Scientific Papers

EphrinA5 regulates cell motility by modulating Snhg15/DNA triplex-dependent targeting of DNMT1 to the Ncam1 promoter | Epigenetics & Chromatin


  • Spill F, Reynolds DS, Kamm RD, Zaman MH. Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol. 2016;40:41–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eisenberg L, Eisenberg-Bord M, Eisenberg-Lerner A, Sagi-Eisenberg R. Metabolic alterations in the tumor microenvironment and their role in oncogenesis. Cancer Lett. 2020;484:65–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manzo G. Similarities between embryo development and cancer process suggest new strategies for research and therapy of tumors: a new point of view. Front Cell Develop Biol. 2019;7:20.

    Article 

    Google Scholar
     

  • Gerstmann K, Pensold D, Symmank J, Khundadze M, Hübner CA, Bolz J, Zimmer G. Thalamic afferents influence cortical progenitors via ephrin A5-EphA4 interactions. Development. 2015;142(1):140–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steinecke A, Gampe C, Zimmer G, Rudolph J, Bolz J. EphA/ephrin A reverse signaling promotes the migration of cortical interneurons from the medial ganglionic eminence. Development. 2014;141(2):460–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zimmer G, Kästner B, Weth F, Bolz J. Multiple effects of ephrin-A5 on cortical neurons are mediated by SRC family kinases. J Neurosci. 2007;27(21):5643–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmer G, Garcez P, Rudolph J, Niehage R, Weth F, Lent R, Bolz J. Ephrin-A5 acts as a repulsive cue for migrating cortical interneurons. Eur J Neurosci. 2008;28(1):62–73.

    Article 
    PubMed 

    Google Scholar
     

  • Zimmer G, Rudolph J, Landmann J, Gerstmann K, Steinecke A, Gampe C, Bolz J. Bidirectional ephrinB3/EphA4 signaling mediates the segregation of medial ganglionic eminence-and preoptic area-derived interneurons in the deep and superficial migratory stream. J Neurosci. 2011;31(50):18364–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sikkema AH, Den Dunnen WF, Hulleman E, Van Vuurden DG, Garcia-Manero G, Yang H, et al. EphB2 activity plays a pivotal role in pediatric medulloblastoma cell adhesion and invasion. Neuro Oncol. 2012;14(9):1125–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Surawska H, Ma PC, Salgia R. The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev. 2004;15(6):419–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uddin MS, Al Mamun A, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS, Ashraf GM, editors. Epigenetics of Glioblastoma Multiforme: From Molecular Mechanisms to Therapeutic Approaches; 2020: Elsevier.

  • Li J-J, Liu D-P, Liu G, Xie D. EphrinA5 acts as a tumor suppressor in glioma by negative regulation of epidermal growth factor receptor. Oncogene. 2009;28(15):1759–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ricci B, Millner TO, Pomella N, Zhang X, Guglielmi L, Badodi S, et al. Polycomb-mediated repression of EphrinA5 promotes growth and invasion of glioblastoma. Oncogene. 2020;39(12):2523–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamaoka Y, Negishi M, Katoh H. EphA2 is a key effector of the MEK/ERK/RSK pathway regulating glioblastoma cell proliferation. Cell Signal. 2016;28(8):937–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wykosky J, Debinski W. The EphA2 receptor and ephrinA1 ligand in solid tumors: function and therapeutic targeting. Mol Cancer Res. 2008;6(12):1795–806.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wykosky J, Gibo DM, Stanton C, Debinski W. EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol Cancer Res. 2005;3(10):541–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18(1):5–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358(11):1148–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phillips RE, Soshnev AA, Allis CD. Epigenomic reprogramming as a driver of malignant glioma. Cancer Cell. 2020;38(5):647–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, et al. Dynamic changes in the human methylome during differentiation. Genome Res. 2010;20(3):320–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, et al. Editing DNA methylation in the mammalian genome. Cell. 2016;167(1):233–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stepper P, Kungulovski G, Jurkowska RZ, Chandra T, Krueger F, Reinhardt R, et al. Efficient targeted DNA methylation with chimeric dCas9–Dnmt3a–Dnmt3L methyltransferase. Nucleic Acids Res. 2017;45(4):1703–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Kharashi LA, Al-Mohanna FH, Tulbah A, Aboussekhra A. The DNA methyl-transferase protein DNMT1 enhances tumor-promoting properties of breast stromal fibroblasts. Oncotarget. 2018;9(2):2329.

    Article 
    PubMed 

    Google Scholar
     

  • Gusyatiner O, Hegi ME, editors. Glioma epigenetics: from subclassification to novel treatment options; 2018: Elsevier.

  • Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet. 2000;24(1):88–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Symmank J, Bayer C, Reichard J, Pensold D, Zimmer-Bensch G. Neuronal Lhx1 expression is regulated by DNMT1-dependent modulation of histone marks. Epigenetics. 2020;15(11):1259–74.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo JU, Ma DK, Mo H, Ball MP, Jang M-H, Bonaguidi MA, et al. Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci. 2011;14(10):1345–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, et al. The DNA methylation landscape of human early embryos. Nature. 2014;511(7511):606–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skvortsova K, Stirzaker C, Taberlay P. The DNA methylation landscape in cancer. Essays Biochem. 2019;63(6):797–811.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yildiz CB, Zimmer-Bensch G. Role of DNMTs in the Brain. DNA Methyltransferases-Role and Function: Springer; 2022. p. 363–94.


    Google Scholar
     

  • Hua C-D, Bian E-B, Chen E-F, Yang Z-H, Tang F, Wang H-L, Zhao B. Repression of Dok7 expression mediated by DNMT1 promotes glioma cells proliferation. Biomed Pharmacother. 2018;106:678–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun J, Tian X, Zhang J, Huang Y, Lin X, Chen L, Zhang S. Regulation of human glioma cell apoptosis and invasion by miR-152-3p through targeting DNMT1 and regulating NF2. J Exp Clin Cancer Res. 2017;36(1):1–13.

    Article 
    CAS 

    Google Scholar
     

  • Pensold D, Gehrmann J, Pitschelatow G, Walberg A, Braunsteffer K, Reichard J, et al. The Expression of the Cancer-Associated lncRNA Snhg15 Is Modulated by EphrinA5-Induced Signaling. Int J Mol Sci. 2021;22(3):1332.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laneve P, Rea J, Caffarelli E. Long noncoding RNAs: emerging players in medulloblastoma. Front Pediatr. 2019;7:67.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stackhouse CT, Gillespie GY, Willey CD. Exploring the roles of lncRNAs in GBM pathophysiology and their therapeutic potential. Cells. 2020;9(11):2369.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang M-C, Ni J-J, Cui W-Y, Wang B-Y, Zhuo W. Emerging roles of lncRNA in cancer and therapeutic opportunities. Am J Cancer Res. 2019;9(7):1354.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghafouri-Fard S, Esmaeili M, Taheri M. H19 lncRNA: roles in tumorigenesis. Biomed Pharmacother. 2020;123: 109774.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yadav B, Pal S, Rubstov Y, Goel A, Garg M, Pavlyukov M, Pandey AK. LncRNAs associated with glioblastoma: from transcriptional noise to novel regulators with a promising role in therapeutics. Molecular Therapy-Nucleic Acids. 2021;24:728–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmer-Bensch G. Emerging roles of long non-coding RNAs as drivers of brain evolution. Cells. 2019;8(11):1399.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 2017;18:1–13.

    Article 

    Google Scholar
     

  • Cabianca DS, Casa V, Bodega B, Xynos A, Ginelli E, Tanaka Y, Gabellini D. A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell. 2012;149(4):819–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007;129(7):1311–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalwa M, Hänzelmann S, Otto S, Kuo C-C, Franzen J, Joussen S, et al. The lncRNA HOTAIR impacts on mesenchymal stem cells via triple helix formation. Nucleic Acids Res. 2016;44(22):10631–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuo C-C, Hänzelmann S, Sentürk Cetin N, Frank S, Zajzon B, Derks J-P, et al. Detection of RNA–DNA binding sites in long noncoding RNAs. Nucleic Acids Res. 2019;47(6):e32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leisegang MS, Bains JK, Seredinski S, Oo JA, Krause NM, Kuo C-C, et al. HIF1α-AS1 is a DNA: DNA: RNA triplex-forming lncRNA interacting with the HUSH complex. Nat Commun. 2022;13(1):6563.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sentürk Cetin N, Kuo C-C, Ribarska T, Li R, Costa IG, Grummt I. Isolation and genome-wide characterization of cellular DNA: RNA triplex structures. Nucleic Acids Res. 2019;47(5):2306–21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fossale E, Wolf P, Espinola JA, Lubicz-Nawrocka T, Teed AM, Gao H, et al. Membrane trafficking and mitochondrial abnormalities precede subunit c deposition in a cerebellar cell model of juvenile neuronal ceroid lipofuscinosis. BMC Neurosci. 2004;5(1):1–13.

    Article 

    Google Scholar
     

  • Sharma P, Lam VK, Raub CB, Chung BM. Tracking Single Cells Motility on Different Substrates. Methods Protocols. 2020;3(3):56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee FCY, Ule J. Advances in CLIP Technologies for Studies of Protein-RNA Interactions. Mol Cell. 2018;69(3):354–69. https://doi.org/10.1016/j.molcel.2018.01.005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Z, Niu L, Li L, Taylor JA. ENmix: a novel background correction method for Illumina HumanMethylation450 BeadChip. Nucleic Acids Res. 2016;44(3):e20. https://doi.org/10.1093/nar/gkv907.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leek JT. Surrogate variable analysis. Washington: University of Washington; 2007.


    Google Scholar
     

  • Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, Irizarry RA. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ivani I, Dans PD, Noy A, Pérez A, Faustino I, Hospital A, et al. Parmbsc1: a refined force field for DNA simulations. Nat Methods. 2016;13(1):55–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piana S, Donchev AG, Robustelli P, Shaw DE. Water dispersion interactions strongly influence simulated structural properties of disordered protein states. J Phys Chem B. 2015;119(16):5113–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joung IS, Cheatham TE III. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B. 2008;112(30):9020–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25.

    Article 

    Google Scholar
     

  • Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys. 1981;52(12):7182–90.

    Article 
    CAS 

    Google Scholar
     

  • Hess B. P-LINCS: A parallel linear constraint solver for molecular simulation. J Chem Theory Comput. 2008;4(1):116–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tong J, Ma X, Yu H, Yang J. SNHG15: a promising cancer-related long noncoding RNA. Cancer Manag Res. 2019;11:5961.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu D-M, Wang S, Wen X, Han X-R, Wang Y-J, Shen M, et al. LncRNA SNHG15 acts as a ceRNA to regulate YAP1-Hippo signaling pathway by sponging miR-200a-3p in papillary thyroid carcinoma. Cell Death Dis. 2018;9(10):947.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma Z, Huang H, Wang J, Zhou Y, Pu F, Zhao Q, et al. Long non-coding RNA SNHG15 inhibits P15 and KLF2 expression to promote pancreatic cancer proliferation through EZH2-mediated H3K27me3. Oncotarget. 2017;8(48):84153.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chalei V, Sansom SN, Kong L, Lee S, Montiel JF, Vance KW, Ponting CP. The long non-coding RNA Dali is an epigenetic regulator of neural differentiation. Elife. 2014;3:e04530.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guil S, Soler M, Portela A, Carrère J, Fonalleras E, Gómez A, et al. Intronic RNAs mediate EZH2 regulation of epigenetic targets. Nat Struct Mol Biol. 2012;19(7):664–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Zhao Y, Bao X, Zhu X, Kwok YK, Sun K, et al. LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Res. 2015;25(3):335–50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao R, Wang H, He J, Erdjument-Bromage H, Tempst P, Zhang Y. Role of hPHF1 in H3K27 methylation and Hox gene silencing. Mol Cell Biol. 2008;28(5):1862–72. https://doi.org/10.1128/mcb.01589-07.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 2002;16(22):2893–905. https://doi.org/10.1101/gad.1035902.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469(7330):343–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010;328(5980):916–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Hou S, Jiang R, Sun J, Cheng C, Qian Z. EZH2 is a potential prognostic predictor of glioma. J Cell Mol Med. 2021;25(2):925–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hervouet E, Vallette F, Cartron P. Impact of the DNA methyltransferases expression on the methylation status of apoptosis-associated genes in glioblastoma multiforme. Cell Death Dis. 2010;1(1):e8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miele E, Valente S, Alfano V, Silvano M, Mellini P, Borovika D, et al. The histone methyltransferase EZH2 as a druggable target in SHH medulloblastoma cancer stem cells. Oncotarget. 2017;8(40):68557.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pócza T, Krenács T, Turányi E, Csáthy J, Jakab Z, Hauser P. High expression of DNA methyltransferases in primary human medulloblastoma. 2016.

  • Rajendran G, Shanmuganandam K, Bendre A, Mujumdar D, Goel A, Shiras A. Epigenetic regulation of DNA methyltransferases: DNMT1 and DNMT3B in gliomas. J Neurooncol. 2011;104(2):483–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stazi G, Taglieri L, Nicolai A, Romanelli A, Fioravanti R, Morrone S, et al. Dissecting the role of novel EZH2 inhibitors in primary glioblastoma cell cultures: effects on proliferation, epithelial-mesenchymal transition, migration, and on the pro-inflammatory phenotype. Clin Epigenetics. 2019;11(1):1–17.

    Article 

    Google Scholar
     

  • Zhang H, Zhu D, Zhang Z, Kaluz S, Yu B, Devi NS, et al. EZH2 targeting reduces medulloblastoma growth through epigenetic reactivation of the BAI1/p53 tumor suppressor pathway. Oncogene. 2020;39(5):1041–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992;69(6):915–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prag S, Lepekhin EA, Kolkova K, Hartmann-Petersen R, Kawa A, Walmod PS, et al. NCAM regulates cell motility. J Cell Sci. 2002;115(2):283–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edvardsen K, Pedersen PH, Bjerkvig R, Hermann GG, Zeuthen J, Laerum OD, et al. Transfection of glioma cells with the neural-cell adhesion molecule NCAM: effect on glioma-cell invasion and growth in vivo. Int J Cancer. 1994;58(1):116–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guan G, Niu X, Qiao X, Wang X, Liu J, Zhong M. Upregulation of neural cell adhesion molecule 1 (NCAM1) by hsa-miR-141-3p suppresses ameloblastoma cell migration. Med Sci Monit. 2020;26:e923491–501.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buske FA, Mattick JS, Bailey TL. Potential in vivo roles of nucleic acid triple-helices. RNA Biol. 2011;8(3):427–39. https://doi.org/10.4161/rna.8.3.14999.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behesti H, Marino S. Cerebellar granule cells: insights into proliferation, differentiation, and role in medulloblastoma pathogenesis. Int J Biochem Cell Biol. 2009;41(3):435–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gilbertson RJ, Ellison DW. The origins of medulloblastoma subtypes. Annu Rev Pathol Mech Dis. 2008;3:341–65.

    Article 
    CAS 

    Google Scholar
     

  • Anderton M, van der Meulen E, Blumenthal MJ, Schäfer G. The Role of the Eph Receptor Family in Tumorigenesis. Cancers. 2021;13(2):206. https://doi.org/10.3390/cancers13020206.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casal JJ. Environmental cues affecting development. Curr Opin Plant Biol. 2002;5(1):37–42.

    Article 
    PubMed 

    Google Scholar
     

  • Herceg Z, Vaissière T. Epigenetic mechanisms and cancer: an interface between the environment and the genome. Epigenetics. 2011;6(7):804–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parsa N. Environmental factors inducing human cancers. Iran J Public Health. 2012;41(11):1.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudolph J, Zimmer G, Steinecke A, Barchmann S, Bolz J. Ephrins guide migrating cortical interneurons in the basal telencephalon. Cell Adh Migr. 2010;4(3):400–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudolph J, Gerstmann K, Zimmer G, Steinecke A, Döding A, Bolz J. A dual role of EphB1/ephrin-B3 reverse signaling on migrating striatal and cortical neurons originating in the preoptic area: should I stay or go away? Front Cell Neurosci. 2014;8:185.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerstmann K, Zimmer G. The role of the Eph/ephrin family during cortical development and cerebral malformations. Med Res Arch. 2018;6(3):78.


    Google Scholar
     

  • Pasquale EB. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer. 2010;10(3):165–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferluga S, Debinski W. Ephs and Ephrins in malignant gliomas. Growth Factors. 2014;32(6):190–201.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhatia S, Hirsch K, Baig NA, Rodriguez O, Timofeeva O, Kavanagh K, et al. Effects of altered ephrin-A5 and EphA4/EphA7 expression on tumor growth in a medulloblastoma mouse model. J Hematol Oncol. 2015;8(1):1–8.

    Article 
    CAS 

    Google Scholar
     

  • Kindberg AA, Srivastava V, Muncie JM, Weaver VM, Gartner ZJ, Bush JO. EPH/EPHRIN regulates cellular organization by actomyosin contractility effects on cell contacts. J Cell Biol. 2021;220(6). https://doi.org/10.1083/jcb.202005216.

  • Nakada M, Niska JA, Tran NL, McDonough WS, Berens ME. EphB2/R-Ras signaling regulates glioma cell adhesion, growth, and invasion. Am J Pathol. 2005;167(2):565–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Zheng X, Peng Q, Zhang X, Qin Z. Eph receptors: the bridge linking host and virus. Cell Mol Life Sci. 2020;77(12):2355–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blaheta RA, Hundemer M, Mayer G, Vogel JU, Kornhuber B, Cinatl J, et al. Expression level of neural cell adhesion molecule (NCAM) inversely correlates with the ability of neuroblastoma cells to adhere to endothelium in vitro. Cell Commun Adhes. 2002;9(3):131–47. https://doi.org/10.1080/15419060214520.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen TM, Arthur A, Zannettino AC, Gronthos S. EphA5 and EphA7 forward signaling enhances human hematopoietic stem and progenitor cell maintenance, migration, and adhesion via Rac1 activation. Exp Hematol. 2017;48:72–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meier C, Anastasiadou S, Knöll B. Ephrin-A5 suppresses neurotrophin evoked neuronal motility, ERK activation and gene expression. PLoS ONE. 2011;6(10):e26089.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arvanitis D, Davy A. Eph/ephrin signaling: networks. Genes Dev. 2008;22(4):416–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chastney MR, Lawless C, Humphries JD, Warwood S, Jones MC, Knight D, et al. Topological features of integrin adhesion complexes revealed by multiplexed proximity biotinylation. J Cell Biol. 2020;219(8):34.

    Article 

    Google Scholar
     

  • Fang WB, Brantley-Sieders DM, Hwang Y, Ham A-JL, Chen J. Identification and functional analysis of phosphorylated tyrosine residues within EphA2 receptor tyrosine kinase. Journal of Biological Chemistry. 2008;283(23):16017–26.

  • Finney AC, Scott ML, Reeves KA, Wang D, Alfaidi M, Schwartz JC, et al. EphA2 signaling within integrin adhesions regulates fibrillar adhesion elongation and fibronectin deposition. Matrix Biol. 2021;103:1–21.

    Article 
    PubMed 

    Google Scholar
     

  • Walker-Daniels J, Coffman K, Azimi M, Rhim J, Bostwick D, Snyder P, et al. Overexpression of the EphA2 tyrosine kinase in prostate cancer. Prostate. 1999;41(4):275–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ireton RC, Chen J. EphA2 receptor tyrosine kinase as a promising target for cancer therapeutics. Curr Cancer Drug Targets. 2005;5(3):149–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang TH, Chang JL, Ho JY, Wu HC, Chen TC. EphrinA5 suppresses colon cancer development by negatively regulating epidermal growth factor receptor stability. FEBS J. 2012;279(2):251–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tandon M, Vemula SV, Mittal SK. Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin Ther Targets. 2011;15(1):31–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miao H, Wang B, editors. EphA receptor signaling—complexity and emerging themes. Seminars in cell & developmental biology; 2012: Elsevier.

  • Miao H, Li D-Q, Mukherjee A, Guo H, Petty A, Cutter J, et al. EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell. 2009;16(1):9–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang L-Y, Patel O, Janes PW, Murphy JM, Lucet IS. Eph receptor signalling: from catalytic to non-catalytic functions. Oncogene. 2019;38(39):6567–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peuckert C, Wacker E, Rapus J, Levitt P, Bolz J. Adaptive changes in gene expression patterns in the somatosensory cortex after deletion of ephrinA5. Mol Cell Neurosci. 2008;39(1):21–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iida H, Honda M, Kawai H, Yamashita T, Shirota Y, Wang B, et al. Ephrin-A1 expression contributes to the malignant characteristics of α-fetoprotein producing hepatocellular carcinoma. Gut. 2005;54(6):843–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmid RS, Maness PF. L1 and NCAM adhesion molecules as signaling coreceptors in neuronal migration and process outgrowth. Curr Opin Neurobiol. 2008;18(3):245–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maness PF, Schachner M. Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci. 2007;10(1):19–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui X-P, Wang C-X, Wang Z-Y, Li J, Tan Y-W, Gu S-T, Qin C-K. LncRNA TP73-AS1 sponges miR-141–3p to promote the migration and invasion of pancreatic cancer cells through the up-regulation of BDH2. Bioscience reports. 2019;39(3).

  • Roesler J, Srivatsan E, Moatamed F, Peters J, Livingston EH. Tumor suppressor activity of neural cell adhesion molecule in colon carcinoma. Am J Surg. 1997;174(3):251–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katoh M, Katoh M. Identification and characterization of TPARM gene in silico. Int J Oncol. 2003;23(4):1213–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Chan AO, Lam S, Wong BC, Wong W, Yuen M, Yeung Y, et al. Promoter methylation of E-cadherin gene in gastric mucosa associated with Helicobacter pylori infection and in gastric cancer. Gut. 2003;52(4):502–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen M-W, Hua K-T, Kao H-J, Chi C-C, Wei L-H, Johansson G, et al. H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM. Can Res. 2010;70(20):7830–40.

    Article 
    CAS 

    Google Scholar
     

  • Tai K, Shiah S, Shieh Y, Kao Y, Chi C, Huang E, et al. DNA methylation and histone modification regulate silencing of epithelial cell adhesion molecule for tumor invasion and progression. Oncogene. 2007;26(27):3989–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics. 2016;14(1):42–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Syed J, Sugiyama H. RNA-DNA triplex formation by long noncoding RNAs. Cell Chem Biol. 2016;23(11):1325–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blank-Giwojna A, Postepska-Igielska A, Grummt I. lncRNA KHPS1 activates a poised enhancer by triplex-dependent recruitment of epigenomic regulators. Cell Rep. 2019;26(11):2904–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miguel V, Lamas S, Espinosa-Diez C. Role of non-coding-RNAs in response to environmental stressors and consequences on human health. Redox Biol. 2020;37:101580. https://doi.org/10.1016/j.redox.2020.101580.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruffo P, De Amicis F, Giardina E, Conforti FL. Long-noncoding RNAs as epigenetic regulators in neurodegenerative diseases. Neural Regen Res. 2023;18(6):1243–8. https://doi.org/10.4103/1673-5374.358615.

    Article 
    PubMed 

    Google Scholar
     

  • Ma Y, Xue Y, Liu X, Qu C, Cai H, Wang P, et al. SNHG15 affects the growth of glioma microvascular endothelial cells by negatively regulating miR-153. Oncol Rep. 2017;38(5):3265–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin B, Jin H, Wu HB, Xu JJ, Li B. Long non-coding RNA SNHG15 promotes CDK14 expression via miR-486 to accelerate non-small cell lung cancer cells progression and metastasis. J Cell Physiol. 2018;233(9):7164–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong Q, Qiu M. Long noncoding RNA SNHG15 promotes human breast cancer proliferation, migration and invasion by sponging miR-211-3p. Biochem Biophys Res Commun. 2018;495(2):1594–600.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Svedružić ŽM. Dnmt1: Structure and function. Prog Mol Biol Transl Sci. 2011;101:221–54.

    Article 
    PubMed 

    Google Scholar
     

  • Svedruzic ZM. Mammalian cytosine DNA methyltransferase Dnmt1: enzymatic mechanism, novel mechanism-based inhibitors, and RNA-directed DNA methylation. Curr Med Chem. 2008;15(1):92–106.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000;9(16):2395–402.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohan KN, Chaillet JR. Cell and molecular biology of DNA methyltransferase 1. Int Rev Cell Mol Biol. 2013;306:1–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pensold D, Zimmer-Bensch G. DNMT1-dependent regulation of cortical interneuron function and survival. Neural Regen Res. 2021;16(12):2405.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merry CR, Forrest ME, Sabers JN, Beard L, Gao X-H, Hatzoglou M, et al. DNMT1-associated long non-coding RNAs regulate global gene expression and DNA methylation in colon cancer. Hum Mol Genet. 2015;24(21):6240–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma F, Lei Y-Y, Ding M-G, Luo L-H, Xie Y-C, Liu X-L. LncRNA NEAT1 interacted with DNMT1 to regulate malignant phenotype of cancer cell and cytotoxic T cell infiltration via epigenetic inhibition of p53, cGAS, and STING in lung cancer. Front Genet. 2020;11:250.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang W, Li H, Yu Q, Xiao W, Wang DO. LncRNA-mediated DNA methylation: an emerging mechanism in cancer and beyond. J Exp Clin Cancer Res. 2022;41(1):100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kunkler CN, Hulewicz JP, Hickman SC, Wang MC, McCown PJ, Brown JA. Stability of an RNA•DNA–DNA triple helix depends on base triplet composition and length of the RNA third strand. Nucleic Acids Res. 2019;47(14):7213–22. https://doi.org/10.1093/nar/gkz573.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antonov IV, Mazurov E, Borodovsky M, Medvedeva YA. Prediction of lncRNAs and their interactions with nucleic acids: benchmarking bioinformatics tools. Brief Bioinform. 2019;20(2):551–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74. https://doi.org/10.1038/nature11247.



  • Source link