Scientific Papers

Multidimensional fragmentomic profiling of cell-free DNA released from patient-derived organoids | Human Genomics


  • Lo YMD, Han DSC, Jiang PY, Chiu RWK. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science. 2021;372:eqqw3616.

    Article 

    Google Scholar
     

  • Chiu RWK, Heitzer E, Lo YMD, Mouliere F, Tsui DWY. Cell-free DNA fragmentomics: the new “omics” on the block. Clin Chem. 2020;66:1480–4.

    Article 
    PubMed 

    Google Scholar
     

  • Thierry AR. Circulating DNA fragmentomics and cancer screening. Cell Genomics. 2023;3:100242.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao H, Wang Z, Ma XJ, Guo W, Zhang XY, Tang WXF, Chen X, Wang XY, Chen YK, Mo SB, et al. Letter to the editor: an ultrasensitive assay using cell-free DNA fragmentomics for multicancer early detection. Mol Cancer. 2022;21:1–7.

    Article 

    Google Scholar
     

  • Han DSC, Lo YMD. The nexus of cfDNA and nuclease biology. Trends Genet. 2021;37:758–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han DSC, Ni M, Chan RWY, Chan VWH, Lui KO, Chiu RWK, Lo YMD. The biology of cell-free DNA fragmentation and the roles of DNASE1, DNASE1L3, and DFFB. Am J Hum Genet. 2020;106:202–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heitzer E, Auinger L, Speicher MR. Cell-free DNA and apoptosis: how dead cells inform about the living. Trends Mol Med. 2020;26:519–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen M, Zhao H. Next-generation sequencing in liquid biopsy: cancer screening and early detection. Hum Genomics. 2019;13:34.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell. 2016;164:57–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lui YNYN, Chik KW, Chiu RWK, Ho CY, Lam CWK, Lo YMD. Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clin Chem. 2002;48:421–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moss J, Magenheim J, Neiman D, Zemmour H, Loyfer N, Korach A, Samet Y, Maoz M, Druid H, Arner P, et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat Commun. 2018;9:5068.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stejskal P, Goodarzi H, Srovnal J, Hajdúch M, van’t Veer LJ, Magbanua MJM. Circulating tumor nucleic acids: biology, release mechanisms, and clinical relevance. Mol Cancer. 2023;22:15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Pol Y, Mouliere F. Toward the early detection of cancer by decoding the epigenetic and environmental fingerprints of cell-free DNA. Cancer Cell. 2019;36:350–68.

    Article 
    PubMed 

    Google Scholar
     

  • Vagner T, Spinelli C, Minciacchi VR, Balaj L, Zandian M, Conley A, Zijlstra A, Freeman MR, Demichelis F, De S, et al. Large extracellular vesicles carry most of the tumor DNA circulating in prostate cancer patient plasma. J Extracell Vesicles. 2018;7:1505403.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ungerer V, Bronkhorst AJ, Van den Ackerveken P, Herzog M, Holdenrieder S. Serial profiling of cell-free DNA and nucleosome histone modifications in cell cultures. Sci Rep. 2021;11:9460.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panagopoulou M, Karaglani M, Balgkouranidou I, Pantazi C, Kolios G, Kakolyris S, Chatzaki E. Circulating cell-free DNA release in vitro: kinetics, size profiling, and cancer-related gene methylation. J Cell Physiol. 2019;234:14079–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bronkhorst AJ, Wentzel JF, Aucamp J, van Dyk E, du Plessis L, Pretorius PJ. Characterization of the cell-free DNA released by cultured cancer cells. BBA-Mol Cell Res. 2016;1863:157–65.

    CAS 

    Google Scholar
     

  • Aucamp J, Calitz C, Bronkhorst AJ, Wrzesinski K, Hamman S, Gouws C, Pretorius PJ. Cell-free DNA in a three-dimensional spheroid cell culture model: a preliminary study. Int J Biochem Cell Biol. 2017;89:182–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang W, Kong P, Ma G, Li L, Zhu J, Xia TS, Xie H, Zhou WB, Wang S. Characterization of the release and biological significance of cell-free DNA from breast cancer cell lines. Oncotarget. 2017;8:43180–91.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 2020;21:571–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shitara A, Takahashi K, Goto M, Takahashi H, Iwasawa T, Onodera Y, Makino K, Miura H, Shirasawa H, Sato W, et al. Cell-free DNA in spent culture medium effectively reflects the chromosomal status of embryos following culturing beyond implantation compared to trophectoderm biopsy. PLoS ONE. 2021;16:e0246438.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vera-Rodriguez M, Diez-Juan A, Jimenez-Almazan J, Martinez S, Navarro R, Peinado V, Mercader A, Meseguer M, Blesa D, Moreno I, et al. Origin and composition of cell-free DNA in spent medium from human embryo culture during preimplantation development. Hum Reprod. 2018;33:745–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shamonki MI, Jin HL, Haimowitz Z, Liu L. Proof of concept: preimplantation genetic screening without embryo biopsy through analysis of cell-free DNA in spent embryo culture media. Fertil Steril. 2016;106:1312–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dantes Z, Yen HY, Pfarr N, Winter C, Steiger K, Muckenhuber A, Hennig A, Lange S, Engleitner T, Ollinger R, et al. Implementing cell-free DNA of pancreatic cancer patient-derived organoids for personalized oncology. Jci Insight. 2020;5:e137809.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heider K, Wan JCM, Hall J, Belic J, Boyle S, Hudecova I, Gale D, Cooper WN, Corrie PG, Brenton JD, et al. Detection of ctDNA from dried blood spots after DNA size selection. Clin Chem. 2020;66:697–705.

    Article 
    PubMed 

    Google Scholar
     

  • Augustus E, Van Casteren K, Sorber L, van Dam P, Roeyen G, Peeters M, Vorsters A, Wouters A, Raskin J, Rolfo C, et al. The art of obtaining a high yield of cell-free DNA from urine. PLoS ONE. 2020;15:e0231058.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alcaide M, Cheung M, Hillman J, Rod Rassekh S, Deyell RJ, Batist G, Karsan A, Wyatt AW, Johnson N, Scott DW, et al. Evaluating the quantity, quality and size distribution of cell-free DNA by multiplex droplet digital PCR. Sci Rep. 2020;10:12564.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belmokhtar CA, Hillion J, Segal-Bendirdjian E. Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene. 2001;20:3354–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol. 2001;3:339–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meddeb R, Pisareva E, Thierry AR. Guidelines for the preanalytical conditions for analyzing circulating cell-free DNA. Clin Chem. 2019;65:623–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oreskovic A, Brault ND, Panpradist N, Lai JJ, Lutz BR. Analytical comparison of methods for extraction of short cell-free DNA from urine. J Mol Diagn. 2019;21:1067–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Troll CJ, Kapp J, Rao V, Harkins KM, Cole C, Naughton C, Morgan JM, Shapiro B, Green RE. A ligation-based single-stranded library preparation method to analyze cell-free DNA and synthetic oligos. BMC Genomics. 2019;20:1023.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandrananda D, Thorne NP, Bahlo M. High-resolution characterization of sequence signatures due to nonrandom cleavage of cell-free DNA. BMC Med Genomics. 2015;8:29.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ulz P, Thallinger GG, Auer M, Graf R, Kashofer K, Jahn SW, Abete L, Pristauz G, Petru E, Geigl JB, et al. Inferring expressed genes by whole-genome sequencing of plasma DNA. Nat Genet. 2016;48:1273–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ulz P, Perakis S, Zhou Q, Moser T, Belic J, Lazzeri I, Wolfler A, Zebisch A, Gerger A, Pristauz G, et al. Inference of transcription factor binding from cell-free DNA enables tumor subtype prediction and early detection. Nat Commun. 2020;11:4666.

    Article 

    Google Scholar
     

  • Esfahani MS, Hamilton EG, Mehrmohamadi M, Nabet BY, Alig SK, King DA, Steen CB, Macaulay CW, Schultz A, Nesselbush MC, et al. Inferring gene expression from cell-free DNA fragmentation profiles. Nat Biotechnol. 2022;40:585–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serpas L, Chan RWY, Jiang PY, Ni M, Sun K, Rashidfarrokhi A, Soni C, Sisirak V, Lee WS, Cheng SH, et al. Dnase1l3 deletion causes aberrations in length and end-motif frequencies in plasma DNA. Proc Natl Acad Sci U S A. 2019;116:641–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen M, Chan RWY, Cheung PPH, Ni M, Wong DKL, Zhou Z, Ma MJL, Huang L, Xu X, Lee WS, et al. Fragmentomics of urinary cell-free DNA in nuclease knockout mouse models. PLoS Genet. 2022;18:e1010262.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sin STK, Jiang PY, Deng JE, Ji L, Cheng SH, Dutta A, Leung TY, Chan KCA, Chiu RWK, Lo YMD. Identification and characterization of extrachromosomal circular DNA in maternal plasma. Proc Natl Acad Sci U S A. 2020;117:1658–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy H. Extrachromosomal microDNAs and chromosomal microdeletions in normal tissues. Science. 2012;336:1506–1506.

    CAS 

    Google Scholar
     

  • Paulsen T, Kumar P, Koseoglu MM, Dutta A. Discoveries of extrachromosomal circles of DNA in normal and tumor cells. Trends Genet. 2018;34:270–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar P, Dillon LW, Shibata Y, Jazaeri AA, Jones DR, Dutta A. Normal and cancerous tissues release extrachromosomal circular DNA (eccDNA) into the circulation. Mol Cancer Res. 2017;15:1197–205.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu J, Zhang F, Du MJ, Zhang P, Fu SB, Wang L. Molecular characterization of cell-free eccDNAs in human plasma. Sci Rep. 2017;7:10968.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar P, Kiran S, Saha S, Su ZL, Paulsen T, Chatrath A, Shibata Y, Shibata E, Dutta A. ATAC-seq identifies thousands of extrachromosomal circular DNA in cancer and cell lines. Sci Adv. 2020;6:eaba2489.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang LD, Jia RB, Ge TX, Ge SF, Zhuang A, Chai PW, Fan XQ. Extrachromosomal circular DNA: biogenesis, structure, functions and diseases. Signal Transduct Target Ther. 2022;7:342.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ling XX, Han YL, Meng JX, Zhong BH, Chen JL, Zhang H, Qin JH, Pang J, Liu LH. Small extrachromosomal circular DNA (eccDNA): major functions in evolution and cancer. Mol Cancer. 2021;20:113.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner KM, Deshpande V, Beyter D, Koga T, Rusert J, Lee C, Li B, Arden K, Ren B, Nathanson DA, et al. Extrachromosomal oncogene amplification drives tumor evolution and genetic heterogeneity. Nature. 2017;543:122–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn LB, Mair R, Goranova T, Marass F, Heider K, et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 2018;10:eaat4921.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Underhill HR, Kitzman JO, Hellwig S, Welker NC, Daza R, Baker DN, Gligorich KM, Rostomily RC, Bronner MP, Shendure J. Fragment length of circulating tumor DNA. PLoS Genet. 2016;12:e1006162.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng YWL, Chan KCA, Sun H, Jiang PY, Su XX, Chen EZ, Lun FMF, Hung ECW, Lee V, Wong J, et al. Nonhematopoietically derived DNA Is shorter than hematopoietically derived DNA in plasma: a transplantation model. Clin Chem. 2012;58:549–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ng HI, Zhu XF, Xuan LM, Long Y, Mao Y, Shi Y, Sun LY, Liang B, Scaglia F, Choy KW, et al. Analysis of fragment size distribution of cell-free DNA: a potential noninvasive marker to monitor graft damage in living-related liver transplantation for inborn errors of metabolism. Mol Genet Metab. 2019;127:45–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mouliere F, Smith CG, Heider K, Su J, van der Pol Y, Thompson M, Morris J, Wan JCM, Chandrananda D, Hadfield J, et al. Fragmentation patterns and personalized sequencing of cell-free DNA in urine and plasma of glioma patients. EMBO Mol Med. 2021;13:e12881.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mouliere F, Mair R, Chandrananda D, Marass F, Smith CG, Su J, Morris J, Watts C, Brindle KM, Rosenfeld N. Detection of cell-free DNA fragmentation and copy number alterations in cerebrospinal fluid from glioma patients. EMBO Mol Med. 2018;10:e9323.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo JT, Ma KF, Bao H, Ma XY, Xu Y, Wu X, Shao YW, Jiang M, Huang J. Quantitative characterization of tumor cell-free DNA shortening. BMC Genomics. 2020;21:1101–16.

    Article 

    Google Scholar
     

  • Hisano O, Ito T, Miura F. Short single-stranded DNAs with putative noncanonical structures comprise a new class of plasma cell-free DNA. BMC Biol. 2021;19:1–17.

    Article 

    Google Scholar
     

  • Hudecova I, Smith CG, Hansel-Hertsch R, Chilamakuri CS, Morris JA, Vijayaraghavan A, Heider K, Chandrananda D, Cooper WN, Gale D, et al. Characteristics, origin, and potential for cancer diagnostics of ultrashort plasma cell-free DNA. Genome Res. 2022;32:215–27.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng J, Morselli M, Huang WL, Heo YJ, Pinheiro-Ferreira T, Li F, Wei F, Chia D, Kim Y, He HJ, et al. Plasma contains ultrashort single-stranded DNA in addition to nucleosomal cell-free DNA. Iscience. 2022;25:104554.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zvereva M, Roberti G, Durand G, Voegele C, Nguyen MD, Delhomme TM, Chopard P, Fabianova E, Adamcakova Z, Holcatova I, et al. Circulating tumor-derived KRAS mutations in pancreatic cancer cases are predominantly carried by very short fragments of cell-free DNA. EBioMedicine. 2020;55:102462.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu XY, Liu LX, Ji Y, Li CY, Wei T, Yang XR, Zhang YF, Cai XY, Gao YB, Xui WH, et al. Enrichment of shortmutant cell-free DNA fragments enhanced detection of pancreatic cancer. EBioMedicine. 2019;41:345–56.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang YG, Wang M, Djekidel MN, Chen H, Liu D, Alt FW, Zhang Y. eccDNAs are apoptotic products with high innate immunostimulatory activity. Nature. 2021;599:308–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sin STK, Deng JE, Ji L, Yukawa M, Chan RWY, Volpi S, Vaglio A, Fenaroli P, Bocca P, Cheng SH, et al. Effects of nucleases on cell-free extrachromosomal circular DNA. Jci Insight. 2022;7:e156070.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho SY, Sung CO, Chae J, Lee J, Na D, Kang W, Kang J, Min S, Lee A, Kwak E, et al. Alterations in the Rho pathway contribute to Epstein-Barr virus-induced lymphomagenesis in immunosuppressed environments. Blood. 2018;131:1931–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen SF, Zhou YQ, Chen YR, Gu J. fastp: an ultrafast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:884–90.

    Article 

    Google Scholar
     

  • Amemiya HM, Kundaje A, Boyle AP. The ENCODE blacklist: identification of problematic regions of the genome. Sci Rep. 2019;9:9354.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dundar F, Manke T. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44:W160–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen H, Liang H. A high-resolution map of human enhancer RNA loci characterizes superenhancer activities in cancer. Cancer Cell. 2020;38:701–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link