Scientific Papers

Association between Cu/Zn/Iron/Ca/Mg levels and cerebral palsy: a pooled-analysis


  • Spittle, A. J., Morgan, C., Olsen, J. E., Novak, I. & Cheong, J. L. Y. Early diagnosis and treatment of cerebral palsy in children with a history of preterm birth. Clin. Perinatol. 45(3), 409–420 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Hollung, S. J. et al. Comorbidities in cerebral palsy: A patient registry study. Dev. Med. Child Neurol. 62(1), 97–103 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sun, L. et al. Variants of the OLIG2 Gene are associated with cerebral palsy in Chinese Han infants with hypoxic-ischemic encephalopathy. Neuromol. Med. 21(1), 75–84 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Elmadfa, I. & Meyer, A. L. The role of the status of selected micronutrients in shaping the immune function. Endocr. Metab Immune Disord. Drug Targets 19(8), 1100–1115 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chatelain, M., GasParini, J., Haussy, C. & Frantz, A. Trace metals affect early maternal transfer of immune components in the feral pigeon. Physiol. Biochem. Zool. 89(3), 206–212 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wendołowicz, A., Stefańska, E. & Ostrowska, L. Influence of selected dietary components on the functioning of the human nervous system. Rocz Panstw Zakl Hig. 69(1), 15–21 (2018).

    PubMed 

    Google Scholar
     

  • Zheng, J. et al. Multi-copper ferroxidase-deficient mice have increased brain iron concentrations and learning and memory deficits. J. Nutr. 148(4), 643–649 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Schoendorfer, N. C. et al. Micronutrient, antioxidant, and oxidative stress status in children with severe cerebral palsy. JPEN 37(1), 97–101 (2013).

    Article 

    Google Scholar
     

  • da Silva, D. C. G. et al. Malnutrition and nutritional deficiencies in children with cerebral palsy: A systematic review and meta-analysis. Public Health 205, 192–201 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ingran, L. & Nicola, J. R. Magnesium as a neuroprotective agent: A review of its use in the fetus, term infant with neonatal encephalopathy, and the adult stroke patient. Dev Neurosci. 40(1), 1–12 (2018).

    Article 

    Google Scholar
     

  • Hough, J. P., Boyd, R. N. & Keating, J. L. Systematic review of interventions for low bone mineral density in children with cerebral palsy. Pediatrics. 125(3), e670–e678 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Moher, D., Liberati, A., Tezlaff, J. & Altman, D. G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 8(5), 336–341 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Li, Z. Study on serum trace elements levels in 168 cerebral palsy cases. Chin. J. Misdiagn. 3(11), 1674–1675 (2003) ((in Chinese)).


    Google Scholar
     

  • Yuan, H., Zhang, G., Long, Y., Chen, D. & Tao, Y. Study on elements (Ca, Zn, Fe, Cu, Mg) of blood in 128 CP. GuangDong Weiliang Yuansu Kexue. 14(5), 13–15 (2007) ((in Chinese)).

    CAS 

    Google Scholar
     

  • Liang, H. et al. Study on urine zinc and copper in children with cerebral palsy. Trace Elem. Health Res. 16(3), 26–27 (1999) ((in Chinese)).


    Google Scholar
     

  • Chen, X., Gao, Z., Sun, L., Dong, X. & Zhang, T. To research the microelement and immune function in children with cerebral palsy. Int. TCM Psychol. Syst. Bioinform. 3, 379–381 (2010) ((in Chinese)).


    Google Scholar
     

  • Wang, H. et al. Study on the change of serum zinc and copper levels in children with cerebral Palsy. Jia Mushi Med. Coll. Res. 12(3), 270–271 (1989) ((in Chinese)).


    Google Scholar
     

  • Hu, Y. Study on the serum trace elements in children with cerebral Palsy. Med. J. Chin. People’s Health 20(21), 2513–2515 (2008) ((in Chinese)).


    Google Scholar
     

  • Li, Q., Du, C. & Ren, X. Analysis of serum zinc level in children with cerebral Palsy. Chin. J. Pract. Nerv. Dis. 19(12), 95–96 (2016) ((in Chinese)).


    Google Scholar
     

  • Hao, Q., Gao, Y. & Li, F. Study on the change of serum iron in children with cerebral Palsy. China Clin. Rehabil. 8(21), 4276–4276 (2004) ((in Chinese)).


    Google Scholar
     

  • Li, M. et al. Nutritional status and intervention for children with cerebral palsy. Chin. J. Rehabil. Theory Pract. 20(12), 1150–1152 (2014) ((in Chinese)).


    Google Scholar
     

  • Li, L. Association between trace elements and growth/development in children with cerebral palsy. Chin. J. Pract. Nerv. Dis. 19(11), 79–80 (2016) ((in Chinese)).

    ADS 

    Google Scholar
     

  • Peng, G. Study on the calcium and bone density in children with cerebral palsy. Stud. Trace Elem. Health 22(6), 16–17 (2005) ((in Chinese)).


    Google Scholar
     

  • Yang, H. et al. Association between zinc and children with cerebral palsy. Chin. J. Rehabil. Theory Pract. 31(2), 166–167 (2009) ((in Chinese)).


    Google Scholar
     

  • Hao, Q., Guo, X., Wu, T. & Dong, J. Association between serum trace elements and cause of Children with cerebral palsy. Chin. J. Rehabil. Theory Pract. 8(4), 109–111 (2000) ((in Chinese)).


    Google Scholar
     

  • Tang, Y. Study on the change of serum trace elements and oxidative stress in children with severe cerebral palsy. Chin. J. Pract. Nerv. Dis. 19(18), 93–94 (2016) ((in Chinese)).


    Google Scholar
     

  • Tinkov, A. A., Skalnaya, M. G. & Skalny, A. V. Serum trace element and amino acid profile in children with cerebral palsy. J. Trace Elem. Med. Biol. 64, 126685 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khalique, A. et al. Multivariate analysis of the selected metals in the hair of cerebral palsy patients versus controls. Biol. Trace Elem. Res. 111(1–3), 11–22 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carman, K. B. et al. Evaluation of micronutrient levels in children with cerebral palsy. Pediatr. Int. 64(1), e15005 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalra, S., Aggarwal, A., Chillar, N. & Faridi, M. M. A. comparison of micronutrient levels in children with cerebral palsy and neurologically normal controls. Indian J. Pediatr. 82(2), 140–144 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Polyudova, T. V., Eroshenko, D. V. & Korobov, V. P. Plasma, serum, albumin, and divalent metal ions inhibit the adhesion and the biofilm formation of Cutibacterium (propionibacterium) acnes. AIMS Microbiol. 4(1), 165–172 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lasiene, J. et al. Neuregulin 1 confers neuroprotection in SOD1-linked amyotrophic lateral sclerosis mice via restoration of C-boutons of spinal motor neurons. Acta NeuroPathol. Commun. 4, 15 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ognik, K. et al. The effect of copper nanoparticles and copper (II) salt on redox reactions and epigenetic changes in a rat model. J. Anim. Physiol. Anim. Nutr. 103(2), 675–686 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Janet, Y. et al. Influence of copper on early development: Prenatal and postnatal considerations. Biofactors 36(2), 136–52 (2010).

    Article 

    Google Scholar
     

  • Bumoko, G. M. M. et al. Lower serum levels of selenium, copper, and zinc are related to neuromotor impairments in children with konzo. J. Neurol. Sci. 349(1–2), 149–153 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klevay, L. M. Myelin and traumatic brain injury: The copper deficiency hypothesis. Med. Med. Hypotheses 81(6), 995–998 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, M. J. et al. Association of metals with the risk and clinical characteristics of Parkinson’s disease. Parkinsonism Relat. Disord. 55, 117–121 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Khan, M. F., Kundu, D., Hazra, C. & Patra, S. A strategic approach of enzyme engineering by attribute ranking and enzyme immobilization on zinc oxide nanoparticles to attain thermostability in mesophilic Bacillus subtilis lipase for detergent formulation. Int. J. Biol. Macromol. 136, 66–82 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Justice, J. A. et al. Molecular neuroprotection induced by zinc-dependent expression of hepatitis C-derived protein NS5A targeting Kv21 potassium channels. J. Pharmacol. Exp. Ther. 367(2), 348–355 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Zinc improves functional recovery by regulating the secretion of granulocyte colony stimulating factor from microglia/ macrophages after spinal cord injury. Front. Mol. Neurosci. 1(12), 18 (2019).

    Article 

    Google Scholar
     

  • Tamegart, L. et al. Crocus sativus restores dopaminergic and noradrenergic damages induced by lead in Meriones Shawi: A possible link with Parkinson’s disease. Acta Histochem. 121(2), 171–181 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stoyanovsky, D. A. et al. Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction?. Free Radic. Biol. Med. 133, 153–161 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y., Wu, Y., Li, T., Wang, X. & Zhu, C. Iron metabolism and brain development in premature infants. Front. Physiol. 10, 463 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishikawa, K. et al. Calcium-dependent titin- thin filament interactions in muscle: Observations and theory. J. Muscle Res. Cell Motil. 41(1), 125–139 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaglianone, R. B. et al. ComParative study of calcium and calcium-related enzymes with differentiation markers in different ages and muscle types in mdx mice. Histol. Histopathol. 35(2), 203–216 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Pingel, J., Vandenrijt, J., KamPmann, M. L. & Andersen, J. D. Altered gene expression levels of genes related to muscle function in adults with cerebral palsy. Tissue Cell 76, 101744 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wahid, M. et al. Mechanistic insights of Cucumis melo L. seeds for gastrointestinal muscle spasms through calcium signaling pathway-related gene regulation networks in WGCNA and in vitro, in vivo studies. Comput. Biol. Med. 155, 106596 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marks, A. R. Targeting ryanodine receptors to treat human diseases. J Clin Invest. 133(2), e162891 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rayannavar, A. & Calabria, A. C. Screening for metabolic bone disease of prematurity. Semin. Fetal Neonatal Med. 25(1), 101086 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Brookfield, K. F. & Mbata, O. Magnesium sulfate use in pregnancy for preeclampsia prophylaxis and fetal neuroprotection: Regimens in high-income and low/middle-income countries. Obstet. Gynecol. Clin. North. Am. 50(1), 89–99 (2023).

    Article 
    PubMed 

    Google Scholar
     



  • Source link