Scientific Papers

Meningioma animal models: a systematic review and meta-analysis | Journal of Translational Medicine


  • Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. Neuro Oncol. 2022;24(Suppl 5):v1–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nigim F, Wakimoto H, Kasper EM, Ackermans L, Temel Y. Emerging medical treatments for meningioma in the molecular era. Biomedicines. 2018;6(3):86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bi WL, Mei Y, Agarwalla PK, Beroukhim R, Dunn IF. Genomic and epigenomic landscape in meningioma. Neurosurg Clin N Am. 2016;27(2):167–79.

    Article 
    PubMed 

    Google Scholar
     

  • Suppiah S, Nassiri F, Bi WL, Dunn IF, Hanemann CO, Horbinski CM, et al. Molecular and translational advances in meningiomas. Neuro Oncol. 2019;21(Suppl 1):i4–17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahm F, Schrimpf D, Stichel D, Jones DTW, Hielscher T, Schefzyk S, et al. DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncol. 2017;18(5):682–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choudhury A, Magill ST, Eaton CD, Prager BC, Chen WC, Cady MA, et al. Meningioma DNA methylation groups identify biological drivers and therapeutic vulnerabilities. Nat Genet. 2022;54(5):649–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Driver J, Hoffman SE, Tavakol S, Woodward E, Maury EA, Bhave V, et al. A molecularly integrated grade for meningioma. Neuro Oncol. 2022;24(5):796–808.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simpson D. The recurrence of intracranial meningiomas after surgical treatment. J Neurol Neurosurg Psychiatry. 1957;20(1):22–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldbrunner R, Stavrinou P, Jenkinson MD, Sahm F, Mawrin C, Weber DC, et al. EANO guideline on the diagnosis and management of meningiomas. Neuro Oncol. 2021;23(11):1821–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krementz ET, Greene HS. Heterologous transplantation of human neural tumors. Cancer. 1953;6(1):100–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greene HS, Arnold H. The homologous and heterologous transplantation of brain and brain tumors. J Neurosurg. 1945;2:315–29.

    Article 

    Google Scholar
     

  • Ishida YS, Sato K, Niibe H. Experimental induction of gliogenous tumors in rats. A histopathologic and electron microscope study. Gunma J Med Sci. 1963;12(1):36–72.

    CAS 

    Google Scholar
     

  • Greene HS. The transplantation of human brain tumors to the brains of laboratory animals. Cancer Res. 1953;13(6):422–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Miyawaki H, Ishii S. The heterologous intracerebral transplantation of human brain tumors. Arch Pathol. 1960;70:508–19.

    CAS 
    PubMed 

    Google Scholar
     

  • Maekawa A, Odashima S, Nakadate M. Induction of tumors in the stomach and nervous system of the ACI/N rat by continuous oral administration of 1-methyl-3-acetyl-1-nitrosourea. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol. 1976;86(2):195–207.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ponomarkov V, Tomatis L. Long-term testing of vinylidene chloride and chloroprene for carcinogenicity in rats. Oncology. 1980;37(3):136–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anigstein L, Anigstein DM, Unterharnscheidt FJ. Mouse transplantable tumor induced by human spinal meningioma implant in mice inoculated with human thymus antiserum. Tex Rep Biol Med. 1969;27(2):341–66.

    CAS 
    PubMed 

    Google Scholar
     

  • Ueyama Y, Ohsawa N, Tamaoki N, Nomura T. Heterotransplantation of human neoplasms in nude mice. Keio J Med. 1975;24(4):415–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ueyama Y, Morita K, Ochiai C, Ohsawa N, Hata J, Tamaoki N. Xenotransplantation of a human meningioma and its lung metastasis in nude mice. Br J Cancer. 1978;37(4):644–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ragel BT, Couldwell WT, Gillespie DL, Wendland MM, Whang K, Jensen RL. A comparison of the cell lines used in meningioma research. Surg Neurol. 2008;70(3):295–307.

    Article 
    PubMed 

    Google Scholar
     

  • Puttmann S, Senner V, Braune S, Hillmann B, Exeler R, Rickert CH, et al. Establishment of a benign meningioma cell line by hTERT-mediated immortalization. Lab Invest. 2005;85(9):1163–71.

    Article 
    PubMed 

    Google Scholar
     

  • Lee WH. Characterization of a newly established malignant meningioma cell line of the human brain: IOMM-Lee. Neurosurgery. 1990;27(3):389–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res. 2014;6(2):114–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCutcheon IE, Friend KE, Gerdes TM, Zhang BM, Wildrick DM, Fuller GN. Intracranial injection of human meningioma cells in athymic mice: an orthotopic model for meningioma growth. J Neurosurg. 2000;92(2):306–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Qi L, Du Y, Huang LF, Braun FK, Kogiso M, et al. Patient-derived orthotopic xenograft (PDOX) mouse models of primary and recurrent meningioma. Cancers (Basel). 2020;12(6):147.

    Article 

    Google Scholar
     

  • Friedrich S, Schwabe K, Klein R, Krusche CA, Krauss JK, Nakamura M. Comparative morphological and immunohistochemical study of human meningioma after intracranial transplantation into nude mice. J Neurosci Methods. 2012;205(1):1–9.

    Article 
    PubMed 

    Google Scholar
     

  • Kalamarides M, Niwa-Kawakita M, Leblois H, Abramowski V, Perricaudet M, Janin A, et al. Nf2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes Dev. 2002;16(9):1060–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalamarides M, Stemmer-Rachamimov AO, Takahashi M, Han ZY, Chareyre F, Niwa-Kawakita M, et al. Natural history of meningioma development in mice reveals: a synergy of Nf2 and p16(Ink4a) mutations. Brain Pathol. 2008;18(1):62–70.

    Article 
    PubMed 

    Google Scholar
     

  • Kalamarides M, Stemmer-Rachamimov AO, Niwa-Kawakita M, Chareyre F, Taranchon E, Han ZY, et al. Identification of a progenitor cell of origin capable of generating diverse meningioma histological subtypes. Oncogene. 2011;30(20):2333–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peyre M, Stemmer-Rachamimov A, Clermont-Taranchon E, Quentin S, El-Taraya N, Walczak C, et al. Meningioma progression in mice triggered by Nf2 and Cdkn2ab inactivation. Oncogene. 2012;32:4264.

    Article 
    PubMed 

    Google Scholar
     

  • Peyre M, Salaud C, Clermont-Taranchon E, Niwa-Kawakita M, Goutagny S, Mawrin C, et al. PDGF activation in PGDS-positive arachnoid cells induces meningioma formation in mice promoting tumor progression in combination with Nf2 and Cdkn2ab loss. Oncotarget. 2015;6(32):32713–22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mawrin C. Animal models of meningiomas. Chin Clin Oncol. 2017. https://doi.org/10.21037/cco.2017.05.03.

    Article 
    PubMed 

    Google Scholar
     

  • Kalamarides M, Peyre M, Giovannini M. Meningioma mouse models. J Neurooncol. 2010;99(3):325–31.

    Article 
    PubMed 

    Google Scholar
     

  • Cimino PJ. Malignant progression to anaplastic meningioma: neuropathology, molecular pathology, and experimental models. Exp Mol Pathol. 2015;99(2):354–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boetto J, Peyre M, Kalamarides M. Mouse models in meningioma research: a systematic review. Cancers (Basel). 2021;13(15):3712.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Measur. 1960;20:37–46.

    Article 

    Google Scholar
     

  • Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page M, et al. Cochrane handbook for systematic reviews of interventions. 2nd ed. Chichester: Wiley; 2019.

    Book 

    Google Scholar
     

  • Andersen MS, Kofoed MS, Paludan-Müller AS, Pedersen CB, Mathiesen T, Mawrin C, et al. A unifying tool for critical appraisal of methodological quality, quality of reporting and risk of bias in animal research. Submitted to BMC Medical Research Methodology. 2023

  • Macleod MR, O’Collins T, Howells DW, Donnan GA. Pooling of animal experimental data reveals influence of study design and publication bias. Stroke. 2004;35(5):1203–8.

    Article 
    PubMed 

    Google Scholar
     

  • Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020;18(7): e3000411.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14:43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gogineni VR, Nalla AK, Gupta R, Dinh DH, Klopfenstein JD, Rao JS. Chk2-mediated G2/M cell cycle arrest maintains radiation resistance in malignant meningioma cells. Cancer Lett. 2011;313(1):64–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das A, Alshareef M, Henderson F Jr, Martinez Santos JL, Vandergrift WA 3rd, Lindhorst SM, et al. Ganoderic acid A/DM-induced NDRG2 over-expression suppresses high-grade meningioma growth. Clin Transl Oncol. 2020;22(7):1138–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bao Z, Hua L, Ye Y, Wang D, Li C, Xie Q, et al. MEF2C silencing downregulates NF2 and E-cadherin and enhances erastin-induced ferroptosis in meningioma. Neuro Oncol. 2021;23(12):2014–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim H, Park KJ, Ryu BK, Park DH, Kong DS, Chong K, et al. Forkhead box M1 (FOXM1) transcription factor is a key oncogenic driver of aggressive human meningioma progression. Neuropathol Appl Neurobiol. 2020;46(2):125–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • von Spreckelsen N, Waldt N, Poetschke R, Kesseler C, Dohmen H, Jiao HK, et al. KLF4(K409Q)-mutated meningiomas show enhanced hypoxia signaling and respond to mTORC1 inhibitor treatment. Acta Neuropathol Commun. 2020;8(1):41.

    Article 

    Google Scholar
     

  • Guo L, Cui J, Wang H, Medina R, Zhang S, Zhang X, et al. Metformin enhances anti-cancer effects of cisplatin in meningioma through AMPK-mTOR signaling pathways. Mol Ther Oncolytics. 2021;20:119–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giles AJ, Hao S, Padget M, Song H, Zhang W, Lynes J, et al. Efficient ADCC killing of meningioma by avelumab and a high-affinity natural killer cell line, haNK. JCI Insight. 2019;4(20): e130688.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho WS, Sizdahkhani S, Hao S, Song H, Seldomridge A, Tandle A, et al. LB-100, a novel protein phosphatase 2A (PP2A) inhibitor, sensitizes malignant meningioma cells to the therapeutic effects of radiation. Cancer Lett. 2018;415:217–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang S, Liu X, Wang W, Tu Y, Wang C, Mei J, et al. The effects of silencing the Her2 gene on proliferation and angiogenesis of meningioma cells in vivo and in vitro. Ann Clin Lab Sci. 2018;48(5):580–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Q, Song LR, Huo XL, Wang L, Zhang GB, Hao SY, et al. MicroRNA-221/222 inhibits the radiation-induced invasiveness and promotes the radiosensitivity of malignant meningioma cells. Front Oncol. 2020;10:1441.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuchen M, Wilisch-Neumann A, Daniel EA, Baldauf L, Pachow D, Scholz J, et al. Receptor tyrosine kinase inhibition by regorafenib/sorafenib inhibits growth and invasion of meningioma cells. Eur J Cancer. 2017;73:9–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bahr O, Gross S, Harter PN, Kirches E, Mawrin C, Steinbach JP, et al. ASA404, a vascular disrupting agent, as an experimental treatment approach for brain tumors. Oncol Lett. 2017;14(5):5443–51.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das A, Alshareef M, Martinez Santos JL, Porto GBF, McDonald DG, Infinger LK, et al. Evaluating anti-tumor activity of palbociclib plus radiation in anaplastic and radiation-induced meningiomas: pre-clinical investigations. Clin Transl Oncol. 2020;22(11):2017–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Wang W, Xu S, Wang S, Tu Y, Xiong Y, et al. The role of MAPK signaling pathway in the Her-2-positive meningiomas. Oncol Rep. 2016;36(2):685–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park KJ, Yu MO, Song NH, Kong DS, Park DH, Chae YS, et al. Expression of astrocyte elevated gene-1 (AEG-1) in human meningiomas and its roles in cell proliferation and survival. J Neurooncol. 2015;121(1):31–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwami K, Momota H, Fujii M, Natsume A, Yagi S, Toriyama K, et al. Anaplastic meningioma with rapid growth after omental flap transposition: a case report and experimental study. Brain Tumor Pathol. 2015;32(2):137–44.

    Article 
    PubMed 

    Google Scholar
     

  • Wilisch-Neumann A, Kliese N, Pachow D, Schneider T, Warnke JP, Braunsdorf WE, et al. The integrin inhibitor cilengitide affects meningioma cell motility and invasion. Clin Cancer Res. 2013;19(19):5402–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwami K, Natsume A, Ohno M, Ikeda H, Mineno J, Nukaya I, et al. Adoptive transfer of genetically modified Wilms’ tumor 1-specific T cells in a novel malignant skull base meningioma model. Neuro Oncol. 2013;15(6):747–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pachow D, Andrae N, Kliese N, Angenstein F, Stork O, Wilisch-Neumann A, et al. mTORC1 inhibitors suppress meningioma growth in mouse models. Clin Cancer Res. 2013;19(5):1180–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kliese N, Gobrecht P, Pachow D, Andrae N, Wilisch-Neumann A, Kirches E, et al. miRNA-145 is downregulated in atypical and anaplastic meningiomas and negatively regulates motility and proliferation of meningioma cells. Oncogene. 2013;32(39):4712–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haase D, Schmidl S, Ewald C, Kalff R, Huebner C, Firsching R, et al. Fatty acid synthase as a novel target for meningioma therapy. Neuro Oncol. 2010;12(8):844–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge Y, Xu K. Alpha-synuclein contributes to malignant progression of human meningioma via the Akt/mTOR pathway. Cancer Cell Int. 2016;16:86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kargiotis O, Chetty C, Gogineni V, Gondi CS, Pulukuri SM, Kyritsis AP, et al. uPA/uPAR downregulation inhibits radiation-induced migration, invasion and angiogenesis in IOMM-Lee meningioma cells and decreases tumor growth in vivo. Int J Oncol. 2008;33(5):937–47.

    CAS 
    PubMed 

    Google Scholar
     

  • Baia GS, Dinca EB, Ozawa T, Kimura ET, McDermott MW, James CD, et al. An orthotopic skull base model of malignant meningioma. Brain Pathol. 2008;18(2):172–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ragel BT, Elam IL, Gillespie DL, Flynn JR, Kelly DA, Mabey D, et al. A novel model of intracranial meningioma in mice using luciferase-expressing meningioma cells. Lab Investig J Neurosurg. 2008;108(2):304–10.

    Article 

    Google Scholar
     

  • Tummalapalli P, Gondi CS, Dinh DH, Gujrati M, Rao JS. RNA interference-mediated targeting of urokinase plasminogen activator receptor and matrix metalloproteinase-9 gene expression in the IOMM-lee malignant meningioma cell line inhibits tumor growth, tumor cell invasion and angiogenesis. Int J Oncol. 2007;31(1):5–17.

    CAS 
    PubMed 

    Google Scholar
     

  • Cargioli TG, Ugur HC, Ramakrishna N, Chan J, Black PM, Carroll RS. Establishment of an in vivo meningioma model with human telomerase reverse transcriptase. Neurosurgery. 2007;60(4):750–9 (discussion 9–60).

    Article 
    PubMed 

    Google Scholar
     

  • Tummalapalli P, Spomar D, Gondi CS, Olivero WC, Gujrati M, Dinh DH, et al. RNAi-mediated abrogation of cathepsin B and MMP-9 gene expression in a malignant meningioma cell line leads to decreased tumor growth, invasion and angiogenesis. Int J Oncol. 2007;31(5):1039–50.

    CAS 
    PubMed 

    Google Scholar
     

  • Gupta V, Su YS, Samuelson CG, Liebes LF, Chamberlain MC, Hofman FM, et al. Irinotecan: a potential new chemotherapeutic agent for atypical or malignant meningiomas. J Neurosurg. 2007;106(3):455–62.

    Article 
    PubMed 

    Google Scholar
     

  • Ragel BT, Jensen RL, Gillespie DL, Prescott SM, Couldwell WT. Celecoxib inhibits meningioma tumor growth in a mouse xenograft model. Cancer. 2007;109(3):588–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ragel BT, Gillespie DL, Kushnir V, Polevaya N, Kelly D, Jensen RL. Calcium channel antagonists augment hydroxyurea- and ru486-induced inhibition of meningioma growth in vivo and in vitro. Neurosurgery. 2006;59(5):1109–20 (discussion 20-1).

    Article 
    PubMed 

    Google Scholar
     

  • Kondraganti S, Gondi CS, Gujrati M, McCutcheon I, Dinh DH, Rao JS, et al. Restoration of tissue factor pathway inhibitor inhibits invasion and tumor growth in vitro and in vivo in a malignant meningioma cell line. Int J Oncol. 2006;29(1):25–32.

    CAS 
    PubMed 

    Google Scholar
     

  • Kondraganti S, Gondi CS, McCutcheon I, Dinh DH, Gujrati M, Rao JS, et al. RNAi-mediated downregulation of urokinase plasminogen activator and its receptor in human meningioma cells inhibits tumor invasion and growth. Int J Oncol. 2006;28(6):1353–60.

    CAS 
    PubMed 

    Google Scholar
     

  • Surace EI, Lusis E, Haipek CA, Gutmann DH. Functional significance of S6K overexpression in meningioma progression. Ann Neurol. 2004;56(2):295–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salhia B, Rutka JT, Lingwood C, Nutikka A, Van Furth WR. The treatment of malignant meningioma with verotoxin. Neoplasia. 2002;4(4):304–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao Gogineni V, Kumar Nalla A, Gupta R, Gorantla B, Gujrati M, Dinh DH, et al. Radiation-inducible silencing of uPA and uPAR in vitro and in vivo in meningioma. Int J Oncol. 2010;36(4):809–16.

    PubMed 

    Google Scholar
     

  • Waldt N, Kesseler C, Fala P, John P, Kirches E, Angenstein F, et al. Crispr/Cas-based modeling of NF2 loss in meningioma cells. J Neurosci Methods. 2021;356: 109141.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gogineni VR, Gupta R, Nalla AK, Velpula KK, Rao JS. uPAR and cathepsin B shRNA impedes TGF-beta1-driven proliferation and invasion of meningioma cells in a XIAP-dependent pathway. Cell Death Dis. 2012;3(12): e439.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Furth WR, Laughlin S, Taylor MD, Salhia B, Mainprize T, Henkelman M, et al. Imaging of murine brain tumors using a 1.5 Tesla clinical MRI system. Can J Neurol Sci. 2003;30(4):326–32.

    Article 
    PubMed 

    Google Scholar
     

  • Nalla AK, Gogineni VR, Gupta R, Dinh DH, Rao JS. Suppression of uPA and uPAR blocks radiation-induced MCP-1 mediated recruitment of endothelial cells in meningioma. Cell Signal. 2011;23(8):1299–310.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • John P, Waldt N, Liebich J, Kesseler C, Schnabel S, Angenstein F, et al. AKT1(E17K) -mutated meningioma cell lines respond to treatment with the AKT inhibitor AZD5363. Neuropathol Appl Neurobiol. 2022;48(2): e12780.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakano T, Fujimoto K, Tomiyama A, Takahashi M, Achiha T, Arita H, et al. Eribulin prolongs survival in an orthotopic xenograft mouse model of malignant meningioma. Cancer Sci. 2022;113(2):697–708.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Horbinski C, Xi G, Wang Y, Hashizume R, Gopalakrishnan M, Phillips JJ, et al. The effects of palbociclib in combination with radiation in preclinical models of aggressive meningioma. Neurooncol Adv. 2021;3(1):vdab085.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng Y, Hu B, Miao Y, Wang J, Zhang S, Wan H, et al. A nicotinamide phosphoribosyltransferase inhibitor, FK866, suppresses the growth of anaplastic meningiomas and inhibits immune checkpoint expression by regulating STAT1. Front Oncol. 2022;12: 836257.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Tian F, Lun P, Feng Y. Curcumin inhibits HGF-induced EMT by regulating c-MET-dependent PI3K/Akt/mTOR signaling pathways in meningioma. Evid Based Complement Alternat Med. 2021;2021:5574555.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang A, Yang X, Wang J, Wang X, Wu H, Fan L, et al. Effects of the tight junction protein CLDN6 on cell migration and invasion in high-grade meningioma. World Neurosurg. 2021;151:e208–16.

    Article 
    PubMed 

    Google Scholar
     

  • Angus SP, Oblinger JL, Stuhlmiller TJ, DeSouza PA, Beauchamp RL, Witt L, et al. EPH receptor signaling as a novel therapeutic target in NF2-deficient meningioma. Neuro Oncol. 2018;20(9):1185–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chow HY, Dong B, Duron SG, Campbell DA, Ong CC, Hoeflich KP, et al. Group I Paks as therapeutic targets in NF2-deficient meningioma. Oncotarget. 2015;6(4):1981–94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burns SS, Akhmametyeva EM, Oblinger JL, Bush ML, Huang J, Senner V, et al. Histone deacetylase inhibitor AR-42 differentially affects cell-cycle transit in meningeal and meningioma cells, potently inhibiting NF2-deficient meningioma growth. Cancer Res. 2013;73(2):792–803.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang LS, Oblinger JL, Smith AE, Ferrer M, Angus SP, Hawley E, et al. Brigatinib causes tumor shrinkage in both NF2-deficient meningioma and schwannoma through inhibition of multiple tyrosine kinases but not ALK. PLoS ONE. 2021;16(7): e0252048.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen K, Si Y, Ou J, Guan JS, Kim S, Ernst P, et al. Antibody-drug conjugate to treat meningiomas. Pharmaceuticals (Basel). 2021;14(5):427.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karsy M, Hoang N, Barth T, Burt L, Dunson W, Gillespie DL, et al. Combined hydroxyurea and verapamil in the clinical treatment of refractory meningioma: human and orthotopic xenograft studies. World Neurosurg. 2016;86:210–9.

    Article 
    PubMed 

    Google Scholar
     

  • Soto-Montenegro ML, Pena-Zalbidea S, Mateos-Perez JM, Oteo M, Romero E, Morcillo MA, et al. Meningiomas: a comparative study of 68Ga-DOTATOC, 68Ga-DOTANOC and 68Ga-DOTATATE for molecular imaging in mice. PLoS ONE. 2014;9(11): e111624.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cal-Gonzalez J, Vaquero JJ, Herraiz JL, Perez-Liva M, Soto-Montenegro ML, Pena-Zalbidea S, et al. Improving PET quantification of small animal [(68)Ga]DOTA-labeled PET/CT studies by using a CT-based positron range correction. Mol Imaging Biol. 2018;20(4):584–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dijkstra BM, de Jong M, Stroet MCM, Andreae F, Dulfer SE, Everts M, et al. Evaluation of Ac-Lys(0)(IRDye800CW)Tyr(3)-octreotate as a novel tracer for SSTR(2)-targeted molecular fluorescence guided surgery in meningioma. J Neurooncol. 2021;153(2):211–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • La Cava F, Fringuello Mingo A, Irrera P, Di Vito A, Cordaro A, Brioschi C, et al. Orthotopic induction of CH157MN convexity and skull base meningiomas into nude mice using stereotactic surgery and MRI characterization. Anim Model Exp Med. 2019;2(1):58–63.

    Article 

    Google Scholar
     

  • Petermann A, Haase D, Wetzel A, Balavenkatraman KK, Tenev T, Guhrs KH, et al. Loss of the protein-tyrosine phosphatase DEP-1/PTPRJ drives meningioma cell motility. Brain Pathol. 2011;21(4):405–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanaka K, Sato C, Maeda Y, Koike M, Matsutani M, Yamada K, et al. Establishment of a human malignant meningioma cell line with amplified c-myc oncogene. Cancer. 1989;64(11):2243–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skibinski CG, Williamson T, Riggins GJ. Mebendazole and radiation in combination increase survival through anticancer mechanisms in an intracranial rodent model of malignant meningioma. J Neurooncol. 2018;140(3):529–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takeda H, Okada M, Kuramoto K, Suzuki S, Sakaki H, Sanomachi T, et al. Antitumor activity of gemcitabine against high-grade meningioma in vitro and in vivo. Oncotarget. 2017;8(53):90996–1008.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanno H, Nishihara H, Wang L, Yuzawa S, Kobayashi H, Tsuda M, et al. Expression of CD163 prevents apoptosis through the production of granulocyte colony-stimulating factor in meningioma. Neuro Oncol. 2013;15(7):853–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishiwata I, Ishiwata C, Ishiwata E, Sato Y, Kiguchi K, Tachibana T, et al. In vitro culture of various typed meningiomas and characterization of a human malignant meningioma cell line (HKBMM). Hum Cell. 2004;17(4):211–7.

    Article 
    PubMed 

    Google Scholar
     

  • Michelhaugh SK, Guastella AR, Varadarajan K, Klinger NV, Parajuli P, Ahmad A, et al. Development of patient-derived xenograft models from a spontaneously immortal low-grade meningioma cell line, KCI-MENG1. J Transl Med. 2015;13:227.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yazaki T, Takamiya Y, Costello PC, Mineta T, Menon AG, Rabkin SD, et al. Inhibition of angiogenesis and growth of human non-malignant and malignant meningiomas by TNP-470. J Neurooncol. 1995;23(1):23–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jalali S, Singh S, Agnihotri S, Wataya T, Salehi F, Alkins R, et al. A role for matrix remodelling proteins in invasive and malignant meningiomas. Neuropathol Appl Neurobiol. 2015;41(2):e16-28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saydam O, Senol O, Schaaij-Visser TB, Pham TV, Piersma SR, Stemmer-Rachamimov AO, et al. Comparative protein profiling reveals minichromosome maintenance (MCM) proteins as novel potential tumor markers for meningiomas. J Proteome Res. 2010;9(1):485–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senol O, Schaaij-Visser TB, Erkan EP, Dorfer C, Lewandrowski G, Pham TV, et al. miR-200a-mediated suppression of non-muscle heavy chain IIb inhibits meningioma cell migration and tumor growth in vivo. Oncogene. 2015;34(14):1790–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jungwirth G, Yu T, Moustafa M, Rapp C, Warta R, Jungk C, et al. Identification of KIF11 as a novel target in meningioma. Cancers (Basel). 2019;11(4):545.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jungwirth G, Yu T, Cao J, Eddine MA, Moustafa M, Warta R, et al. KIF11 inhibitors filanesib and ispinesib inhibit meningioma growth in vitro and in vivo. Cancer Lett. 2021;506:1–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding Y, Ge Y, Wang D, Liu Q, Sun S, Hua L, et al. LncRNA-IMAT1 promotes invasion of meningiomas by suppressing KLF4/hsa-miR22-3p/Snai1 pathway. Mol Cells. 2022;45(6):388–402.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nigim F, Esaki S, Hood M, Lelic N, James MF, Ramesh V, et al. A new patient-derived orthotopic malignant meningioma model treated with oncolytic herpes simplex virus. Neuro Oncol. 2016;18(9):1278–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nigim F, Kiyokawa J, Gurtner A, Kawamura Y, Hua L, Kasper EM, et al. A monoclonal antibody against beta1 integrin inhibits proliferation and increases survival in an orthotopic model of high-grade meningioma. Target Oncol. 2019;14(4):479–89.

    Article 
    PubMed 

    Google Scholar
     

  • Yu T, Cao J, Alaa Eddine M, Moustafa M, Mock A, Erkut C, et al. Receptor-tyrosine kinase inhibitor ponatinib inhibits meningioma growth in vitro and in vivo. Cancers (Basel). 2021;13(23):5898.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linsler S, Muller SJ, Muller A, Senger S, Oertel JM. Fluorescence image-guided resection of intracranial meningioma: an experimental in vivo study on nude mice. Ann Anat. 2021;237: 151752.

    Article 
    PubMed 

    Google Scholar
     

  • Jiang C, Song T, Li J, Ao F, Gong X, Lu Y, et al. RAS promotes proliferation and resistances to apoptosis in meningioma. Mol Neurobiol. 2017;54(1):779–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding MH, Wang Z, Jiang L, Fu HL, Gao J, Lin XB, et al. The transducible TAT-RIZ1-PR protein exerts histone methyltransferase activity and tumor-suppressive functions in human malignant meningiomas. Biomaterials. 2015;56:165–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Friedrich S, Schwabe K, Grote M, Krauss JK, Nakamura M. Effect of systemic celecoxib on human meningioma after intracranial transplantation into nude mice. Acta Neurochir (Wien). 2013;155(1):173–82.

    Article 
    PubMed 

    Google Scholar
     

  • Chen J, Zhang H, Wang H. Experimental study on the inhibitory effects of verapamil on the proliferation of meningiomas cells. J Huazhong Univ Sci Technol Med Sci. 2007;27(1):88–90.

    Article 
    CAS 

    Google Scholar
     

  • Hu D, Wang X, Mao Y, Zhou L. Identification of CD105 (endoglin)-positive stem-like cells in rhabdoid meningioma. J Neurooncol. 2012;106(3):505–17.

    Article 
    PubMed 

    Google Scholar
     

  • Malham GM, Thomsen RJ, Synek BJ, Baguley BC. Establishment of primary human meningiomas as subcutaneous xenografts in mice. Br J Neurosurg. 2001;15(4):328–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jensen RL, Wurster RD. Calcium channel antagonists inhibit growth of subcutaneous xenograft meningiomas in nude mice. Surg Neurol. 2001;55(5):275–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCutcheon IE, Flyvbjerg A, Hill H, Li J, Bennett WF, Scarlett JA, et al. Antitumor activity of the growth hormone receptor antagonist pegvisomant against human meningiomas in nude mice. J Neurosurg. 2001;94(3):487–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schrell UM, Rittig MG, Anders M, Kiesewetter F, Marschalek R, Koch UH, et al. Hydroxyurea for treatment of unresectable and recurrent meningiomas. I. Inhibition of primary human meningioma cells in culture and in meningioma transplants by induction of the apoptotic pathway. J Neurosurg. 1997;86(5):845–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuda Y, Kawamoto K, Kiya K, Kurisu K, Sugiyama K, Uozumi T. Antitumor effects of antiprogesterones on human meningioma cells in vitro and in vivo. J Neurosurg. 1994;80(3):527–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Medhkour A, Van Roey M, Sobel RA, Fingert HJ, Lee J, Martuza RL. Implantation of human meningiomas into the subrenal capsule of the nude mouse. A model for studies of tumor growth. J Neurosurg. 1989;71(4):545–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olson JJ, Beck DW, Schlechte JA, Loh PM. Effect of the antiprogesterone RU-38486 on meningioma implanted into nude mice. J Neurosurg. 1987;66(4):584–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Markert JM, Coen DM, Malick A, Mineta T, Martuza RL. Expanded spectrum of viral therapy in the treatment of nervous system tumors. J Neurosurg. 1992;77(4):590–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waldt N, Scharnetzki D, Kesseler C, Kirches E, Stroscher N, Bohmer FD, et al. Loss of PTPRJ/DEP-1 enhances NF2/Merlin-dependent meningioma development. J Neurol Sci. 2020;408: 116553.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morrison JP, Satoh H, Foley J, Horton JL, Dunnick JK, Kissling GE, et al. N-ethyl-N-nitrosourea (ENU)-induced meningiomatosis and meningioma in p16(INK4a)/p19(ARF) tumor suppressor gene-deficient mice. Toxicol Pathol. 2007;35(6):780–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peyre M, Clermont-Taranchon E, Stemmer-Rachamimov A, Kalamarides M. Miniaturized handheld confocal microscopy identifies focal brain invasion in a mouse model of aggressive meningioma. Brain Pathol. 2013;23(4):371–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boetto J, Apra C, Bielle F, Peyre M, Kalamarides M. Selective vulnerability of the primitive meningeal layer to prenatal Smo activation for skull base meningothelial meningioma formation. Oncogene. 2018;37(36):4955–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Szulzewsky F, Arora S, Arakaki AKS, Sievers P, Almiron Bonnin DA, Paddison PJ, et al. Both YAP1-MAML2 and constitutively active YAP1 drive the formation of tumors that resemble NF2 mutant meningiomas in mice. Genes Dev. 2022;36(13–14):857–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeung J, Yaghoobi V, Miyagishima D, Vesely MD, Zhang T, Badri T, et al. Targeting the CSF1/CSF1R axis is a potential treatment strategy for malignant meningiomas. Neuro Oncol. 2021;23(11):1922–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toktas ZO, Akgun E, Ozkan A, Bozkurt SU, Bekiroglu N, Seker A, et al. Relationship of angiogenic potential with clinical features in cranial meningiomas: a corneal angiogenesis study. Neurosurgery. 2010;67(6):1724–32 (discussion 32).

    Article 
    PubMed 

    Google Scholar
     

  • Kilic K, Avsar T, Akgun E, Ozkan A, Toktas ZO, Seker A, et al. Gamma knife radiosurgery inhibits angiogenesis of meningiomas: in vivo rat corneal assay. World Neurosurg. 2013;80(5):598–604.

    Article 
    PubMed 

    Google Scholar
     

  • Brooks SE, Adachi M, Hoffman LM, Stein MR, Brooks J, Schneck L. Induction of lymphomas and fibrosarcomas in nude mice after implantation of simian virus 40-transformed human meningioma. Lab Invest. 1988;58(5):518–23.

    CAS 
    PubMed 

    Google Scholar
     

  • Baia GS, Caballero OL, Orr BA, Lal A, Ho JS, Cowdrey C, et al. Yes-associated protein 1 is activated and functions as an oncogene in meningiomas. Mol Cancer Res. 2012;10(7):904–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hueng DY, Sytwu HK, Huang SM, Chang C, Ma HI. Isolation and characterization of tumor stem-like cells from human meningiomas. J Neurooncol. 2011;104(1):45–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rath P, Miller DC, Litofsky NS, Anthony DC, Feng Q, Franklin C, et al. Isolation and characterization of a population of stem-like progenitor cells from an atypical meningioma. Exp Mol Pathol. 2011;90(2):179–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamate J, Tajima M, Saitoh T, Shibuya K. Biological behaviour and morphological characteristics of a transplantable tumour (MM-KMY) derived from a malignant meningioma in an F344 rat. J Comp Pathol. 1994;111(3):243–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsujino K, Yamate J, Tsukamoto Y, Kumagai D, Kannan Y, Jippo T, et al. Establishment and characterization of cell lines derived from a transplantable rat malignant meningioma: morphological heterogeneity and production of nerve growth factor. Acta Neuropathol. 1997;93(5):461–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang QE. Human cancer xenografts in immunocompromised mice provide an advanced genuine tumor model for research and drug development: a revisit of murine models for human cancers. Biochim Biophys Acta Gen Subj. 2021;1865(8): 129929.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsai JC, Goldman CK, Gillespie GY. Vascular endothelial growth factor in human glioma cell lines: induced secretion by EGF, PDGF-BB, and bFGF. J Neurosurg. 1995;82(5):864–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsai JC, Hsiao YY, Teng LJ, Shun CT, Chen CT, Goldman CK, et al. Regulation of vascular endothelial growth factor secretion in human meningioma cells. J Formos Med Assoc. 1999;98(2):111–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Baia GS, Slocum AL, Hyer JD, Misra A, Sehati N, VandenBerg SR, et al. A genetic strategy to overcome the senescence of primary meningioma cell cultures. J Neurooncol. 2006;78(2):113–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamazaki S, Ohka F, Hirano M, Shiraki Y, Motomura K, Tanahashi K, et al. Newly established patient-derived organoid model of intracranial meningioma. Neuro Oncol. 2021. https://doi.org/10.1093/neuonc/noab155.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mei Y, Bi WL, Greenwald NF, Agar NY, Beroukhim R, Dunn GP, et al. Genomic profile of human meningioma cell lines. PLoS ONE. 2017;12(5): e0178322.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akat K, Mennel HD, Kremer P, Gassler N, Bleck CK, Kartenbeck J. Molecular characterization of desmosomes in meningiomas and arachnoidal tissue. Acta Neuropathol. 2003;106(4):337–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Metzger D, Chambon P. Site- and time-specific gene targeting in the mouse. Methods. 2001;24(1):71–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • von Werder A, Seidler B, Schmid RM, Schneider G, Saur D. Production of avian retroviruses and tissue-specific somatic retroviral gene transfer in vivo using the RCAS/TVA system. Nat Protoc. 2012;7(6):1167–83.

    Article 

    Google Scholar
     

  • Hughes SH, Greenhouse JJ, Petropoulos CJ, Sutrave P. Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J Virol. 1987;61(10):3004–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perry A, Giannini C, Raghavan R, Scheithauer BW, Banerjee R, Margraf L, et al. Aggressive phenotypic and genotypic features in pediatric and NF2-associated meningiomas: a clinicopathologic study of 53 cases. J Neuropathol Exp Neurol. 2001;60(10):994–1003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuzawa S, Nishihara H, Tanaka S. Genetic landscape of meningioma. Brain Tumor Pathol. 2016;33(4):237–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goutagny S, Kalamarides M. Meningiomas and neurofibromatosis. J Neurooncol. 2010;99(3):341–7.

    Article 
    PubMed 

    Google Scholar
     

  • Bi WL, Greenwald NF, Abedalthagafi M, Wala J, Gibson WJ, Agarwalla PK, et al. Genomic landscape of high-grade meningiomas. NPJ Genom Med. 2017. https://doi.org/10.1038/s41525-017-0014-7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mello SS, Attardi LD. Deciphering p53 signaling in tumor suppression. Curr Opin Cell Biol. 2018;51:65–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barresi V, Simbolo M, Fioravanzo A, Piredda ML, Caffo M, Ghimenton C, et al. Molecular profiling of 22 primary atypical meningiomas shows the prognostic significance of 18q heterozygous loss and CDKN2A/B homozygous deletion on recurrence-free survival. Cancers (Basel). 2021;13(4):903.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sievers P, Hielscher T, Schrimpf D, Stichel D, Reuss DE, Berghoff AS, et al. CDKN2A/B homozygous deletion is associated with early recurrence in meningiomas. Acta Neuropathol. 2020;140(3):409–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuoka M, Kurita M, Sudo H, Mizumoto K, Nishimoto I, Ogata E. Multiple domains of the mouse p19ARF tumor suppressor are involved in p53-independent apoptosis. Biochem Biophys Res Commun. 2003;301(4):1000–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruas M, Peters G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta. 1998;1378(2):F115–77.

    CAS 
    PubMed 

    Google Scholar
     

  • Prives C, Hall PA. The p53 pathway. J Pathol. 1999;187(1):112–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia Y, Liu Y, Yang C, Simeone DM, Sun TT, DeGraff DJ, et al. Dominant role of CDKN2B/p15INK4B of 9p21.3 tumor suppressor hub in inhibition of cell-cycle and glycolysis. Nat Commun. 2021;12(1):2047.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maxwell M, Galanopoulos T, Hedley-Whyte ET, Black PM, Antoniades HN. Human meningiomas co-express platelet-derived growth factor (PDGF) and PDGF-receptor genes and their protein products. Int J Cancer. 1990;46(1):16–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Black PM, Carroll R, Glowacka D, Riley K, Dashner K. Platelet-derived growth factor expression and stimulation in human meningiomas. J Neurosurg. 1994;81(3):388–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brastianos PK, Horowitz PM, Santagata S, Jones RT, McKenna A, Getz G, et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet. 2013;45(3):285–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sievers P, Chiang J, Schrimpf D, Stichel D, Paramasivam N, Sill M, et al. YAP1-fusions in pediatric NF2-wildtype meningioma. Acta Neuropathol. 2020;139(1):215–8.

    Article 
    PubMed 

    Google Scholar
     

  • Passaniti A, Kleinman HK, Martin GR. Matrigel: history/background, uses, and future applications. J Cell Commun Signal. 2022;16(4):621–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fridman R, Giaccone G, Kanemoto T, Martin GR, Gazdar AF, Mulshine JL. Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines. Proc Natl Acad Sci USA. 1990;87(17):6698–702.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fridman R, Sweeney TM, Zain M, Martin GR, Kleinman HK. Malignant transformation of NIH-3T3 cells after subcutaneous co-injection with a reconstituted basement membrane (matrigel). Int J Cancer. 1992;51(5):740–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pompili L, Porru M, Caruso C, Biroccio A, Leonetti C. Patient-derived xenografts: a relevant preclinical model for drug development. J Exp Clin Cancer Res. 2016;35(1):189.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Day CP, Merlino G, Van Dyke T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell. 2015;163(1):39–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kersten K, de Visser KE, van Miltenburg MH, Jonkers J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med. 2017;9(2):137–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jonkers J, Berns A. Conditional mouse models of sporadic cancer. Nat Rev Cancer. 2002;2(4):251–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahronian LG, Lewis BC. Using the RCAS-TVA system to model human cancer in mice. Cold Spring Harb Protoc. 2014;2014(11):1128–35.

    Article 
    PubMed 

    Google Scholar
     

  • Williams SJ, Prescher JA. Building biological flashlights: orthogonal luciferases and luciferins for in vivo imaging. Acc Chem Res. 2019;52(11):3039–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Risbridger GP, Lawrence MG. Towards best practice in establishing patient-derived xenografts. In: Wang Y, Lin D, Gout PW, editors. Patient-derived xenograft models of human cancer. Cham: Springer International Publishing; 2017. p. 11–28.

    Chapter 

    Google Scholar
     

  • Hahn SA, Seymour AB, Hoque AT, Schutte M, da Costa LT, Redston MS, et al. Allelotype of pancreatic adenocarcinoma using xenograft enrichment. Cancer Res. 1995;55(20):4670–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Lin MT, Tseng LH, Kamiyama H, Kamiyama M, Lim P, Hidalgo M, et al. Quantifying the relative amount of mouse and human DNA in cancer xenografts using species-specific variation in gene length. Biotechniques. 2010;48(3):211–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iwami K, Momota H, Natsume A, Kinjo S, Nagatani T, Wakabayashi T. A novel method of intracranial injection via the postglenoid foramen for brain tumor mouse models. J Neurosurg. 2012;116(3):630–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • ter Riet G, Korevaar DA, Leenaars M, Sterk PJ, Van Noorden CJ, Bouter LM, et al. Publication bias in laboratory animal research: a survey on magnitude, drivers, consequences and potential solutions. PLoS ONE. 2012;7(9): e43404.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schieffer KM, Agarwal V, LaHaye S, Miller KE, Koboldt DC, Lichtenberg T, et al. YAP1-FAM118B fusion defines a rare subset of childhood and young adulthood meningiomas. Am J Surg Pathol. 2021;45(3):329–40.

    Article 
    PubMed 

    Google Scholar
     

  • Charan J, Kantharia ND. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4(4):303–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shahbandi A, Shah DS, Hadley CC, Patel AJ. The role of pharmacotherapy in treatment of meningioma: a systematic review. Cancers (Basel). 2023;15(2):483.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jensen LR, Maier AD, Lomstein A, Graillon T, Hrachova M, Bota D, et al. Somatostatin analogues in treatment-refractory meningioma: a systematic review with meta-analysis of individual patient data. Neurosurg Rev. 2022;45(5):3067–81.

    Article 
    PubMed 

    Google Scholar
     

  • Kaley T, Barani I, Chamberlain M, McDermott M, Panageas K, Raizer J, et al. Historical benchmarks for medical therapy trials in surgery- and radiation-refractory meningioma: a RANO review. Neuro Oncol. 2014;16(6):829–40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Begley CG, Ioannidis JP. Reproducibility in science: improving the standard for basic and preclinical research. Circ Res. 2015;116(1):116–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Begley CG, Ellis LM. Drug development: raise standards for preclinical cancer research. Nature. 2012;483(7391):531–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krauth D, Woodruff TJ, Bero L. Instruments for assessing risk of bias and other methodological criteria of published animal studies: a systematic review. Environ Health Perspect. 2013;121(9):985–92.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morton JJ, Bird G, Refaeli Y, Jimeno A. Humanized mouse xenograft models: narrowing the tumor-microenvironment gap. Cancer Res. 2016;76(21):6153–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174(10):6477–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rachinger W, Stoecklein VM, Terpolilli NA, Haug AR, Ertl L, Poschl J, et al. Increased 68Ga-DOTATATE uptake in PET imaging discriminates meningioma and tumor-free tissue. J Nucl Med. 2015;56(3):347–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Afshar-Oromieh A, Giesel FL, Linhart HG, Haberkorn U, Haufe S, Combs SE, et al. Detection of cranial meningiomas: comparison of (6)(8)Ga-DOTATOC PET/CT and contrast-enhanced MRI. Eur J Nucl Med Mol Imaging. 2012;39(9):1409–15.

    Article 
    PubMed 

    Google Scholar
     

  • Kowalski ES, Khairnar R, Gryaznov AA, Kesari V, Koroulakis A, Raghavan P, et al. (68)Ga-DOTATATE PET-CT as a tool for radiation planning and evaluating treatment responses in the clinical management of meningiomas. Radiat Oncol. 2021;16(1):151.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woo XY, Giordano J, Srivastava A, Zhao ZM, Lloyd MW, de Bruijn R, et al. Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nat Genet. 2021;53(1):86–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McClatchey AI, Saotome I, Ramesh V, Gusella JF, Jacks T. The Nf2 tumor suppressor gene product is essential for extraembryonic development immediately prior to gastrulation. Genes Dev. 1997;11(10):1253–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maresch R, Mueller S, Veltkamp C, Ollinger R, Friedrich M, Heid I, et al. Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nat Commun. 2016;7:10770.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link