Scientific Papers

Colitis-associated carcinogenesis: crosstalk between tumors, immune cells and gut microbiota | Cell & Bioscience

Description of Image

  • Sun J, Halfvarson J, Bergman D, et al. Statin use and risk of colorectal cancer in patients with inflammatory bowel disease. EClinicalMedicine. 2023;63:102182.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.

    Article 
    PubMed 

    Google Scholar
     

  • Waldum H, Fossmark R. Inflammation and digestive cancer. Int J Mol Sci. 2023;24(17):13503.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eaden J. Review article: colorectal carcinoma and inflammatory bowel disease. Aliment Pharmacol Ther. 2004;20(4):24–30.

    Article 
    PubMed 

    Google Scholar
     

  • Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51(1):27–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porter RJ, Arends MJ, Churchhouse A, et al. Inflammatory bowel disease-associated colorectal cancer: translational risks from mechanisms to medicines. J Crohn’s Colitis. 2021. https://doi.org/10.1093/ecco-jcc/jjab102.

    Article 

    Google Scholar
     

  • Soomro S, Venkateswaran S, Vanarsa K, et al. Predicting disease course in ulcerative colitis using stool proteins identified through an aptamer-based screen. Nat Commun. 2021;12(1):1–11.

    Article 

    Google Scholar
     

  • Gasparetto M, Payne F, Nayak K, et al. Transcription and DNA methylation patterns of blood-derived CD8+ T cells are associated with age and inflammatory bowel disease but do not predict prognosis. Gastroenterology. 2021;160(1):232-44.e7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fazio A, Bordoni D, Kuiper JW, et al. DNA methyltransferase 3A controls intestinal epithelial barrier function and regeneration in the colon. Nat Commun. 2022;13(1):1–19.

    Article 

    Google Scholar
     

  • Hirsch D, Hardt J, Sauer C, et al. Molecular characterization of ulcerative colitis-associated colorectal carcinomas. Mod Pathol. 2021;34(6):1153–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rajamäki K, Taira A, Katainen R, et al. Genetic and epigenetic characteristics of inflammatory bowel disease associated colorectal cancer. Gastroenterology. 2021. https://doi.org/10.1053/j.gastro.2021.04.042.

    Article 
    PubMed 

    Google Scholar
     

  • Li J, Ma X, Chakravarti D, et al. Genetic and biological hallmarks of colorectal cancer. Genes Dev. 2021;35(11–12):787–820.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsumoto K, Urabe Y, Oka S, et al. Genomic landscape of early-stage colorectal neoplasia developing from the ulcerative colitis mucosa in the Japanese population. Inflamm Bowel Dis. 2021;27(5):686–96.

    Article 
    PubMed 

    Google Scholar
     

  • Huang D, Sun W, Zhou Y, et al. Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev. 2018;37(1):173–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brentnall TA, Crispin DA, Rabinovitch PS, et al. Mutations in the p53 gene: an early marker of neoplastic progression in ulcerative colitis. Gastroenterology. 1994;107(2):369.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aust DE, Terdiman JP, Willenbucher RF, et al. The APC/beta-catenin pathway in ulcerative colitis-related colorectal carcinomas: a mutational analysis. Cancer. 2002;94(5):1421–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei M, Ma Y, Shen L, et al. NDRG2 regulates adherens junction integrity to restrict colitis and tumourigenesis. EBioMedicine. 2020;61:103068.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar A, Priyamvada S, Ge Y, et al. A novel role of SLC26A3 in the maintenance of intestinal epithelial barrier integrity. Gastroenterology. 2021;160(4):1240-55.e3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grosheva I, Zheng D, Levy M, et al. High-throughput screen identifies host and microbiota regulators of intestinal barrier function. Gastroenterology. 2020;159(5):1807–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spalinger MR, Sayoc-Becerra A, Santos AN, et al. PTPN2 regulates interactions between macrophages and intestinal epithelial cells to promote intestinal barrier function. Gastroenterology. 2020;159(5):1763-77.e14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sahoo D, Swanson L, Sayed IM, et al. Artificial intelligence guided discovery of a barrier-protective therapy in inflammatory bowel disease. Nat Commun. 2021;12(1):1–14.

    Article 

    Google Scholar
     

  • Grivennikov S, Karin E, Terzic J, et al. IL-6 and STAT3 are required for survival of intestinal epithelial cells and development of colitis associated cancer. Cancer Cell. 2009;15(2):103–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meir M, Burkard N, Ungewiß H, et al. Neurotrophic factor GDNF regulates intestinal barrier function in inflammatory bowel disease. J Clin Investig. 2019;129(7):2824–40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hidalgo García L, Molina Tijeras JA, Huertas Peña FJ, et al. Intestinal mesenchymal cells regulate immune responses and promote epithelial regeneration in vitro and in dextran sulfate sodium-induced experimental colitis in mice. Acta Physiol. 2021. https://doi.org/10.1111/apha.13699.

    Article 

    Google Scholar
     

  • Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu W, Miyata N, Winter MG, et al. Editing of the gut microbiota reduces carcinogenesis in mouse models of colitis-associated colorectal cancer. J Exp Med. 2019;216(10):2378–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen LJ, Cho JH, Gevers D, et al. Genetic factors and the intestinal microbiome guide development of microbe-based therapies for inflammatory bowel diseases. Gastroenterology. 2019;156(8):2174–89.

    Article 
    PubMed 

    Google Scholar
     

  • López-Posadas R, Neurath MF, Atreya I. Molecular pathways driving disease-specific alterations of intestinal epithelial cells. Cell Mol Life Sci. 2017;74(5):803–26.

    Article 
    PubMed 

    Google Scholar
     

  • Hu S, Venema WTU, Westra H-J, et al. Inflammation status modulates the effect of host genetic variation on intestinal gene expression in inflammatory bowel disease. Nat Commun. 2021;12(1):1–10.


    Google Scholar
     

  • Xiao L, Li X-X, Chung HK, et al. RNA-binding protein HuR regulates Paneth cell function by altering membrane localization of TLR2 via post-transcriptional control of CNPY3. Gastroenterology. 2019;157(3):731–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu S, Balasubramanian I, Laubitz D, et al. Paneth cell-derived lysozyme defines the composition of mucolytic microbiota and the inflammatory tone of the intestine. Immunity. 2020;53(2):398-416.e8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2015;14(1):20–32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banerjee A, Herring CA, Chen B, et al. Succinate produced by intestinal microbes promotes specification of tuft cells to suppress ileal inflammation. Gastroenterology. 2020;159(6):2101-155.e5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balasubramanian I, Gao N. From sensing to shaping microbiota: insights into the role of NOD2 in intestinal homeostasis and progression of Crohn’s disease. Am J Physiol Gastrointest Liver Physiol. 2017;313(1):G7–13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landi MT, Bishop DT, MacGregor S, et al. Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility. Nat Genet. 2020;52(5):494–504.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Z-Y, Zheng M, Li Y-M, et al. RIP3 promotes colitis-associated colorectal cancer by controlling tumor cell proliferation and CXCL1-induced immune suppression. Theranostics. 2019;9(12):3659.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou M, He J, Shi Y, et al. ABIN3 negatively regulates necroptosis-induced intestinal inflammation through recruiting A20 and restricting the ubiquitination of RIPK3 in inflammatory bowel disease. J Crohns Colitis. 2021;15(1):99–114.

    Article 
    PubMed 

    Google Scholar
     

  • Kosinsky RL, Saul D, Ammer-Herrmenau C, et al. USP22 suppresses sparc expression in acute colitis and inflammation-associated colorectal cancer. Cancers. 2021;13(8):1817.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Powell N, Pantazi E, Pavlidis P, et al. Interleukin-22 orchestrates a pathological endoplasmic reticulum stress response transcriptional programme in colonic epithelial cells. Gut. 2020;69(3):578–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perez LG, Kempski J, McGee HM, et al. TGF-β signaling in Th17 cells promotes IL-22 production and colitis-associated colon cancer. Nat Commun. 2020;11(1):1–14.


    Google Scholar
     

  • Sheng YH, Giri R, Davies J, et al. A nucleotide analog prevents colitis-associated cancer via beta-catenin independently of inflammation and autophagy. Cell Mol Gastroenterol Hepatol. 2021;11(1):33–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hibiya S, Tsuchiya K, Hayashi R, et al. Long-term inflammation transforms intestinal epithelial cells of colonic organoids. J Crohns Colitis. 2017;11(5):621–30.

    PubMed 

    Google Scholar
     

  • De Salvo C, Buela K-A, Creyns B, et al. NOD2 drives early IL-33–dependent expansion of group 2 innate lymphoid cells during Crohn’s disease–like ileitis. J Clin Invest. 2021;131(5):e140624.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solà-Tapias N, Vergnolle N, Denadai-Souza A, et al. The interplay between genetic risk factors and proteolytic dysregulation in the pathophysiology of inflammatory bowel disease. J Crohns Colitis. 2020;14(8):1149–61.

    Article 
    PubMed 

    Google Scholar
     

  • Lee M, Kim Y-S, Lim S, et al. Protein stabilization of ITF2 by NF-κB prevents colitis-associated cancer development. Nat Commun. 2023;14(1):2363.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kakiuchi N, Yoshida K, Uchino M, et al. Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature. 2020;577(7789):260–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian H, Qian J, Ai L, et al. Upregulation of ASAP 3 contributes to colorectal carcinogenesis and indicates poor survival outcome. Cancer Sci. 2017;108(8):1544–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Q, Chen Y, Zhang D, et al. IRAK4 mediates colitis-induced tumorigenesis and chemoresistance in colorectal cancer. JCI insight. 2019;4(19):e130867.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salas A, Hernandez-Rocha C, Duijvestein M, et al. JAK–STAT pathway targeting for the treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17(6):323–37.

    Article 
    PubMed 

    Google Scholar
     

  • Lamichhane S, Mo J-S, Sharma G, et al. MicroRNA 452 regulates IL20RA-mediated JAK1/STAT3 pathway in inflammatory colitis and colorectal cancer. Inflamm Res. 2021;70(8):903–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Willson TA, Jurickova I, Collins M, et al. Deletion of intestinal epithelial cell STAT3 promotes T-lymphocyte STAT3 activation and chronic colitis following acute dextran sodium sulfate injury in mice. Inflamm Bowel Dis. 2013;19(3):512.

    Article 
    PubMed 

    Google Scholar
     

  • Pang L, Huynh J, Alorro MG, et al. STAT3 signalling via the IL-6ST/gp130 cytokine receptor promotes epithelial integrity and intestinal barrier function during DSS-induced colitis. Biomedicines. 2021;9(2):187.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Josa V, Ferenczi S, Szalai R, et al. Thrombocytosis and effects of IL-6 knock-out in a colitis-associated cancer model. Int J Mol Sci. 2020;21(17):6218.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Backert I, Koralov SB, Wirtz S, et al. STAT3 activation in Th17 and Th22 cells controls IL-22-mediated epithelial host defense during infectious colitis. J Immunol. 2014;193(7):3779.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keir ME, Yi T, Lu TT, et al. The role of IL-22 in intestinal health and disease. J Exp Med. 2020;217(3):e20192195.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aden K, Tran F, Ito G, et al. ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS–STING. J Exp Med. 2018;215(11):2868–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delgado-Ramirez Y, Baltazar-Perez I, Martinez Y, et al. STAT1 is required for decreasing accumulation of granulocytic cells via IL-17 during initial steps of colitis-associated cancer. Int J Mol Sci. 2021;22(14):7695.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu X, Wei W, Li X, et al. BMI1 and MEL18 promote colitis-associated cancer in mice via REG3B and STAT3. Gastroenterology. 2017;153(6):1607.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma X, Meng Z, Jin L, et al. CAMK2γ in intestinal epithelial cells modulates colitis-associated colorectal carcinogenesis via enhancing STAT3 activation. Oncogene. 2017;36(28):4060–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye X, Wu H, Sheng L, et al. Oncogenic potential of truncated RXRα during colitis-associated colorectal tumorigenesis by promoting IL-6-STAT3 signaling. Nat Commun. 2019;10(1):1–15.

    Article 

    Google Scholar
     

  • Lin X, Sun Q, Zhou L, et al. Colonic epithelial mTORC1 promotes ulcerative colitis through COX-2-mediated Th17 responses. Mucosal Immunol. 2018;11(6):1663–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rizzo A, Di Giovangiulio M, Stolfi C, et al. RORγt-expressing Tregs drive the growth of colitis-associated colorectal cancer by controlling IL6 in dendritic cells. Cancer Immunol Res. 2018;6(9):1082–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schreiber S, Aden K, Bernardes JP, et al. Therapeutic Interleukin-6 Trans-signaling Inhibition by Olamkicept (sgp130Fc) in patients with active inflammatory bowel disease. Gastroenterology. 2021;160(7):2354-66.e11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Network TCGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.

    Article 

    Google Scholar
     

  • Robles AI, Traverso G, Zhang M, et al. Whole-exome sequencing analyses of inflammatory bowel disease-associated colorectal cancers. Gastroenterology. 2016;150(4):931.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakai K, De Velasco MA, Kura Y, et al. Transcriptome profiling and metagenomic analysis help to elucidate interactions in an inflammation-associated cancer mouse model. Cancers. 2021;13(15):3683.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biscaglia G, Latiano A, Castellana S, et al. Germline alterations in patients with IBD-associated colorectal cancer. Inflamm Bowel Dis. 2021. https://doi.org/10.1093/ibd/izab195.

    Article 

    Google Scholar
     

  • Mäki-Nevala S, Ukwattage S, Olkinuora A, et al. Somatic mutation profiles as molecular classifiers of ulcerative colitis-associated colorectal cancer. Int J Cancer. 2021;148(12):2997–3007.

    Article 
    PubMed 

    Google Scholar
     

  • Kesari MV, Gaopande VL, Joshi AR, et al. Immunohistochemical study of MUC1, MUC2 and MUC5AC in colorectal carcinoma and review of literature. Indian J Gastroenterol Off J Indian Soc Gastroenterol. 2015;34(1):63–7.

    Article 

    Google Scholar
     

  • Li W, Zhang N, Jin C, et al. MUC1-C drives stemness in progression of colitis to colorectal cancer. JCI insight. 2020;5(12):e137112.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng K, Kou L, Yu L, et al. Histone demethylase JMJD2D interacts with β-catenin to induce transcription and activate colorectal cancer cell proliferation and tumor growth in mice. Gastroenterology. 2019;156(4):1112–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhuo M, Chen W, Shang S, et al. Inflammation-induced JMJD2D promotes colitis recovery and colon tumorigenesis by activating Hedgehog signaling. Oncogene. 2020;39(16):3336–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hua F, Shang S, Yang Y-w, et al. TRIB3 interacts with β-catenin and TCF4 to increase stem cell features of colorectal cancer stem cells and tumorigenesis. Gastroenterology. 2019;156(3):708-21.e15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng S, Chen L, Sun Q, et al. Scutellarin ameliorates colitis-associated colorectal cancer by suppressing Wnt/β-catenin signaling cascade. Eur J Pharmacol. 2021;906:174253.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu H, Wu Z, Qiu Y, et al. Supplementing a specific synbiotic suppressed the incidence of AOM/DSS-induced colorectal cancer in mice. iScience. 2023. https://doi.org/10.1016/j.isci.2023.106979.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Južnić L, Peuker K, Strigli A, et al. SETDB1 is required for intestinal epithelial differentiation and the prevention of intestinal inflammation. Gut. 2021;70(3):485–98.

    Article 
    PubMed 

    Google Scholar
     

  • Wang Q, Wang Z, Zhang Z, et al. Landscape of cell heterogeneity and evolutionary trajectory in ulcerative colitis-associated colon cancer revealed by single-cell RNA sequencing. Chin J Cancer Res. 2021;33(2):271.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirano T, Hirayama D, Wagatsuma K, et al. Immunological mechanisms in inflammation-associated colon carcinogenesis. Int J Mol Sci. 2020;21(9):3062.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coskun M. TNF-a-induced down-regulation of CDX2 suppresses MEP1A expression in colitis. Biochimica Biophysica Acta Molecular Basis Dis. 2014;1822(6):843–51.

    Article 

    Google Scholar
     

  • Ahn SH, Shah YM, Junko Inoue MS, et al. Hepatocyte nuclear factor 4α in the intestinal epithelial cells protects against inflammatory bowel disease. Inflamm Bowel Dis. 2008;14(7):908–20.

    Article 
    PubMed 

    Google Scholar
     

  • Liang W, Peng X, Li Q, et al. FAM3D is essential for colon homeostasis and host defense against inflammation associated carcinogenesis. Nat Commun. 2020;11(1):1–16.

    Article 

    Google Scholar
     

  • Liu M, Sun T, Li N, et al. BRG1 attenuates colonic inflammation and tumorigenesis through autophagy-dependent oxidative stress sequestration. Nat Commun. 2019;10(1):1–15.


    Google Scholar
     

  • Liu M, Rao H, Liu J, et al. The histone methyltransferase SETD2 modulates oxidative stress to attenuate experimental colitis. Redox Biol. 2021;43:102004.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muise AM, Walters TD, Glowacka WK, et al. Polymorphisms in E-cadherin (CDH1) result in a mis-localised cytoplasmic protein that is associated with Crohn’s disease. Gut. 2009;58(8):1121–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Henriques A, Koliaraki V, Kollias G. Mesenchymal MAPKAPK2/HSP27 drives intestinal carcinogenesis. Proc Natl Acad Sci. 2018;115(24):E5546–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Powell DW, Pinchuk IV, Saada JI, et al. Mesenchymal cells of the intestinal lamina propria. Annu Rev Physiol. 2011;73(1):213–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kinchen J, Chen HH, Parikh K, et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell. 2018;175(2):372-86.e17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kienzl M, Hasenoehrl C, Valadez-Cosmes P, et al. IL-33 reduces tumor growth in models of colorectal cancer with the help of eosinophils. Oncoimmunology. 2020;9(1):1776059.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cortez E, Roswall P, Pietras K. Functional subsets of mesenchymal cell types in the tumor microenvironment. Semin Cancer Biol. 2014;25(2):3–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abolarinwa BA, Ibrahim RB, Huang Y-H. Conceptual development of immunotherapeutic approaches to gastrointestinal cancer. Int J Mol Sci. 2019;20(18):4624.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tommelein J, Verset L, Boterberg T, et al. Cancer-associated fibroblasts connect metastasis-promoting communication in colorectal cancer. Front Oncol. 2015;5:63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darby IA, Laverdet B, Bonté F, et al. Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol. 2014;7:301.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gomes RN, Manuel F, Nascimento DS. The bright side of fibroblasts: molecular signature and regenerative cues in major organs. NPJ Regen Med. 2021;6(1):1–12.

    Article 

    Google Scholar
     

  • Räsänen K, Vaheri A. Activation of fibroblasts in cancer stroma. Exp Cell Res. 2010;316(17):2713–22.

    Article 
    PubMed 

    Google Scholar
     

  • Boesch M, Baty F, Rumpold H, et al. Fibroblasts in cancer: defining target structures for therapeutic intervention. Biochimica Biophysica Acta Rev Cancer. 2019;1872(1):111–21.

    Article 
    CAS 

    Google Scholar
     

  • Ma H, Wang J, Zhao X, et al. Periostin promotes colorectal tumorigenesis through integrin-FAK-Src pathway-mediated YAP/TAZ activation. Cell reports. 2020;30(3):793-806.e6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishina T, Deguchi Y, Ohshima D, et al. Interleukin-11-expressing fibroblasts have a unique gene signature correlated with poor prognosis of colorectal cancer. Nat Commun. 2021;12(1):1–20.

    Article 

    Google Scholar
     

  • Marsh T, Pietras K, McAllister SS. Fibroblasts as architects of cancer pathogenesis. Biochimica Biophysica Acta Molecular Basis Dis. 2013;1832(7):1070–8.

    Article 
    CAS 

    Google Scholar
     

  • Servais C, Erez N. From sentinel cells to inflammatory culprits: cancer-associated fibroblasts in tumour-related inflammation. J Pathol. 2013;229(2):198–207.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mifflin RC, Pinchuk IV, Saada JI, et al. Intestinal myofibroblasts: targets for stem cell therapy. Am J Physiol Gastrointest Liver Physiol. 2011;300(5):G684–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan Q, Gu J, Zhang J, et al. MyD88 in myofibroblasts enhances colitis-associated tumorigenesis via promoting macrophage M2 polarization. Cell Rep. 2021;34(5):108724.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boire A, Covic L, Agarwal A, et al. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell. 2005;120(3):303–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roulis M, Armaka M, Manoloukos M, et al. Intestinal epithelial cells as producers but not targets of chronic TNF suffice to cause murine Crohn-like pathology. Proc Natl Acad Sci. 2011;108(13):5396–401.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diez-Obrero V, Moratalla-Navarro F, Ibañez-Sanz G, et al. Transcriptome-wide association study for inflammatory bowel disease reveals novel candidate susceptibility genes in specific colon subsites and tissue categories. J Crohn’s Colitis. 2021;16(2):275–85.

    Article 

    Google Scholar
     

  • Kim Y-G, Kamada N, Shaw MH, et al. The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity. 2011;34(5):769–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin J-D, Devlin JC, Yeung F, et al. Rewilding Nod2 and Atg16l1 mutant mice uncovers genetic and environmental contributions to microbial responses and immune cell composition. Cell host & microbe. 2020;27(5):830-40.e4.

    Article 
    CAS 

    Google Scholar
     

  • Roulis M, Nikolaou C, Kotsaki E, et al. Intestinal myofibroblast-specific Tpl2-Cox-2-PGE2 pathway links innate sensing to epithelial homeostasis. Proc Natl Acad Sci. 2014;111(43):E4658–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med. 2014;211(8):1503–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gregorieff A, Pinto D, Begthel H, et al. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology. 2005;129(2):626–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCarthy N, Manieri E, Storm EE, et al. Distinct mesenchymal cell populations generate the essential intestinal BMP signaling gradient. Cell Stem Cell. 2020;26(3):391-402.e5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rupp C, Scherzer M, Rudisch A, et al. IGFBP7, a novel tumor stroma marker, with growth-promoting effects in colon cancer through a paracrine tumor–stroma interaction. Oncogene. 2015;34(7):815.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren J, Ding L, Zhang D, et al. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics. 2018;8(14):3932.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hawinkels LJ, Paauwe M, Verspaget HW, et al. Interaction with colon cancer cells hyperactivates TGF-β signaling in cancer-associated fibroblasts. Oncogene. 2014;33(1):97–107.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koliaraki V, Pasparakis M, Kollias G. IKKβ in intestinal mesenchymal cells promotes initiation of colitis-associated cancer. J Exp Med. 2015;212(13):2235–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pallangyo CK, Ziegler PK, Greten FR. IKKβ acts as a tumor suppressor in cancer-associated fibroblasts during intestinal tumorigenesis. J Exp Med. 2015;212(13):2253–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15(12):786–801.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levi-Galibov O, Lavon H, Wassermann-Dozorets R, et al. Heat Shock Factor 1-dependent extracellular matrix remodeling mediates the transition from chronic intestinal inflammation to colon cancer. Nat Commun. 2020;11(1):1–19.

    Article 

    Google Scholar
     

  • Heichler C, Schmied A, Enderle K, et al. Targeting STAT3 signaling in COL1+ fibroblasts controls colitis-associated cancer in mice. Cancers. 2022;14(6):1472.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao L, Yu Q, Zhang H, et al. A resident stromal cell population actively restrains innate immune response in the propagation phase of colitis pathogenesis in mice. Sci Transl Med. 2021;13(603):eabb5071.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomson CA, Nibbs RJ, McCoy KD, et al. Immunological roles of intestinal mesenchymal cells. Immunology. 2020;160(4):313–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walton KL, Holt L, Sartor RB. Lipopolysaccharide activates innate immune responses in murine intestinal myofibroblasts through multiple signaling pathways. Am J Physiol Gastroint Liver Physiol. 2009;296(3):601–11.

    Article 

    Google Scholar
     

  • Horiguchi H, Kadomatsu T, Miyata K, et al. Stroma-derived ANGPTL2 establishes an anti-tumor microenvironment during intestinal tumorigenesis. Oncogene. 2021;40(1):55–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stadler M, Pudelko K, Biermeier A, et al. Stromal fibroblasts shape the myeloid phenotype in normal colon and colorectal cancer and induce CD163 and CCL2 expression in macrophages. Cancer Lett. 2021. https://doi.org/10.1016/j.canlet.2021.07.006.

    Article 
    PubMed 

    Google Scholar
     

  • Kobayashi H, Gieniec KA, Lannagan TR, et al. The origin and contribution of cancer-associated fibroblasts in colorectal carcinogenesis. Gastroenterology. 2022;162(3):890–906.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herrera M, Herrera A, Domã­Nguez G, et al. Cancer-associated fibroblast and M2 macrophage markers together predict outcome in colorectal cancer patients. Cancer Science. 2013;104(4):437–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torres S, Bartolomé RA, Mendes M, et al. Proteome profiling of cancer-associated fibroblasts identifies novel proinflammatory signatures and prognostic markers for colorectal cancer. Clin Cancer Res. 2013;19(21):6006–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geremia A, Arancibia-Cárcamo CV. Innate lymphoid cells in intestinal inflammation. Front Immunol. 2017;8:1296.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitsialis V, Wall S, Liu P, et al. Single-cell analyses of colon and blood reveal distinct immune cell signatures of ulcerative colitis and Crohn’s disease. Gastroenterology. 2020;159(2):591-608.e10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z-W, Sun B, Gong T, et al. GNAI1 and GNAI3 reduce colitis-associated tumorigenesis in mice by blocking IL6 signaling and down-regulating expression of GNAI2. Gastroenterology. 2019;156(8):2297–312.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Na YR, Stakenborg M, Seok SH, et al. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol. 2019;16(9):531–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Galon J, Costes A, Sanchezcabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313(5795):1960–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leite CA, Mota JM, de Lima KA, et al. Paradoxical interaction between cancer and long-term postsepsis disorder: impairment of de novo carcinogenesis versus favoring the growth of established tumors. J Immunother Cancer. 2020;8(1):e000129.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ortiz ML, Kumar V, Martner A, et al. Immature myeloid cells directly contribute to skin tumor development by recruiting IL-17–producing CD4+ T cells. J Exp Med. 2015;212(3):351–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao Y, Zhao J, Bulek K, et al. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis. Nat Commun. 2020;11(1):1–15.

    Article 

    Google Scholar
     

  • Karagiannidis I, Jerman SJ, Jacenik D, et al. G-CSF and G-CSFR modulate CD4 and CD8 T cell responses to promote colon tumor growth and are potential therapeutic targets. Front Immunol. 2020;11:1885.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu C, Liu R, Wang B, et al. Blocking IL-17A enhances tumor response to anti-PD-1 immunotherapy in microsatellite stable colorectal cancer. J Immunother Cancer. 2021;9(1):e001895.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Itatani Y, Yamamoto T, Zhong C, et al. Suppressing neutrophil-dependent angiogenesis abrogates resistance to anti-VEGF antibody in a genetic model of colorectal cancer. Proc Natl Acad Sci. 2020;117(35):21598–608.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belarif L, Danger R, Kermarrec L, et al. IL-7 receptor influences anti-TNF responsiveness and T cell gut homing in inflammatory bowel disease. J Clin Investig. 2019;129(5):1910–25.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olesch C, Sirait-Fischer E, Berkefeld M, et al. S1PR4 ablation reduces tumor growth and improves chemotherapy via CD8+ T cell expansion. J Clin Investig. 2020;130(10):5461–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abu-Sbeih H, Faleck DM, Ricciuti B, et al. Immune checkpoint inhibitor therapy in patients with preexisting inflammatory bowel disease. J Clin Oncol. 2020;38(6):576.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zundler S, Becker E, Schulze LL, et al. Immune cell trafficking and retention in inflammatory bowel disease: mechanistic insights and therapeutic advances. Gut. 2019;68(9):1688–700.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sasson SC, Slevin SM, Cheung VT, et al. IFNγ-producing CD8+ tissue resident memory T cells are a targetable hallmark of immune checkpoint inhibitor-colitis. Gastroenterology. 2021. https://doi.org/10.1053/j.gastro.2021.06.025.

    Article 
    PubMed 

    Google Scholar
     

  • Shi Y, Fu Y, Zhang X, et al. Romidepsin (FK228) regulates the expression of the immune checkpoint ligand PD-L1 and suppresses cellular immune functions in colon cancer. Cancer Immunol Immunother. 2021;70(1):61–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Endo Y, Marusawa H, Kou T, et al. Activation-induced cytidine deaminase links between inflammation and the development of colitis-associated colorectal cancers. Gastroenterology. 2008;135(3):1–3.

    Article 

    Google Scholar
     

  • Canavan C, Abrams K, Mayberry J. Meta-analysis: colorectal and small bowel cancer risk in patients with Crohn’s disease. Aliment Pharmacol Ther. 2006;23(8):1097–104.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Z-S, Zhang H-X, Li W-W, et al. FAM64A positively regulates STAT3 activity to promote Th17 differentiation and colitis-associated carcinogenesis. Proc Natl Acad Sci. 2019;116(21):10447–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neurath MF. Targeting immune cell circuits and trafficking in inflammatory bowel disease. Nat Immunol. 2019;20(8):970–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakaguchi S. Regulatory T cells. Springer Semin Immunopathol. 2006;28(1):1–2.

    Article 
    PubMed 

    Google Scholar
     

  • Clough JN, Omer OS, Tasker S, et al. Regulatory T-cell therapy in Crohn’s disease: challenges and advances. Gut. 2020;69(5):942–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phuong NNT, Palmieri V, Adamczyk A, et al. IL-33 drives expansion of type 2 innate lymphoid cells and regulatory T cells and protects mice from severe, acute colitis. Front Immunol. 2021;12:669787.

    Article 
    CAS 

    Google Scholar
     

  • Huang L-j, Mao X-t, Li Y-y, et al. Multiomics analyses reveal a critical role of selenium in controlling T cell differentiation in Crohn’s disease. Immunity. 2021. https://doi.org/10.1016/j.immuni.2021.07.004.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu Y, Li Y, Liu Q, et al. MondoA-TXNIP axis maintains regulatory T cell identity and function in colorectal cancer microenvironment. Gastroenterology. 2021. https://doi.org/10.1053/j.gastro.2021.04.041.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erdman SE, Sohn JJ, Rao VP, et al. CD4+CD25+ regulatory lymphocytes induce regression of intestinal tumors in ApcMin/+ Mice. Can Res. 2005;65(10):3998–4004.

    Article 
    CAS 

    Google Scholar
     

  • Ibrahim ML, Klement JD, Lu C, et al. Myeloid-derived suppressor cells produce IL-10 to elicit DNMT3b-dependent IRF8 silencing to promote colitis-associated colon tumorigenesis. Cell Rep. 2018;25(11):3036-46.e6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Ding Y, Deng Y, et al. Role of myeloid-derived suppressor cells in the promotion and immunotherapy of colitis-associated cancer. J Immunother Cancer. 2020;8(2):e000609.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corzo CA, Cotter MJ, Cheng P, et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol. 2009;182(9):5693–701.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan PY, Ma G, Weber KJ, et al. Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Can Res. 2010;70(1):99–108.

    Article 
    CAS 

    Google Scholar
     

  • Rahma OE, Hodi FS. The intersection between tumor angiogenesis and immune suppression. Clin Cancer Res. 2019;25(18):5449–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gabrilovich DI. Myeloid-derived suppressor cells. Cancer Immunol Res. 2017;5(1):3–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kujawski M, Kortylewski M, Lee H, et al. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Investig. 2008;118(10):3367–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh UP, Singh NP, Singh B, et al. Role of resveratrol-induced CD11b(+) Gr-1(+) myeloid derived suppressor cells (MDSCs) in the reduction of CXCR3(+) T cells and amelioration of chronic colitis in IL-10(−/−) mice. Brain Behav Immun. 2012;26(1):72–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song J, Chen Z, Geng T, et al. Deleting MyD88 signaling in myeloid cells promotes development of adenocarcinomas of the colon. Cancer Lett. 2018;433:65–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eftychi C, Schwarzer R, Vlantis K, et al. Temporally distinct functions of the cytokines IL-12 and IL-23 drive chronic colon inflammation in response to intestinal barrier impairment. Immunity. 2019;51(2):367-80.e4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou J, Huang S, Wang Z, et al. Targeting EZH2 histone methyltransferase activity alleviates experimental intestinal inflammation. Nat Commun. 2019;10(1):1–11.

    Article 

    Google Scholar
     

  • Cui B, Lu S, Lai L, et al. Protective function of interleukin 27 in colitis-associated cancer via suppression of inflammatory cytokines in intestinal epithelial cells. Oncoimmunology. 2017;6(2):e1268309.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang T, Fan C, Yao A, et al. The adaptor protein CARD9 protects against colon cancer by restricting mycobiota-mediated expansion of myeloid-derived suppressor cells. Immunity. 2018;49(3):504-14. e4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harusato A, Viennois E, Etienne-Mesmin L, et al. Early-life microbiota exposure restricts myeloid-derived suppressor cell–driven colonic tumorigenesis. Cancer Immunol Res. 2019;7(4):544–51.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dou D, Liang J, Zhai X, et al. Oxytocin signalling in dendritic cells regulates immune tolerance in the intestine and alleviates DSS-induced colitis. Clin Sci. 2021;135(4):597–611.

    Article 
    CAS 

    Google Scholar
     

  • Abbasi-Kenarsari H, Heidari N, Baghaei K, et al. Synergistic therapeutic effect of mesenchymal stem cells and tolerogenic dendritic cells in an acute colitis mouse model. Int Immunopharmacol. 2020;88:107006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berndt BE, Zhang M, Chen G-H, et al. The role of dendritic cells in the development of acute dextran sulfate sodium colitis. J Immunol. 2007;179(9):6255–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abe K, Nguyen KP, Fine SD, et al. Conventional dendritic cells regulate the outcome of colonic inflammation independently of T cells. Proc Natl Acad Sci USA. 2007;104(43):17022–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murai M, Turovskaya O, Kim G, et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol. 2009;10(11):1178–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei H-X, Wang B, Li B. IL-10 and IL-22 in mucosal immunity: driving protection and Pathology. Front Immunol. 2020;11:1315.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaser A, Ludwiczek O, Holzmann S, et al. Increased expression of CCL20 in human inflammatory bowel disease. J Clin Immunol. 2004;24(1):74–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Souza HS, Elia CC, Spencer J, et al. Expression of lymphocyte-endothelial receptor-ligand pairs, alpha4beta7/MAdCAM-1 and OX40/OX40 ligand in the colon and jejunum of patients with inflammatory bowel disease. Gut. 1999;45(6):856–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ko H-J, Hong E-H, Cho J, et al. Plasmacytoid dendritic cells regulate colitis-associated tumorigenesis by controlling myeloid-derived suppressor cell infiltration. Cancer Lett. 2020;493:102–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De BA, Mende I, Baretton G, et al. A subset of human dendritic cells in the T cell area of mucosa-associated lymphoid tissue with a high potential to produce TNF-alpha. J Immunol. 2003;170(10):5089–94.

    Article 

    Google Scholar
     

  • Zheng T, Zhang B, Chen C, et al. Protein kinase p38α signaling in dendritic cells regulates colon inflammation and tumorigenesis. Proc Natl Acad Sci. 2018;115(52):E12313–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kempski J, Giannou AD, Riecken K, et al. IL22BP mediates the antitumor effects of lymphotoxin against colorectal tumors in mice and humans. Gastroenterology. 2020;159(4):1417-303.e3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bain CC, Bravo-Blas A, Scott CL, et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol. 2014;15(11):929–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He J, Song Y, Li G, et al. Fbxw7 increases CCL2/7 in CX3CR1 hi macrophages to promote intestinal inflammation. J Clin Investig. 2019;129(9):3877–93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bain CC, Scott CL, Uronenhansson H, et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol. 2013;6(3):498–510.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith P, Smythies L, Shen R, et al. Intestinal macrophages and response to microbial encroachment. Mucosal Immunol. 2011;4(1):31–42.

    Article 
    PubMed 

    Google Scholar
     

  • Platt AM, Bain CC, Bordon Y, et al. An independent subset of TLR expressing CCR2-dependent macrophages promotes colonic inflammation. J Immunol. 2010;184(12):6843–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aschenbrenner D, Quaranta M, Banerjee S, et al. Deconvolution of monocyte responses in inflammatory bowel disease reveals an IL-1 cytokine network that regulates IL-23 in genetic and acquired IL-10 resistance. Gut. 2021;70(6):1023–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamada N, Hisamatsu T, Okamoto S, et al. Unique CD14+ intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-γ axis. J Clin Investig. 2008;118(6):2269–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng F, He S, Cui S, et al. A molecular targeted immunotherapeutic strategy for ulcerative colitis via dual-targeting nanoparticles delivering miR-146b to intestinal macrophages. J Crohns Colitis. 2019;13(4):482–94.

    Article 
    PubMed 

    Google Scholar
     

  • Wunderlich CM, Ackermann PJ, Ostermann AL, et al. Obesity exacerbates colitis-associated cancer via IL-6-regulated macrophage polarisation and CCL-20/CCR-6-mediated lymphocyte recruitment. Nat Commun. 2018;9(1):1–16.

    Article 
    CAS 

    Google Scholar
     

  • Mukhopadhyay S, Heinz E, Porreca I, et al. Loss of IL-10 signaling in macrophages limits bacterial killing driven by prostaglandin E2. J Exp Med. 2020;217(2):e20180649.

    Article 
    PubMed 

    Google Scholar
     

  • Mola S, Pandolfo C, Sica A, et al. The macrophages-microbiota interplay in colorectal cancer (CRC)-related inflammation: prognostic and therapeutic significance. Int J Mol Sci. 2020;21(18):6866.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masato N, Manabu M, Hiroshi S, et al. EP4 receptor-associated protein in macrophages ameliorates colitis and colitis-associated tumorigenesis. PLoS Genet. 2015;11(10):e1005542.

    Article 

    Google Scholar
     

  • Marelli G, Erreni M, Anselmo A, et al. Heme-oxygenase-1 production by intestinal CX3CR1+ macrophages helps to resolve inflammation and prevents carcinogenesis. Can Res. 2017;77(16):4472–85.

    Article 
    CAS 

    Google Scholar
     

  • Katholnig K, Schütz B, Fritsch SD, et al. Inactivation of mTORC2 in macrophages is a signature of colorectal cancer that promotes tumorigenesis. JCI Insight. 2019;4(20):e124164.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai L, Liu Y, Cheng L, et al. SARI attenuates colon inflammation by promoting STAT1 degradation in intestinal epithelial cells. Mucosal Immunol. 2019;12(5):1130–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Triner D, Devenport SN, Ramakrishnan SK, et al. Neutrophils restrict tumor-associated microbiota to reduce growth and invasion of colon tumors in mice. Gastroenterology. 2019;156(5):1467–82.

    Article 
    PubMed 

    Google Scholar
     

  • Kühl AA, Kakirman H, Janotta M, et al. Aggravation of different types of experimental colitis by depletion or adhesion blockade of neutrophils. Gastroenterology. 2007;133(6):1882–92.

    Article 
    PubMed 

    Google Scholar
     

  • Tecchio C, Micheletti A, Cassatella MA. Neutrophil-derived cytokines: facts beyond expression. Front Immunol. 2014;5:508.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butin-Israeli V, Bui TM, Wiesolek HL, et al. Neutrophil-induced genomic instability impedes resolution of inflammation and wound healing. J Clin Investig. 2019;129(2):712–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian Y, Xu J, Li Y, et al. MicroRNA-31 reduces inflammatory signaling and promotes regeneration in colon epithelium, and delivery of mimics in microspheres reduces colitis in mice. Gastroenterology. 2019;156(8):2281-96.e6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou G, Peng K, Song Y, et al. CD177+ neutrophils suppress epithelial cell tumourigenesis in colitis-associated cancer and predict good prognosis in colorectal cancer. Carcinogenesis. 2017;39(2):272–82.

    Article 

    Google Scholar
     

  • Lin Y, Cheng L, Liu Y, et al. Intestinal epithelium-derived BATF3 promotes colitis-associated colon cancer through facilitating CXCL5-mediated neutrophils recruitment. Mucosal Immunol. 2020;14(D1):1–12.


    Google Scholar
     

  • Zhang Y, Diao N, Lee CK, et al. Neutrophils deficient in innate suppressor IRAK-M enhances anti-tumor immune responses. Mol Ther. 2020;28(1):89–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng Q, Yao Y, Yang J, et al. AKR1B8 deficiency drives severe DSS-induced acute colitis through invasion of luminal bacteria and activation of innate immunity. Front Immunol. 2022;13:1042549.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li G-Q, Xia J, Zeng W, et al. The intestinal γδ T cells: functions in the gut and in the distant organs. Front Immunol. 2023;14:1206299.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Khoshaba R, Shen Y, et al. Impaired barrier function and immunity in the colon of aldo-keto reductase 1B8 deficient mice. Front Cell Dev Biol. 2021;9:632805.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23(1):107–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhattacharya N, Yuan R, Prestwood TR, et al. Normalizing microbiota-induced retinoic acid deficiency stimulates protective CD8+ T cell-mediated immunity in colorectal cancer. Immunity. 2016;45(3):641–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryzhakov G, West NR, Franchini F, et al. Alpha kinase 1 controls intestinal inflammation by suppressing the IL-12/Th1 axis. Nat Commun. 2018;9(1):1–13.

    Article 
    CAS 

    Google Scholar
     

  • Nasef NA, Mehta S. Role of inflammation in pathophysiology of colonic disease: an update. Int J Mol Sci. 2020;21(13):4748.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17(4):223–37.

    Article 
    PubMed 

    Google Scholar
     

  • Lee JG, Lee Y-R, Lee A-r, et al. Role of the global gut microbial community in the development of colitis-associated cancer in a murine model. Biomed Pharmacother. 2021;135:111206.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu S, Vila AV, Gacesa R, et al. Whole exome sequencing analyses reveal gene–microbiota interactions in the context of IBD. Gut. 2021;70(2):285–96.

    CAS 
    PubMed 

    Google Scholar
     

  • Vila AV, Imhann F, Collij V, et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci Transl Med. 2018;10(472):eaap8914.

    Article 
    CAS 

    Google Scholar
     

  • Yang Y, Li L, Xu C, et al. Cross-talk between the gut microbiota and monocyte-like macrophages mediates an inflammatory response to promote colitis-associated tumourigenesis. Gut. 2021;70(8):1495–506.

    Article 
    CAS 

    Google Scholar
     

  • Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134(2):577–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richard ML, Sokol H. The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol. 2019;16(6):331–45.

    PubMed 

    Google Scholar
     

  • Kudelka MR, Stowell SR, Cummings RD, et al. Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD. Nat Rev Gastroenterol Hepatol. 2020;17(10):597–617.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22(2):292–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strauss J, Kaplan GG, Beck PL, et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis. 2011;17(9):1971–8.

    Article 
    PubMed 

    Google Scholar
     

  • Yu MR, Kim HJ, Park HR. Fusobacterium nucleatum accelerates the progression of colitis-associated colorectal cancer by promoting EMT. Cancers. 2020;12(10):2728.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dregelies T, Haumaier F, Sterlacci W, et al. Detection of Fusobacterium nucleatum in patients with colitis-associated colorectal cancer. Curr Microbiol. 2023;80(9):293.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han JX, Tao ZH, Qian Y, et al. ZFP90 drives the initiation of colitis-associated colorectal cancer via a microbiota-dependent strategy. Gut Microbes. 2021;13(1):1–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Weng W, Peng J, et al. Fusobacterium nucleatum Increases proliferation of colorectal cancer cells and tumor development in mice by activating TLR4 signaling to NFκB, upregulating expression of microRNA-21. Gastroenterology. 2016;152(4):851.

    Article 
    PubMed 

    Google Scholar
     

  • Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/Î2-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14(2):195–206.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tenaillon O, Skurnik D, Picard B, et al. The population genetics of commensal Escherichia coli. Nat Rev Microbiol. 2010;8(3):207–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arthur JC, Perezchanona E, Mühlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Gut Microbes. 2013;338(3):120–3.


    Google Scholar
     

  • Mirsepasi-Lauridsen HC, Vallance BA, Krogfelt KA, et al. Escherichia coli pathobionts associated with inflammatory bowel disease. Clin Microbiol Rev. 2019;32(2):e00060-e118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darfeuille-Michaud A, Boudeau J, Bulois P, et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology. 2004;127(2):412–21.

    Article 
    PubMed 

    Google Scholar
     

  • Viladomiu M, Metz ML, Lima SF, et al. Adherent-invasive E. coli metabolism of propanediol in Crohn’s disease regulates phagocytes to drive intestinal inflammation. Cell Host Microbe. 2021;29(4):607-19.e8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eavespyles T, Allen CA, Taormina J, et al. Escherichia coli isolated from a Crohn’s disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells. Int J Med Microbiol. 2008;298(5–6):397–409.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cevallos SA, Lee J-Y, Tiffany CR, et al. Increased epithelial oxygenation links colitis to an expansion of tumorigenic bacteria. MBio. 2019. https://doi.org/10.1128/mbio.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isolauri E, Salminen S. Probiotics: use in allergic disorders: a nutrition, allergy, mucosal immunology, and intestinal microbiota (NAMI) research group report. J Clin Gastroenterol. 2008;42:S91–6.

    Article 
    PubMed 

    Google Scholar
     

  • Silveira DSC, Veronez LC, Lopes-Júnior LC, et al. Lactobacillus bulgaricus inhibits colitis-associated cancer via a negative regulation of intestinal inflammation in azoxymethane/dextran sodium sulfate model. World J Gastroenterol. 2020;26(43):6782.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bedada TL, Feto TK, Awoke KS, et al. Probiotics for cancer alternative prevention and treatment. Biomed Pharmacother. 2020;129:110409.

    Article 

    Google Scholar
     

  • Cousin FJ, Jouanlanhouet S, Corcos L, et al. Milk fermented by Propionibacterium freudenreichii induces apoptosis of HGT-1 human gastric cancer cells. PLoS ONE. 2012;7(3):e31892.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iwama T, Fujiya M, Konishi H, et al. Bacteria-derived ferrichrome inhibits tumor progression in sporadic colorectal neoplasms and colitis-associated cancer. Cancer Cell Int. 2021;21(1):1–15.

    Article 

    Google Scholar
     

  • Zhong XZ, Covasa M. Emerging roles of lactic acid bacteria in protection against colorectal cancer. World J Gastroenterol. 2014;20(24):7878–86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao Y, Jiang Q. Roles of the polyphenol-gut microbiota interaction in alleviating colitis and preventing colitis-associated colorectal cancer. Adv Nutr. 2021;12(2):546–65.

    Article 
    PubMed 

    Google Scholar
     

  • Oh NS, Lee JY, Kim Y-T, et al. Cancer-protective effect of a synbiotic combination between Lactobacillus gasseri 505 and a Cudrania tricuspidata leaf extract on colitis-associated colorectal cancer. Gut microbes. 2020;12(1):1785803.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Giessen J, Binyamin D, Belogolovski A, et al. Modulation of cytokine patterns and microbiome during pregnancy in IBD. Gut. 2020;69(3):473–86.

    Article 
    PubMed 

    Google Scholar
     

  • Choi JH, Moon CM, Shin T-S, et al. Lactobacillus paracasei-derived extracellular vesicles attenuate the intestinal inflammatory response by augmenting the endoplasmic reticulum stress pathway. Exp Mol Med. 2020;52(3):423–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takagi A, Ikemura H, Matsuzaki T, et al. Relationship between the in vitro response of dendritic cells to Lactobacillus and prevention of tumorigenesis in the mouse. J Gastroenterol. 2008;43(9):661–9.

    Article 
    PubMed 

    Google Scholar
     

  • Greving CNA, Towne JE. A role for IL-12 in IBD after all? Immunity. 2019;51(2):209–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jacouton E, Chain F, Sokol H, et al. Probiotic strain Lactobacillus casei BL23 prevents colitis-associated colorectal cancer. Front Immunol. 2017;8:1553.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He R, Han C, Li Y, et al. Cancer-preventive role of bone marrow-derived mesenchymal stem cells on colitis-associated colorectal cancer: roles of gut microbiota involved. Front Cell Dev Biol. 2021;9:610.

    Article 

    Google Scholar
     

  • Bhatt AP, Redinbo MR, Bultman SJ. The role of the microbiome in cancer development and therapy. CA Cancer J Clin. 2017;67(4):326–44.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Helmink BA, Khan MW, Hermann A, et al. The microbiome, cancer, and cancer therapy. Nat Med. 2019;25(3):377–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hwang S, Jo M, Hong JE, et al. Protective effects of zerumbone on colonic tumorigenesis in enterotoxigenic bacteroides fragilis (ETBF)-colonized AOM/DSS BALB/c mice. Int J Mol Sci. 2020;21(3):857.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akutko K, Stawarski A. Probiotics, prebiotics and synbiotics in inflammatory bowel diseases. J Clin Med. 2021;10(11):2466.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sartor RB, Wu GD. Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroenterology. 2017;152(2):327-39.e4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sokol H, Leducq V, Aschard H, et al. Fungal microbiota dysbiosis in IBD. Gut. 2017;66(6):1039–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Downward JRE, Falkowski NR, Mason KL, et al. Modulation of post-antibiotic bacterial community reassembly and host response by Candida albicans. Sci Rep. 2013;3(1):1–11.


    Google Scholar
     

  • De Luca A, Zelante T, D’angelo C, et al. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol. 2010;3(4):361–73.

    Article 
    PubMed 

    Google Scholar
     

  • Jostins L, Ripke S, Weersma RK, et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malik A, Sharma D, Malireddi RS, et al. SYK-CARD9 signaling axis promotes gut fungi-mediated inflammasome activation to restrict colitis and colon cancer. Immunity. 2018;49(3):515-30.e5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Limon JJ, Tang J, Li D, et al. Malassezia is associated with Crohn’s disease and exacerbates colitis in mouse models. Cell Host Microbe. 2019;25(3):377-88.e6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang J, Iliev ID, Brown J, et al. Mycobiome: approaches to analysis of intestinal fungi. J Immunol Methods. 2015;421:112–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohnmacht AJ, Stahler A, Stintzing S, et al. The oncology biomarker discovery framework reveals cetuximab and bevacizumab response patterns in metastatic colorectal cancer. Nat Commun. 2023;14(1):5391.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gang W, Wang JJ, Guan R, et al. Strategy to targeting the immune resistance and novel therapy in colorectal cancer. Cancer Med. 2018;7(5):1578–603.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nardone OM, Zammarchi I, Santacroce G, et al. Inflammation-driven colorectal cancer associated with colitis: from pathogenesis to changing therapy. Cancers. 2023;15(8):2389.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang C, Song J, Hwang S, et al. Apigenin enhances apoptosis induction by 5-fluorouracil through regulation of thymidylate synthase in colorectal cancer cells. Redox Biol. 2021;47:102144.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li M, Xia M, Zhang Z, et al. METTL3 antagonizes 5-FU chemotherapy and confers drug resistance in colorectal carcinoma. Int J Oncol. 2022;61(3):1–13.

    Article 
    CAS 

    Google Scholar
     

  • Dong S, Liang S, Cheng Z, et al. ROS/PI3K/Akt and Wnt/β-catenin signalings activate HIF-1α-induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer. J Exp Clin Cancer Res. 2022;41(1):1–27.

    Article 

    Google Scholar
     

  • Jarroux J, Morillon A, Pinskaya M. History, discovery, and classification of lncRNAs. Long non coding RNA Biology. Berlin: Springer; 2017. p. 1–46.

    Book 

    Google Scholar
     

  • Kim N, Cho D, Kim H, et al. Colorectal adenocarcinoma-derived EGFR mutants are oncogenic and sensitive to EGFR-targeted monoclonal antibodies, cetuximab and panitumumab. Int J Cancer. 2020;146(8):2194–200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martinelli E, Ciardiello D, Martini G, et al. Implementing anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer: challenges and future perspectives. Ann Oncol. 2020;31(1):30–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parseghian C, Loree J, Morris V, et al. Anti-EGFR-resistant clones decay exponentially after progression: implications for anti-EGFR re-challenge. Ann Oncol. 2019;30(2):243–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Srivatsa S, Paul MC, Cardone C, et al. EGFR in tumor-associated myeloid cells promotes development of colorectal cancer in mice and associates with outcomes of patients. Gastroenterology. 2017;153(1):178-90.e10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Li Y, Shi G, et al. A novel antitumor strategy: simultaneously inhibiting angiogenesis and complement by targeting VEGFA/PIGF and C3b/C4b. Mol Ther Oncolytics. 2020;16:20–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu H, Liu X. Advances of tumorigenesis, diagnosis at early stage, and cellular immunotherapy in gastrointestinal malignancies. Front Oncol. 2021;11:666340.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shek D, Akhuba L, Carlino MS, et al. Immune-checkpoint inhibitors for metastatic colorectal cancer: a systematic review of clinical outcomes. Cancers. 2021;13(17):4345.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Payandeh Z, Khalili S, Somi MH, et al. PD-1/PD-L1-dependent immune response in colorectal cancer. J Cell Physiol. 2020;235(7–8):5461–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choucair K, Radford M, Bansal A, et al. Advances in immune therapies for the treatment of microsatellite instability-high/deficient mismatch repair metastatic colorectal cancer. Int J Oncol. 2021;59(3):1–17.

    Article 

    Google Scholar
     

  • Sun L, Patai ÁV, Hogenson TL, et al. Irreversible JNK blockade overcomes PD-L1-mediated resistance to chemotherapy in colorectal cancer. Oncogene. 2021;40(32):5105–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selby MJ, Engelhardt JJ, Quigley M, et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res. 2013;1(1):32–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perez-Ruiz E, Minute L, Otano I, et al. Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. Nature. 2019;569(7756):428–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rotte A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res. 2019;38(1):1–12.

    Article 

    Google Scholar
     

  • Kamal AM, Wasfey EF, Elghamry WR, et al. Genetic signature of CTLA-4, BTLA, TIM-3 and LAG-3 molecular expression in colorectal cancer patients: Implications in diagnosis and survival outcomes. Clin Biochem. 2021;96:13–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sasidharan Nair V, Toor SM, Taha RZ, et al. DNA methylation and repressive histones in the promoters of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, PD-L1, and galectin-9 genes in human colorectal cancer. Clin Epigenetics. 2018;10(1):1–9.


    Google Scholar
     

  • Zaravinos A, Roufas C, Nagara M, et al. Cytolytic activity correlates with the mutational burden and deregulated expression of immune checkpoints in colorectal cancer. J Exp Clin Cancer Res. 2019;38(1):1–18.

    Article 
    CAS 

    Google Scholar
     

  • Koelink PJ, Bloemendaal FM, Li B, et al. Anti-TNF therapy in IBD exerts its therapeutic effect through macrophage IL-10 signalling. Gut. 2020;69(6):1053–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aden K, Rehman A, Waschina S, et al. Metabolic functions of gut microbes associate with efficacy of tumor necrosis factor antagonists in patients with inflammatory bowel diseases. Gastroenterology. 2019;157(5):1279-9211.e11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee JWJ, Plichta D, Hogstrom L, et al. Multi-omics reveal microbial determinants impacting responses to biologic therapies in inflammatory bowel disease. Cell Host Microbe. 2021;29(8):1294-1304.e4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yakymenko O, Schoultz I, Gullberg E, et al. Infliximab restores colonic barrier to adherent-invasive E. coli in Crohn’s disease via effects on epithelial lipid rafts. Scand J Gastroenterol. 2018;53(6):677–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waldner MJ, Neurath MF. Master regulator of intestinal disease: IL-6 in chronic inflammation and cancer development. Semin Immunol. 2014;26(1):75–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patnaude L, Mayo M, Mario R, et al. Mechanisms and regulation of IL-22-mediated intestinal epithelial homeostasis and repair. Life Sci. 2021;271:119195.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Danese S, Grisham M, Hodge J, et al. JAK inhibition using tofacitinib for inflammatory bowel disease treatment a hub for multiple inflammatory cytokines. Am J Physiol Gastrointest Liver Physiol. 2016;310(3):G155–62.

    Article 
    PubMed 

    Google Scholar
     

  • Zorzi F, Calabrese E, Di Fusco D, et al. High Smad7 in the early post-operative recurrence of Crohn’s disease. J Transl Med. 2020;18(1):1–8.

    Article 

    Google Scholar
     

  • Troncone E, Marafini I, Stolfi C, et al. Involvement of Smad7 in inflammatory diseases of the gut and colon cancer. Int J Mol Sci. 2021;22(8):3922.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia-Arranz M, Herreros MD, Gonzalez-Gomez C, et al. Treatment of Crohn’s-related rectovaginal fistula with allogeneic expanded-adipose derived stem cells: a phase I-IIa clinical trial. Stem Cells Transl Med. 2016;5(11):1441–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen Z, Huang W, Liu J, et al. Effects of mesenchymal stem cell-derived exosomes on autoimmune diseases. Front Immunol. 2021;12:749192.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, Liang Z, Wang F, et al. Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism. JCI Insight. 2019;4(24):e131273.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tyler CJ, Guzman M, Lundborg LR, et al. Antibody secreting cells are critically dependent on integrin α4β7/MAdCAM-1 for intestinal recruitment and control of the microbiota during chronic colitis. Mucosal Immunol. 2021;15(1):109–19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keir ME, Fuh F, Ichikawa R, et al. Regulation and Role of αE integrin and gut homing Integrins in migration and retention of intestinal lymphocytes during inflammatory bowel disease. J Immunol. 2021;207(9):2245–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Chen S, Xiang H, et al. Role of sphingosine-1-phosphate receptors in vascular injury of inflammatory bowel disease. J Cell Mol Med. 2021;25(6):2740–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scarozza P, Schmitt H, Monteleone G, et al. Oligonucleotides—a novel promising therapeutic option for IBD. Front Pharmacol. 2019;10:314.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Britton GJ, Contijoch EJ, Spindler MP, et al. Defined microbiota transplant restores Th17/RORγt+ regulatory T cell balance in mice colonized with inflammatory bowel disease microbiotas. Proc Natl Acad Sci. 2020;117(35):21536–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung Y, Ryu Y, An BC, et al. A synthetic probiotic engineered for colorectal cancer therapy modulates gut microbiota. Microbiome. 2021;9(1):1–17.

    Article 

    Google Scholar
     

  • Uchiyama K, Naito Y, Takagi T. Intestinal microbiome as a novel therapeutic target for local and systemic inflammation. Pharmacol Ther. 2019;199:164–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Description of Image

    Source link