Scientific Papers

Current knowledge on the role of extracellular vesicles in endometrial receptivity | European Journal of Medical Research

Description of Image

  • Achache H, Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update. 2006;12:731–46.

    Article 
    PubMed 

    Google Scholar
     

  • Macklon NS, Geraedts JP, Fauser BC. Conception to ongoing pregnancy: the “black box” of early pregnancy loss. Hum Reprod Update. 2002;8:333–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zinaman MJ, Clegg ED, Brown CC, O’Connor J, Selevan SG. Estimates of human fertility and pregnancy loss. Fertil Steril. 1996;65:503–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilcox AJ, Weinberg CR, O’Connor JF, Baird DD, Schlatterer JP, Canfield RE, Armstrong EG, Nisula BC. Incidence of early loss of pregnancy. N Engl J Med. 1988;319:189–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chard T. Frequency of implantation and early pregnancy loss in natural cycles. Baillieres Clin Obstet Gynaecol. 1991;5:179–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Masamoto H, Nakama K, Kanazawa K. Hysteroscopic appearance of the mid-secretory endometrium: relationship to early phase pregnancy outcome after implantation. Hum Reprod. 2000;15:2112–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Regan L, Rai R. Epidemiology and the medical causes of miscarriage. Baillieres Best Pract Res Clin Obstet Gynaecol. 2000;14:839–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edwards RG. Implantation, interception and contraception. Hum Reprod. 1994;9:985–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simon C, Moreno C, Remohi J, Pellicer A. Cytokines and embryo implantation. J Reprod Immunol. 1998;39:117–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franasiak JM, Forman EJ, Hong KH, Werner MD, Upham KM, Treff NR, Scott RT Jr. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril. 2014;101(656–663): e651.


    Google Scholar
     

  • Liu C, Yao W, Yao J, Li L, Yang L, Zhang H, Sui C. Endometrial extracellular vesicles from women with recurrent implantation failure attenuate the growth and invasion of embryos. Fertil Steril. 2020;114:416–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aplin JD, Stevens A. Use of ’omics for endometrial timing: the cycle moves on. Hum Reprod. 2022;37:644–50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nikas G. Cell-surface morphological events relevant to human implantation. Hum Reprod. 1999;14(Suppl 2):37–44.

    Article 
    PubMed 

    Google Scholar
     

  • Abu-Halima M, Hausler S, Backes C, Fehlmann T, Staib C, Nestel S, Nazarenko I, Meese E, Keller A. Micro-ribonucleic acids and extracellular vesicles repertoire in the spent culture media is altered in women undergoing In Vitro Fertilization. Sci Rep. 2017;7:13525.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giacomini E, Vago R, Sanchez AM, Podini P, Zarovni N, Murdica V, Rizzo R, Bortolotti D, Candiani M, Vigano P. Secretome of in vitro cultured human embryos contains extracellular vesicles that are uptaken by the maternal side. Sci Rep. 2017;7:5210.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burns G, Brooks K, Wildung M, Navakanitworakul R, Christenson LK, Spencer TE. Extracellular vesicles in luminal fluid of the ovine uterus. PLoS ONE. 2014;9: e90913.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu C, Li L, Wang M, Shui S, Yao H, Sui C, Zhang H. Endometrial extracellular vesicles of recurrent implantation failure patients inhibit the proliferation, migration, and invasion of HTR8/SVneo cells. J Assist Reprod Genet. 2021;38:825–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Liu C, Guo N, Cai L, Wang M, Zhu L, Li F, Jin L, Sui C. Extracellular vesicles from human Fallopian tubal fluid benefit embryo development in vitro. Hum Reprod Open. 2023;2023:hoad006.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balaguer N, Moreno I, Herrero M, González M, Simón C, Vilella F. Heterogeneous nuclear ribonucleoprotein C1 may control miR-30d levels in endometrial exosomes affecting early embryo implantation. Mol Hum Reprod. 2018;24:411–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giacomini E, Scotti GM, Vanni VS, Lazarevic D, Makieva S, Privitera L, Signorelli S, Cantone L, Bollati V, Murdica V, et al. Global transcriptomic changes occur in uterine fluid-derived extracellular vesicles during the endometrial window for embryo implantation. Hum Reprod (Oxford, England). 2021;36:2249–74.

    Article 
    CAS 

    Google Scholar
     

  • Li T, Greenblatt EM, Shin ME, Brown TJ, Chan C. Cargo small non-coding RNAs of extracellular vesicles isolated from uterine fluid associate with endometrial receptivity and implantation success. Fertil Steril. 2021;115:1327–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.

    Article 
    PubMed 

    Google Scholar
     

  • Giacomini E, Makieva S, Murdica V, Vago R, Vigano P. Extracellular vesicles as a potential diagnostic tool in assisted reproduction. Curr Opin Obstet Gynecol. 2020;32:179–84.

    Article 
    PubMed 

    Google Scholar
     

  • Ranjbaran A, Latifi Z, Nejabati HR, Abroon S, Mihanfar A, Sadigh AR, Fattahi A, Nouri M, Raffel N. Exosome-based intercellular communication in female reproductive microenvironments. J Cell Physiol. 2019;234:19212–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367: e24062.

    Article 

    Google Scholar
     

  • van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.

    Article 
    PubMed 

    Google Scholar
     

  • Simon C, Greening DW, Bolumar D, Balaguer N, Salamonsen LA, Vilella F. Extracellular vesicles in human reproduction in health and disease. Endocr Rev. 2018;39:292–332.

    Article 
    PubMed 

    Google Scholar
     

  • Chen K, Liang J, Qin T, Zhang Y, Chen X, Wang Z. The role of extracellular vesicles in embryo implantation. Front Endocrinol (Lausanne). 2022;13: 809596.

    Article 
    PubMed 

    Google Scholar
     

  • Liao Z, Liu C, Wang L, Sui C, Zhang H. Therapeutic role of mesenchymal stem cell-derived extracellular vesicles in female reproductive diseases. Front Endocrinol (Lausanne). 2021;12: 665645.

    Article 
    PubMed 

    Google Scholar
     

  • Qiu G, Zheng G, Ge M, Wang J, Huang R, Shu Q, Xu J. Functional proteins of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther. 2019;10:359.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Niel G, Carter DRF, Clayton A, Lambert DW, Raposo G, Vader P. Challenges and directions in studying cell-cell communication by extracellular vesicles. Nat Rev Mol Cell Biol. 2022;23:369–82.

    Article 
    PubMed 

    Google Scholar
     

  • Nguyen HP, Simpson RJ, Salamonsen LA, Greening DW. Extracellular vesicles in the intrauterine environment: challenges and potential functions. Biol Reprod. 2016;95:109.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linxweiler J, Junker K. Extracellular vesicles in urological malignancies: an update. Nat Rev Urol. 2020;17:11–27.

    Article 
    PubMed 

    Google Scholar
     

  • Rana S, Yue S, Stadel D, Zoller M. Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol. 2012;44:1574–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487–514.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abbaszadeh H, Ghorbani F, Derakhshani M, Movassaghpour A, Yousefi M. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles: a novel therapeutic paradigm. J Cell Physiol. 2020;235:706–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262:9412–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 2006;20:1487–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phinney DG, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix CM, Stolz DB, Watkins SC, Di YP, Leikauf GD, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 2015;6:8472.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Es-Haghi M, Godakumara K, Häling A, Lättekivi F, Lavrits A, Viil J, Andronowska A, Nafee T, James V, Jaakma Ü, et al. Specific trophoblast transcripts transferred by extracellular vesicles affect gene expression in endometrial epithelial cells and may have a role in embryo-maternal crosstalk. Cell Commun Signal. 2019;17:146.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Neil EV, Burns GW, Ferreira CR, Spencer TE. Characterization and regulation of extracellular vesicles in the lumen of the ovine uterus†. Biol Reprod. 2020;102:1020–32.

    Article 
    PubMed 

    Google Scholar
     

  • Nakamura K, Kusama K, Ideta A, Kimura K, Hori M, Imakawa K. Effects of miR-98 in intrauterine extracellular vesicles on maternal immune regulation during the peri-implantation period in cattle. Sci Rep. 2019;9:20330.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng YH, Rome S, Jalabert A, Forterre A, Singh H, Hincks CL, Salamonsen LA. Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation. PLoS ONE. 2013;8: e58502.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greening DW, Nguyen HP, Elgass K, Simpson RJ, Salamonsen LA. Human endometrial exosomes contain hormone-specific cargo modulating trophoblast adhesive capacity: insights into endometrial-embryo interactions. Biol Reprod. 2016;94:38.

    Article 
    PubMed 

    Google Scholar
     

  • Nakamura K, Kusama K, Bai R, Sakurai T, Isuzugawa K, Godkin JD, Suda Y, Imakawa K. Induction of IFNT-stimulated genes by conceptus-derived exosomes during the attachment period. PLoS ONE. 2016;11: e0158278.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Juárez-Barber E, Segura-Benítez M, Carbajo-García MC, Bas-Rivas A, Faus A, Vidal C, Giles J, Labarta E, Pellicer A, Cervelló I, Ferrero H. Extracellular vesicles secreted by adenomyosis endometrial organoids contain miRNAs involved in embryo implantation and pregnancy. Reprod Biomed Online. 2023;46:470–81.

    Article 
    PubMed 

    Google Scholar
     

  • Vilella F, Moreno-Moya JM, Balaguer N, Grasso A, Herrero M, Martinez S, Marcilla A, Simon C. Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome. Development. 2015;142:3210–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nikas G, Psychoyos A. Uterine pinopodes in peri-implantation human endometrium. Clinical relevance. Ann N Y Acad Sci. 1997;816:129–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Evans J, Salamonsen LA. Decidualized human endometrial stromal cells are sensors of hormone withdrawal in the menstrual inflammatory cascade. Biol Reprod. 2014;90:14.

    Article 
    PubMed 

    Google Scholar
     

  • Gellersen B, Brosens JJ. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev. 2014;35:851–905.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurian NK, Modi D. Extracellular vesicle mediated embryo-endometrial cross talk during implantation and in pregnancy. J Assist Reprod Genet. 2019;36:189–98.

    Article 
    PubMed 

    Google Scholar
     

  • Salamonsen LA, Nie G, Hannan NJ, Dimitriadis E. Society for Reproductive Biology Founders’ Lecture 2009. Preparing fertile soil: the importance of endometrial receptivity. Reprod Fertil Dev. 2009;21:923–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koh YQ, Peiris HN, Vaswani K, Reed S, Rice GE, Salomon C, Mitchell MD. Characterization of exosomal release in bovine endometrial intercaruncular stromal cells. Reprod Biol Endocrinol. 2016;14:78.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harp D, Driss A, Mehrabi S, Chowdhury I, Xu W, Liu D, Garcia-Barrio M, Taylor RN, Gold B, Jefferson S, et al. Exosomes derived from endometriotic stromal cells have enhanced angiogenic effects in vitro. Cell Tissue Res. 2016;365:187–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu M, Chen X, Chang QX, Hua R, Wei YX, Huang LP, Liao YX, Yue XJ, Hu HY, Sun F, et al. Decidual small extracellular vesicles induce trophoblast invasion by upregulating N-cadherin. Reproduction. 2020;159:171–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma Q, Beal JR, Bhurke A, Kannan A, Yu J, Taylor RN, Bagchi IC, Bagchi MK. Extracellular vesicles secreted by human uterine stromal cells regulate decidualization, angiogenesis, and trophoblast differentiation. Proc Natl Acad Sci U S A. 2022;119: e2200252119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gurung S, Greening DW, Rai A, Poh QH, Evans J, Salamonsen LA. The proteomes of endometrial stromal cell-derived extracellular vesicles following a decidualizing stimulus define the cells’ potential for decidualization success. Mol Hum Reprod. 2021;27:gaab057.

    Article 
    PubMed 

    Google Scholar
     

  • Hart AR, Khan NLA, Dissanayake K, Godakumara K, Andronowska A, Eapen S, Heath PR, Fazeli A. The extracellular vesicles proteome of endometrial cells simulating the receptive menstrual phase differs from that of endometrial cells simulating the non-receptive menstrual phase. Biomolecules. 2023;13:279.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou W, Santos L, Dimitriadis E. Characterization of the role for cadherin 6 in the regulation of human endometrial receptivity. Reprod Biol Endocrinol. 2020;18:66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slater M, Murphy CR. Chondroitin sulphate and heparan sulfate proteoglycan are sequentially expressed in the uterine extracellular matrix during early pregnancy in the rat. Matrix Biol. 1999;18:125–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rai P, Kota V, Sundaram CS, Deendayal M, Shivaji S. Proteome of human endometrium: identification of differentially expressed proteins in proliferative and secretory phase endometrium. Proteomics Clin Appl. 2010;4:48–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rai A, Poh QH, Fatmous M, Fang H, Gurung S, Vollenhoven B, Salamonsen LA, Greening DW. Proteomic profiling of human uterine extracellular vesicles reveal dynamic regulation of key players of embryo implantation and fertility during menstrual cycle. Proteomics. 2021;21: e2000211.

    Article 
    PubMed 

    Google Scholar
     

  • Fatmous M, Rai A, Poh QH, Salamonsen LA, Greening DW. Endometrial small extracellular vesicles regulate human trophectodermal cell invasion by reprogramming the phosphoproteome landscape. Front Cell Dev Biol. 2022;10:1078096.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lessey BA, Young SL. What exactly is endometrial receptivity? Fertil Steril. 2019;111:611–7.

    Article 
    PubMed 

    Google Scholar
     

  • Neykova K, Tosto V, Giardina I, Tsibizova V, Vakrilov G. Endometrial receptivity and pregnancy outcome. J Matern Fetal Neonatal Med. 2022;35:2591–605.

    Article 
    PubMed 

    Google Scholar
     

  • Craciunas L, Gallos I, Chu J, Bourne T, Quenby S, Brosens JJ, Coomarasamy A. Conventional and modern markers of endometrial receptivity: a systematic review and meta-analysis. Hum Reprod Update. 2019;25:202–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dobrowolski W, Hafez ES. The uterus and control of ovarian function. Acta Obstet Gynecol Scand Suppl. 1971;12:1–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Finn CA. The biology of decidual cells. Adv Reprod Physiol. 1971;5:1–26.

    CAS 
    PubMed 

    Google Scholar
     

  • Luddi A, Zarovni N, Maltinti E, Governini L, Leo V, Cappelli V, Quintero L, Paccagnini E, Loria F, Piomboni P. Clues to non-invasive implantation window monitoring: isolation and characterisation of endometrial exosomes. Cells. 2019;8:811.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lessey BA. Extracellular vesicles: a new understanding of endometrial receptivity? Fertil Steril. 2020;114:287.

    Article 
    PubMed 

    Google Scholar
     

  • Evans J, Rai A, Nguyen HPT, Poh QH, Elglass K, Simpson RJ, Salamonsen LA, Greening DW. Human endometrial extracellular vesicles functionally prepare human trophectoderm model for implantation: understanding bidirectional maternal-embryo communication. Proteomics. 2019;19: e1800423.

    Article 
    PubMed 

    Google Scholar
     

  • Gurung S, Greening DW, Catt S, Salamonsen L, Evans J. Exosomes and soluble secretome from hormone-treated endometrial epithelial cells direct embryo implantation. Mol Hum Reprod. 2020;26:510–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Braundmeier AG, Dayger CA, Mehrotra P, Belton RJ, Nowak RA. EMMPRIN is secreted by human uterine epithelial cells in microvesicles and stimulates metalloproteinase production by human uterine fibroblast cells. Reprod Sci (Thousand Oaks, Calif). 2012;19:1292–301.

    Article 
    CAS 

    Google Scholar
     

  • Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007;8:221–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parks WC, Wilson CL, Lopez-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol. 2004;4:617–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Curry TE Jr, Osteen KG. The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocr Rev. 2003;24:428–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chou CS, Tai CJ, MacCalman CD, Leung PC. Dose-dependent effects of gonadotropin releasing hormone on matrix metalloproteinase (MMP)-2, and MMP-9 and tissue specific inhibitor of metalloproteinases-1 messenger ribonucleic acid levels in human decidual Stromal cells in vitro. J Clin Endocrinol Metab. 2003;88:680–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong JC, Dong H, Campana A, Bischof P. Matrix metalloproteinases and their specific tissue inhibitors in menstruation. Reproduction. 2002;123:621–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruner-Tran KL, Eisenberg E, Yeaman GR, Anderson TA, McBean J, Osteen KG. Steroid and cytokine regulation of matrix metalloproteinase expression in endometriosis and the establishment of experimental endometriosis in nude mice. J Clin Endocrinol Metab. 2002;87:4782–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen L, Belton RJ Jr, Nowak RA. Basigin-mediated gene expression changes in mouse uterine stromal cells during implantation. Endocrinology. 2009;150:966–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strakova Z, Szmidt M, Srisuparp S, Fazleabas AT. Inhibition of matrix metalloproteinases prevents the synthesis of insulin-like growth factor binding protein-1 during decidualization in the baboon. Endocrinology. 2003;144:5339–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai RC, Tan SS, Teh BJ, Sze SK, Arslan F, de Kleijn DP, Choo A, Lim SK. Proteolytic potential of the MSC exosome proteome: implications for an exosome-mediated delivery of therapeutic proteasome. Int J Proteomics. 2012;2012: 971907.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ginestra A, Monea S, Seghezzi G, Dolo V, Nagase H, Mignatti P, Vittorelli ML. Urokinase plasminogen activator and gelatinases are associated with membrane vesicles shed by human HT1080 fibrosarcoma cells. J Biol Chem. 1997;272:17216–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Latifi Z, Fattahi A, Ranjbaran A, Nejabati HR, Imakawa K. Potential roles of metalloproteinases of endometrium-derived exosomes in embryo-maternal crosstalk during implantation. J Cell Physiol. 2018;233:4530–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen L, Nakai M, Belton RJ Jr, Nowak RA. Expression of extracellular matrix metalloproteinase inducer and matrix metalloproteinases during mouse embryonic development. Reproduction. 2007;133:405–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mishra B, Kizaki K, Koshi K, Ushizawa K, Takahashi T, Hosoe M, Sato T, Ito A, Hashizume K. Expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and its expected roles in the bovine endometrium during gestation. Domest Anim Endocrinol. 2012;42:63–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma Q, Beal JR, Song X, Bhurke A, Bagchi IC, Bagchi MK. Extracellular vesicles secreted by mouse decidual cells carry critical information for the establishment of pregnancy. Endocrinology. 2022;163:bqac165.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hurskainen T, Seiki M, Apte SS, Syrjakallio-Ylitalo M, Sorsa T, Oikarinen A, Autio-Harmainen H. Production of membrane-type matrix metalloproteinase-1 (MT-MMP-1) in early human placenta. A possible role in placental implantation? J Histochem Cytochem. 1998;46:221–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bjorn SF, Hastrup N, Larsen JF, Lund LR, Pyke C. Messenger RNA for membrane-type 2 matrix metalloproteinase, MT2-MMP, is expressed in human placenta of first trimester. Placenta. 2000;21:170–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Szabova L, Son MY, Shi J, Sramko M, Yamada SS, Swaim WD, Zerfas P, Kahan S, Holmbeck K. Membrane-type MMPs are indispensable for placental labyrinth formation and development. Blood. 2010;116:5752–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaitu’u-Lino TJ, Palmer KR, Whitehead CL, Williams E, Lappas M, Tong S. MMP-14 is expressed in preeclamptic placentas and mediates release of soluble endoglin. Am J Pathol. 2012;180:888–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Cheng H, Shao Q, Dong Z, Xie Q, Zhao L, Wang Q, Kong B, Qu X. Leptin-promoted human extravillous trophoblast invasion is MMP14 dependent and requires the cross talk between Notch1 and PI3K/Akt signaling. Biol Reprod. 2014;90:78.

    Article 
    PubMed 

    Google Scholar
     

  • Kam EP, Gardner L, Loke YW, King A. The role of trophoblast in the physiological change in decidual spiral arteries. Hum Reprod. 1999;14:2131–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Craven CM, Morgan T, Ward K. Decidual spiral artery remodelling begins before cellular interaction with cytotrophoblasts. Placenta. 1998;19:241–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pijnenborg R. The origin and future of placental bed research. Eur J Obstet Gynecol Reprod Biol. 1998;81:185–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong X, Tong Q, Chen Z, Zhang Y, Xu C, Jin Z. Microvascular density and vascular endothelial growth factor and osteopontin expression during the implantation window in a controlled ovarian hyperstimulation rat model. Exp Ther Med. 2015;9:773–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Man GCW, Liu Y, Wu F, Huang J, Li TC, Wang CC. Physiological and pathological angiogenesis in endometrium at the time of embryo implantation. Am J Reprod Immunol. 2017;78: e12693.

    Article 

    Google Scholar
     

  • Uysal S, Ozbay EP, Ekinci T, Aksut H, Karasu S, Isik AZ, Soylu F. Endometrial spiral artery Doppler parameters in unexplained infertility patients: is endometrial perfusion an important factor in the etiopathogenesis? J Turk Ger Gynecol Assoc. 2012;13:169–71.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Escudero CA, Herlitz K, Troncoso F, Acurio J, Aguayo C, Roberts JM, Truong G, Duncombe G, Rice G, Salomon C. Role of extracellular vesicles and microRNAs on dysfunctional angiogenesis during preeclamptic pregnancies. Front Physiol. 2016;7:98.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu HM, Lo TC, Tsai CL, Chen LH, Huang HY, Wang HS, Yu J. Extracellular vesicle-associated microRNA-138-5p regulates embryo implantation and early pregnancy by adjusting GPR124. Pharmaceutics. 2022;14:1172.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan Q, Shi S, Liang J, Cao D, Wang S, Wang Z. Endometrial cell-derived small extracellular vesicle miR-100-5p promotes functions of trophoblast during embryo implantation. Mol Ther Nucleic Acids. 2021;23:217–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mishra A, Ashary N, Sharma R, Modi D. Extracellular vesicles in embryo implantation and disorders of the endometrium. Am J Reprod Immunol. 2021;85: e13360.

    Article 
    PubMed 

    Google Scholar
     

  • Blazquez R, Sanchez-Margallo FM, Alvarez V, Matilla E, Hernandez N, Marinaro F, Gomez-Serrano M, Jorge I, Casado JG, Macias-Garcia B. Murine embryos exposed to human endometrial MSCs-derived extracellular vesicles exhibit higher VEGF/PDGF AA release, increased blastomere count and hatching rates. PLoS ONE. 2018;13: e0196080.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blois SM, Kammerer U, Alba Soto C, Tometten MC, Shaikly V, Barrientos G, Jurd R, Rukavina D, Thomson AW, Klapp BF, et al. Dendritic cells: key to fetal tolerance? Biol Reprod. 2007;77:590–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bulmer JN, Morrison L, Longfellow M, Ritson A, Pace D. Granulated lymphocytes in human endometrium: histochemical and immunohistochemical studies. Hum Reprod. 1991;6:791–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quenby S, Bates M, Doig T, Brewster J, Lewis-Jones DI, Johnson PM, Vince G. Pre-implantation endometrial leukocytes in women with recurrent miscarriage. Hum Reprod. 1999;14:2386–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Munoz-Suano A, Hamilton AB, Betz AG. Gimme shelter: the immune system during pregnancy. Immunol Rev. 2011;241:20–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saito S, Nakashima A, Shima T, Ito M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol. 2010;63:601–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erkers T, Nava S, Yosef J, Ringden O, Kaipe H. Decidual stromal cells promote regulatory T cells and suppress alloreactivity in a cell contact-dependent manner. Stem Cells Dev. 2013;22:2596–605.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura K, Kusama K, Hori M, Imakawa K. The effect of bta-miR-26b in intrauterine extracellular vesicles on maternal immune system during the implantation period. Biochem Biophys Res Commun. 2021;573:100–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu J, Wang Z, Cao J, Chen Y, Dong Y. A novel and compact review on the role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2018;16:80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agarwal A, Gupta S, Sekhon L, Shah R. Redox considerations in female reproductive function and assisted reproduction: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008;10:1375–403.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas M, Jain S, Kumar GP, Laloraya M. A programmed oxyradical burst causes hatching of mouse blastocysts. J Cell Sci. 1997;110(Pt 14):1597–602.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirota Y, Acar N, Tranguch S, Burnum KE, Xie H, Kodama A, Osuga Y, Ustunel I, Friedman DB, Caprioli RM, et al. Uterine FK506-binding protein 52 (FKBP52)-peroxiredoxin-6 (PRDX6) signaling protects pregnancy from overt oxidative stress. Proc Natl Acad Sci U S A. 2010;107:15577–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jauniaux E, Poston L, Burton GJ. Placental-related diseases of pregnancy: involvement of oxidative stress and implications in human evolution. Hum Reprod Update. 2006;12:747–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hannan NJ, Stephens AN, Rainczuk A, Hincks C, Rombauts LJ, Salamonsen LA. 2D-DiGE analysis of the human endometrial secretome reveals differences between receptive and nonreceptive states in fertile and infertile women. J Proteome Res. 2010;9:6256–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scotchie JG, Fritz MA, Mocanu M, Lessey BA, Young SL. Proteomic analysis of the luteal endometrial secretome. Reprod Sci. 2009;16:883–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manohar M, Khan H, Sirohi VK, Das V, Agarwal A, Pandey A, Siddiqui WA, Dwivedi A. Alteration in endometrial proteins during early- and mid-secretory phases of the cycle in women with unexplained infertility. PLoS ONE. 2014;9: e111687.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Truong T, Gardner DK. Antioxidants improve IVF outcome and subsequent embryo development in the mouse. Hum Reprod. 2017;32:2404–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Truong TT, Soh YM, Gardner DK. Antioxidants improve mouse preimplantation embryo development and viability. Hum Reprod. 2016;31:1445–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashary N, Tiwari A, Modi D. Embryo implantation: war in times of love. Endocrinology. 2018;159:1188–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Modi DN, Godbole G, Suman P, Gupta SK. Endometrial biology during trophoblast invasion. Front Biosci (Schol Ed). 2012;4:1151–71.

    PubMed 

    Google Scholar
     

  • Rosario GX, D’Souza SJ, Manjramkar DD, Parmar V, Puri CP, Sachdeva G. Endometrial modifications during early pregnancy in bonnet monkeys (Macaca radiata). Reprod Fertil Dev. 2008;20:281–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Godbole G, Suman P, Gupta SK, Modi D. Decidualized endometrial stromal cell derived factors promote trophoblast invasion. Fertil Steril. 2011;95:1278–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones CJ, Fazleabas AT. Ultrastructure of epithelial plaque formation and stromal cell transformation by post-ovulatory chorionic gonadotrophin treatment in the baboon (Papio anubis). Hum Reprod. 2001;16:2680–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strakova Z, Mavrogianis P, Meng X, Hastings JM, Jackson KS, Cameo P, Brudney A, Knight O, Fazleabas AT. In vivo infusion of interleukin-1beta and chorionic gonadotropin induces endometrial changes that mimic early pregnancy events in the baboon. Endocrinology. 2005;146:4097–104.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Godbole GB, Modi DN, Puri CP. Regulation of homeobox A10 expression in the primate endometrium by progesterone and embryonic stimuli. Reproduction. 2007;134:513–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fazleabas AT, Donnelly KM, Srinivasan S, Fortman JD, Miller JB. Modulation of the baboon (Papio anubis) uterine endometrium by chorionic gonadotrophin during the period of uterine receptivity. Proc Natl Acad Sci U S A. 1999;96:2543–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dissanayake K, Nomm M, Lattekivi F, Ressaissi Y, Godakumara K, Lavrits A, Midekessa G, Viil J, Baek R, Jorgensen MM, et al. Individually cultured bovine embryos produce extracellular vesicles that have the potential to be used as non-invasive embryo quality markers. Theriogenology. 2020;149:104–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mellisho EA, Velasquez AE, Nunez MJ, Cabezas JG, Cueto JA, Fader C, Castro FO, Rodriguez-Alvarez L. Identification and characteristics of extracellular vesicles from bovine blastocysts produced in vitro. PLoS ONE. 2017;12: e0178306.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taqi MO, Saeed-Zidane M, Gebremedhn S, Salilew-Wondim D, Khdrawy O, Rings F, Neuhoff C, Hoelker M, Schellander K, Tesfaye D. Sexual dimorphic expression and release of transcription factors in bovine embryos exposed to oxidative stress. Mol Reprod Dev. 2019;86:2005–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veraguas D, Aguilera C, Henriquez C, Velasquez AE, Melo-Baez B, Silva-Ibanez P, Castro FO, Rodriguez-Alvarez L. Evaluation of extracellular vesicles and gDNA from culture medium as a possible indicator of developmental competence in human embryos. Zygote. 2021;29:138–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vyas P, Balakier H, Librach CL. Ultrastructural identification of CD9 positive extracellular vesicles released from human embryos and transported through the zona pellucida. Syst Biol Reprod Med. 2019;65:273–80.

    Article 
    PubMed 

    Google Scholar
     

  • Desrochers LM, Bordeleau F, Reinhart-King CA, Cerione RA, Antonyak MA. Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nat Commun. 2016;7:11958.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu P, Qing S, Liu R, Qin H, Wang W, Qiao F, Ge H, Liu J, Zhang Y, Cui W, Wang Y. Effects of embryo-derived exosomes on the development of bovine cloned embryos. PLoS ONE. 2017;12: e0174535.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burns GW, Brooks KE, Spencer TE. Extracellular vesicles originate from the conceptus and uterus during early pregnancy in sheep. Biol Reprod. 2016;94:56.

    Article 
    PubMed 

    Google Scholar
     

  • Capalbo A, Ubaldi FM, Cimadomo D, Noli L, Khalaf Y, Farcomeni A, Ilic D, Rienzi L. MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment. Fertil Steril. 2016;105(225–235):e221-223.


    Google Scholar
     

  • Cuman C, Van Sinderen M, Gantier MP, Rainczuk K, Sorby K, Rombauts L, Osianlis T, Dimitriadis E. Human blastocyst secreted microRNA regulate endometrial epithelial cell adhesion. EBioMedicine. 2015;2:1528–35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saadeldin IM, Kim SJ, Choi YB, Lee BC. Improvement of cloned embryos development by co-culturing with parthenotes: a possible role of exosomes/microvesicles for embryos paracrine communication. Cell Reprogram. 2014;16:223–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carrasco-Ramirez P, Greening DW, Andres G, Gopal SK, Martin-Villar E, Renart J, Simpson RJ, Quintanilla M. Podoplanin is a component of extracellular vesicles that reprograms cell-derived exosomal proteins and modulates lymphatic vessel formation. Oncotarget. 2016;7:16070–89.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dissanayake K, Nomm M, Lattekivi F, Ord J, Ressaissi Y, Godakumara K, Reshi QUA, Viil J, Jaager K, Velthut-Meikas A, et al. Oviduct as a sensor of embryo quality: deciphering the extracellular vesicle (EV)-mediated embryo-maternal dialogue. J Mol Med (Berl). 2021;99:685–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brosens JJ, Salker MS, Teklenburg G, Nautiyal J, Salter S, Lucas ES, Steel JH, Christian M, Chan YW, Boomsma CM, et al. Uterine selection of human embryos at implantation. Sci Rep. 2014;4:3894.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pallinger E, Bognar Z, Bogdan A, Csabai T, Abraham H, Szekeres-Bartho J. PIBF+ extracellular vesicles from mouse embryos affect IL-10 production by CD8+ cells. Sci Rep. 2018;8:4662.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atay S, Gercel-Taylor C, Suttles J, Mor G, Taylor DD. Trophoblast-derived exosomes mediate monocyte recruitment and differentiation. Am J Reprod Immunol. 2011;65:65–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kovacs AF, Fekete N, Turiak L, Acs A, Kohidai L, Buzas EI, Pallinger E. Unravelling the role of trophoblastic-derived extracellular vesicles in regulatory T cell differentiation. Int J Mol Sci. 2019;20:3457.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giacomini E, Alleva E, Fornelli G, Quartucci A, Privitera L, Vanni VS, Vigano P. Embryonic extracellular vesicles as informers to the immune cells at the maternal-fetal interface. Clin Exp Immunol. 2019;198:15–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Long N, Liu N, Liu XL, Li J, Cai BY, Cai X. Endometrial expression of telomerase, progesterone, and estrogen receptors during the implantation window in patients with recurrent implantation failure. Genet Mol Res. 2016. https://doi.org/10.4238/gmr.15027849.

    Article 
    PubMed 

    Google Scholar
     

  • Huang J, Qin H, Yang Y, Chen X, Zhang J, Laird S, Wang CC, Chan TF, Li TC. A comparison of transcriptomic profiles in endometrium during window of implantation between women with unexplained recurrent implantation failure and recurrent miscarriage. Reproduction. 2017;153:749–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Am J Obstet Gynecol. 1975;122:262–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahajan N. Endometrial receptivity array: clinical application. J Hum Reprod Sci. 2015;8:121–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coutifaris C, Myers ER, Guzick DS, Diamond MP, Carson SA, Legro RS, McGovern PG, Schlaff WD, Carr BR, Steinkampf MP, et al. Histological dating of timed endometrial biopsy tissue is not related to fertility status. Fertil Steril. 2004;82:1264–72.

    Article 
    PubMed 

    Google Scholar
     

  • Murray MJ, Meyer WR, Zaino RJ, Lessey BA, Novotny DB, Ireland K, Zeng D, Fritz MA. A critical analysis of the accuracy, reproducibility, and clinical utility of histologic endometrial dating in fertile women. Fertil Steril. 2004;81:1333–43.

    Article 
    PubMed 

    Google Scholar
     

  • Cavagna M, Mantese JC. Biomarkers of endometrial receptivity—a review. Placenta. 2003;24(Suppl B):S39-47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Altmäe S, Koel M, Võsa U, Adler P, Suhorutšenko M, Laisk-Podar T, Kukushkina V, Saare M, Velthut-Meikas A, Krjutškov K, et al. Meta-signature of human endometrial receptivity: a meta-analysis and validation study of transcriptomic biomarkers. Sci Rep. 2017;7:10077.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Governini L, Luongo FP, Haxhiu A, Piomboni P, Luddi A. Main actors behind the endometrial receptivity and successful implantation. Tissue Cell. 2021;73: 101656.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lessey BA. Assessment of endometrial receptivity. Fertil Steril. 2011;96:522–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diaz-Gimeno P, Horcajadas JA, Martinez-Conejero JA, Esteban FJ, Alama P, Pellicer A, Simon C: A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril. 2011, 95:50–60, 60 e51–15.

  • Zhang X, Zhang S, Qi J, Zhao F, Lu Y, Li S, Wu S, Li P, Tan J. PDGFBB improved the biological function of menstrual blood-derived stromal cells and the anti-fibrotic properties of exosomes. Stem Cell Res Ther. 2023;14:113.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubin SC, Abdulkadir M, Lewis J, Harutyunyan A, Hirani R, Grimes CL. Review of endometrial receptivity array: a personalized approach to embryo transfer and its clinical applications. J Pers Med. 2023;13:749.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enciso M, Carrascosa JP, Sarasa J, Martinez-Ortiz PA, Munne S, Horcajadas JA, Aizpurua J. Development of a new comprehensive and reliable endometrial receptivity map (ER Map/ER Grade) based on RT-qPCR gene expression analysis. Hum Reprod. 2018;33:220–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cozzolino M, Diaz-Gimeno P, Pellicer A, Garrido N. Evaluation of the endometrial receptivity assay and the preimplantation genetic test for aneuploidy in overcoming recurrent implantation failure. J Assist Reprod Genet. 2020;37:2989–97.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen AM, Ye XY, Colgan TJ, Greenblatt EM, Chan C. Comparing endometrial receptivity array to histologic dating of the endometrium in women with a history of implantation failure. Syst Biol Reprod Med. 2020;66:347–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arian SE, Hessami K, Khatibi A, To AK, Shamshirsaz AA, Gibbons W. Endometrial receptivity array before frozen embryo transfer cycles: a systematic review and meta-analysis. Fertil Steril. 2023;119:229–38.

    Article 
    PubMed 

    Google Scholar
     

  • Raff M, Jacobs E, Voorhis BV. End of an endometrial receptivity array? Fertil Steril. 2022;118:737.

    Article 
    PubMed 

    Google Scholar
     

  • Liu Z, Liu X, Wang M, Zhao H, He S, Lai S, Qu Q, Wang X, Zhao D, Bao H. The clinical efficacy of personalized embryo transfer guided by the endometrial receptivity array/analysis on IVF/ICSI outcomes: a systematic review and meta-analysis. Front Physiol. 2022;13: 841437.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neves AR, Devesa M, Martinez F, Garcia-Martinez S, Rodriguez I, Polyzos NP, Coroleu B. What is the clinical impact of the endometrial receptivity array in PGT-A and oocyte donation cycles? J Assist Reprod Genet. 2019;36:1901–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruiz-Alonso M, Blesa D, Diaz-Gimeno P, Gomez E, Fernandez-Sanchez M, Carranza F, Carrera J, Vilella F, Pellicer A, Simon C. The endometrial receptivity array for diagnosis and personalized embryo transfer as a treatment for patients with repeated implantation failure. Fertil Steril. 2013;100:818–24.

    Article 
    PubMed 

    Google Scholar
     

  • Ibanez-Perez J, Diaz-Nunez M, Clos-Garcia M, Lainz L, Iglesias M, Diez-Zapirain M, Rabanal A, Barcena L, Gonzalez M, Lozano JJ, et al. microRNA-based signatures obtained from endometrial fluid identify implantative endometrium. Hum Reprod. 2022;37:2375–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Segura-Benítez M, Carbajo-García MC, Corachán A, Faus A, Pellicer A, Ferrero H. Proteomic analysis of extracellular vesicles secreted by primary human epithelial endometrial cells reveals key proteins related to embryo implantation. Reprod Biol Endocrinol. 2022;20:3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marinaro F, Macias-Garcia B, Sanchez-Margallo FM, Blazquez R, Alvarez V, Matilla E, Hernandez N, Gomez-Serrano M, Jorge I, Vazquez J, et al. Extracellular vesicles derived from endometrial human mesenchymal stem cells enhance embryo yield and quality in an aged murine model. Biol Reprod. 2019;100:1180–92.

    Article 
    PubMed 

    Google Scholar
     

  • Hajipour H, Farzadi L, Roshangar L, Latifi Z, Kahroba H, Shahnazi V, Hamdi K, Ghasemzadeh A, Fattahi A, Nouri M. A human chorionic gonadotropin (hCG) delivery platform using engineered uterine exosomes to improve endometrial receptivity. Life Sci. 2021;275: 119351.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taravat M, Asadpour R, Jozani RJ, Fattahi A, Khordadmehr M. Enhanced anti-inflammatory effect of Rosmarinic acid by encapsulation and combination with the exosome in mice with LPS-induced endometritis through suppressing the TLR4-NLRP3 signaling pathway. J Reprod Immunol. 2023;159: 103992.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wiklander OPB, Brennan MÁ, Lötvall J, Breakefield XO, El Andaloussi S. Advances in therapeutic applications of extracellular vesicles. Sci Transl Med. 2019;11:eaav8521.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wunsch BH, Smith JT, Gifford SM, Wang C, Brink M, Bruce RL, Austin RH, Stolovitzky G, Astier Y. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nat Nanotechnol. 2016;11:936–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Description of Image

    Source link