Scientific Papers

Significant up-regulation of lncRNAs in neuromyelitis optica spectrum disorder


  • You, Y.-F. et al. TREM2 deficiency inhibits microglial activation and aggravates demyelinating injury in neuromyelitis optica spectrum disorder. J. Neuroinflamm. 20, 89 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Etemadifar, M. et al. Non-infectious meningitis and CNS demyelinating diseases: A conceptual review. Rev. Neurol. (2023).

  • Costa, V. G. C., Espírito-Santo Araújo, S., Alves-Leon, S. V. & Gomes, F. C. A. Central nervous system demyelinating diseases: Glial cells at the hub of pathology. Front. Immunol. 14, 11355 (2023).


    Google Scholar
     

  • Joseph, J. et al. Relevance of bright spotty lesions in neuromyelitis optica spectrum disorders (NMOSD): A case series. Egypt. J. Neurol. Psychiatry Neurosurg. 58, 165 (2022).

    Article 

    Google Scholar
     

  • Jiang, W. et al. Establishment of a comprehensive diagnostic model for neuromyelitis optica spectrum disorders based on the analysis of laboratory indicators and clinical data. Neurol. Sci. 44, 1–11 (2023).

    Article 

    Google Scholar
     

  • Lotan, I., Romanow, G., Levy, M. & Kister, I. Is there a link between neuropathic pain and constipation in NMOSD and MOGAD? Results from an online patient survey and possible clinical implications. Multi. Scler. Relat. Disord. 63, 103825 (2022).

    Article 

    Google Scholar
     

  • Shi, M., Chu, F., Jin, T. & Zhu, J. Progress in treatment of neuromyelitis optica spectrum disorders (NMOSD): Novel insights into therapeutic possibilities in NMOSD. CNS Neurosci. Ther. 28, 981–991 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abe, Y. & Yasui, M. Aquaporin-4 in neuromyelitis optica spectrum disorders: A target of autoimmunity in the central nervous system. Biomolecules 12, 591 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tambunan, L., Ritarwan, K. & Surbakti, K. Neuromyelitis optica spectrum disorder: A case report of effective combination immunosuppressant, corticosteroids, and therapeutic plasma exchange. Open Access Macedonian J. Med. Sci. 7, 3433 (2019).

    Article 

    Google Scholar
     

  • Ghafouri-Fard, S., Azimi, T. & Taheri, M. A comprehensive review on the role of genetic factors in neuromyelitis optica spectrum disorder. Front. Immunol. 12, 737673. https://doi.org/10.3389/fimmu.2021.737673 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Statello, L., Guo, C.-J., Chen, L.-L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gholipour, M. et al. Dysregulation of lncRNAs in autoimmune neuropathies. Sci. Rep. 11, 1–9 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Sigdel, K. R., Cheng, A., Wang, Y., Duan, L. & Zhang, Y. The emerging functions of long noncoding RNA in immune cells: Autoimmune diseases. J. Immunol. Res. 2015, 8487 (2015).

    Article 

    Google Scholar
     

  • Guo, R.-Y. et al. Downregulation of lncRNA XIST may promote Th17 differentiation through KDM6A-TSAd pathway in neuromyelitis optica spectrum disorders. Multi. Scler. Relat. Disord. 76, 104801 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J. et al. Microarray analysis of lncRNA and mRNA expression profiles in patients with neuromyelitis optica. Mol. Neurobiol. 54, 2201–2208 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, Z. et al. Metabolic adjustments by lncRNAs in peripheral neutrophils partly account for the complete compensation of asymptomatic MMD patients. CNS Neurol. Disord. Drug Targets 19, 306–317 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yokote, H. & Mizusawa, H. Multiple sclerosis and neuromyelitis optica spectrum disorders: Some similarities in two distinct diseases. Neural Regen. Res. 11, 410–411. https://doi.org/10.4103/1673-5374.179048 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santoro, M. et al. Expression profile of long non-coding RNAs in serum of patients with multiple sclerosis. J. Mol. Neurosci. 59, 18–23 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dastmalchi, R. et al. Dysregulation of long non-coding RNA profile in peripheral blood of multiple sclerosis patients. Mult. Scler. Relat. Disord. 25, 219–226. https://doi.org/10.1016/j.msard.2018.07.044 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ouyang, J., Hu, J. & Chen, J. L. lncRNAs regulate the innate immune response to viral infection. Wiley Interdiscip. Rev. RNA 7, 129–143 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, E. et al. P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis. 5, e1243–e1243 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pal, S., Garg, M. & Pandey, A. K. Deciphering the mounting complexity of the p53 regulatory network in correlation to long non-coding RNAs (lncRNAs) in ovarian cancer. Cells 9, 527 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torkamandi, S. et al. Dysregulation of long noncoding RNA MEG3 and NLRC5 expressions in patients with relapsing-remitting multiple sclerosis: Is there any correlation?. Genes Immun. 22, 322–326 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torkamandi, S. et al. Dysregulation of long noncoding RNA MEG3 and NLRC5 expressions in patients with relapsing-remitting multiple sclerosis: Is there any correlation?. Genes Immun. 22, 322–326. https://doi.org/10.1038/s41435-021-00154-4 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghafouri-Fard, S. & Taheri, M. Maternally expressed gene 3 (MEG3): A tumor suppressor long non coding RNA. Biomed. Pharmacother. 118, 109129 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, R. et al. MEG3–4 is a miRNA decoy that regulates IL-1β abundance to initiate and then limit inflammation to prevent sepsis during lung infection. Sci. Signal. 11, eaa02387 (2018).

    Article 

    Google Scholar
     

  • Sayad, A., Omrani, M. D., Fallah, H., Taheri, M. & Ghafouri-Fard, S. Aberrant expression of long non-coding RNAs in peripheral blood of autistic patients. J. Mol. Neurosci. MN 67, 276–281. https://doi.org/10.1007/s12031-018-1240-x (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Y. et al. Altered non-coding RNA profiles and potential disease marker identification in peripheral blood mononuclear cells of patients with NMOSD. Int. Immunopharmacol. 109, 108899. https://doi.org/10.1016/j.intimp.2022.108899 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Safa, A. et al. Downregulation of cancer-associated lncRNAs in peripheral blood of multiple sclerosis patients. J. Mol. Neurosci. MN 70, 1533–1540. https://doi.org/10.1007/s12031-020-01646-0 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, X., Zhong, Z., Shao, Y. & Yi, Y. Prognostic value of MEG3 and its correlation with immune infiltrates in gliomas. Front. Genet. 12, 679097. https://doi.org/10.3389/fgene.2021.679097 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, Y. et al. Down-regulation of long non-coding RNA MEG3 promotes Schwann cell proliferation and migration and repairs sciatic nerve injury in rats. J. Cell. Mol. Med. 24, 7460–7469. https://doi.org/10.1111/jcmm.15368 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, P., Cao, L., Zhou, R., Yang, X. & Wu, M. The lncRNA Neat1 promotes activation of inflammasomes in macrophages. Nat. Commun. 10, 1495 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, Y., Lyu, J., Guo, Y., Yao, Y. & Hu, L. Long noncoding RNA TUG1 inhibits tumor progression through regulating Siglec-15-related anti-immune activity in hepatocellular carcinoma. J. Immunol. Res. 2022, 10481 (2022).

    Article 

    Google Scholar
     



  • Source link