study. JMIR Med Inform. 2020;8:e16970.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuhn M, CaReT. Classification and regression training. R package version 6. 0–90. 2021.

  • Lindberg DS, Prosperi M, Bjarnadottir RI, Thomas J, Crane M, Chen Z, et al. Identification of important factors in an inpatient fall risk prediction model to improve the quality of care using EHR and electronic administrative data: a machine-learning approach. Int J Med Inform. 2020;143:104272.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patterson BW, Engstrom CJ, Sah V, Smith MA, Mendonça EA, Pulia MS, et al. Training and interpreting machine learning algorithms to evaluate fall risk after emergency department visits. Med Care. 2019;57:560–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thapa R, Garikipati A, Shokouhi S, Hurtado M, Barnes G, Hoffman J, et al. Predicting falls in long-term care facilities: machine learning study. JMIR Aging. 2022;5:e35373.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Xue Z, Ezeana CF, Puppala M, Chen S, Danforth RL, et al. Preventing inpatient falls with injuries using integrative machine learning prediction: a cohort study. NPJ Digit Med. 2019;2:127.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brians LK, Alexander K, Grota P, Chen RW, Dumas V. The development of the RISK tool for fall prevention. Rehabil Nurs. 1991;16:67–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dubbeldam R, Lee YY, Pennone J, Mochizuki L, Le Mouel C. Systematic review of candidate prognostic factors for falling in older adults identified from motion analysis of challenging walking tasks. Eur Rev Aging Phys Act. 2023;20:2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon S-J, Lee C-K, Jin I-S, Kang J-G. Incidence of falls and risk factors of falls in inpatients. Qual Improv Health Care. 2018;24:2–14.

    Article 

    Google Scholar
     

  • Jung YA, Sung KM. A comparison of patients’ nursing service satisfaction, hospital commitment and revisit intention between general care unit and comprehensive nursing care unit. J Korean Acad Nurs Adm 2018;24.

  • Bechard LJ, Duggan C, Touger-Decker R, Parrott JS, Rothpletz-Puglia P, Byham-Gray L, et al. Nutritional status based on body mass index is associated with morbidity and mortality in mechanically ventilated critically ill children in the PICU. Crit Care Med. 2016;44:1530–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi SW, Kim YM, Won YJ, Kim SK, Kim SH. Association between body mass index and the risk of falls: a nationwide population-based study. Osteoporos Int. 2021;32:1071–8.

    Article 
    PubMed 

    Google Scholar
     

  • Kim T, Choi SD, Xiong S. Epidemiology of fall and its socioeconomic risk factors in community-dwelling Korean elderly. PLoS ONE. 2020;15:e0234787.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mikos M, Trybulska A, Czerw A. Falls – The socio-economic and medical aspects important for developing prevention and treatment strategies. Ann Agric Environ Med. 2021;28:391–6.

    Article 
    PubMed 

    Google Scholar
     

  • Michalcova J, Vasut K, Airaksinen M, Bielakova K. Inclusion of medication-related fall risk in fall risk assessment tool in geriatric care units. BMC Geriatr. 2020;20:454.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Jong MR, Van der Elst M, Hartholt KA. Drug-related falls in older patients: implicated Drugs, consequences, and possible prevention strategies. Ther Adv Drug Saf. 2013;4:147–54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ie K, Chou E, Boyce RD, Albert SM. Fall risk-increasing Drugs, polypharmacy, and falls among low-income community-dwelling older adults. Innov Aging. 2021;5:igab001.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdollahi M, Whitton N, Zand R, Dombovy M, Parnianpour M, Khalaf K, et al. A systematic review of fall risk factors in Stroke survivors: towards improved assessment platforms and protocols. Front Bioeng Biotechnol. 2022;10:910698.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subramanian J, Simon R. Overfitting in prediction models – is it a problem only in high dimensions? Contemp Clin Trials. 2013;36:636–41.

    Article 
    PubMed 

    Google Scholar
     

  • Trevethan R. Sensitivity, specificity, and predictive values: foundations, pliabilities, and pitfalls in research and practice. Front Public Health. 2017;5:307.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link