Scientific Papers

Exploration of phyllosphere microbiomes in wheat varieties with differing aphid resistance | Environmental Microbiome


  • Maron JL, Crone E. Herbivory: effects on plant abundance, distribution and population growth. Proc R Soc B. 2006;273:2575–84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bressan M, Roncato MA, Bellvert F, Comte G, Haichar FZ, Achouak W, et al. Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J. 2009;3:1243–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thaler JS, Humphrey PT, Whiteman NK. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 2012;17:260–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wagner MR, Lundberg DS, Coleman-Derr D, Tringe SG, Dangl JL, Mitchell-Olds T. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol Lett. 2014;17:717–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Humphrey PT, Whiteman NK. Insect herbivory reshapes a native leaf microbiome. Nat Ecol Evol. 2020;4:221–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koskella B. The phyllosphere. Curr Biol. 2020;30:1143–6.

    Article 

    Google Scholar
     

  • Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol. 2012;10:828–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lemanceau P, Barret M, Mazurier S, Mondy S, Pivato B, Fort T et al. Plant communication with asociated microbiota in the spermosphere, rhizosphere and phyllosphere. Adv Bot Res. 2017;10.1016/bs.abr.2016.10.007101-133.

  • Xu P, Stirling E, Xie H, Li W, Lv X, Matsumoto H, et al. Continental scale deciphering of microbiome networks untangles the phyllosphere homeostasis in tea plant. J Adv Res. 2023;44:13–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong T, Xin XF. Phyllosphere microbiota: community dynamics and its interaction with plant hosts. J Integr Plant Biol. 2020;63:297–304.

    Article 

    Google Scholar
     

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012;488:86–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, Brettell LE, Singh B. Linking the phyllosphere mcrobiome to plant health. Trends Plant Sci. 2020;25:841–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berg G, Cernava T. The plant microbiota signature of the Anthropocene as a challenge for microbiome research. Microbiome. 2022;10:54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant-microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh M, Kumar A, Singh R, Pandey KD. Endophytic bacteria: a new source of bioactive compounds. 3 Biotech. 2017;7:315.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Cao B, Pan Y, Tao S, Zhang N. Metabolite-mediated responses of Phyllosphere Microbiota to rust Infection in two Malus Species. Microbiol Spectr. 2023;11:e0383122.

    Article 
    PubMed 

    Google Scholar
     

  • Berg G. Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol. 2009;84:11–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Tseng HT, Hemmings G, Omolehin O, Taylor C, Taylor A, et al. Characterization of Boxwood shoot bacterial communities and potential impact from Fungicide treatments. Microbiol Spectr. 2023;11:e0416322.

    Article 
    PubMed 

    Google Scholar
     

  • Sandhu A, Halverson LJ, Beattie GA. Bacterial degradation of airborne phenol in the phyllosphere. Environ Microbiol. 2007;9:383–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scheublin TR, Deusch S, Moreno-Forero SK, Muller JA, van der Meer JR, Leveau JH. Transcriptional profiling of Gram-positive Arthrobacter in the phyllosphere: induction of pollutant degradation genes by natural plant phenolic compounds. Environ Microbiol. 2014;16:2212–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yutthammo C, Thongthammachat N, Pinphanichakarn P, Luepromchai E. Diversity and activity of PAH-degrading bacteria in the phyllosphere of ornamental plants. Microb Ecol. 2010;59:357–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res. 2014;169:30–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Fan J, Fu Y, Francis F, Chen J. Plant-mediated interactions between two cereal aphid species: promotion of aphid performance and attraction of more parasitoids by infestation of wheat with phytotoxic aphid Schizaphis Graminum. J Agric Food Chem. 2019;67:2763–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu XS, Liu YJ, Wang YH, Wang Z, Yu XL, Wang B, et al. Resistance of wheat accessions to the English grain aphid Sitobion avenae. PLoS ONE. 2016;11:e0156158.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batool F, Rehman Y, Hasnain S. Phylloplane associated plant bacteria of commercially superior wheat varieties exhibit superior plant growth promoting abilities. Front Life Sci. 2016;9:313–22.

    Article 
    CAS 

    Google Scholar
     

  • Müller T, Behrendt U, Ruppel S, von der Waydbrink G, Muller ME. Fluorescent pseudomonads in the phyllosphere of wheat: potential antagonists against fungal phytopathogens. Curr Microbiol. 2016;72:383–9.

    Article 
    PubMed 

    Google Scholar
     

  • Wang P, Kong X, Chen H, Xiao Y, Liu H, Li X, et al. Exploration of intrinsic microbial community modulators in the rice endosphere indicates a key role of distinct bacterial taxa across different cultivars. Front Microbiol. 2021;12:629852.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong X, Jin D, Jin S, Wang Z, Yin H, Xu M, et al. Responses of bacterial community to dibutyl phthalate pollution in a soil-vegetable ecosystem. J Hazard Mater. 2018;353:142–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng K, Zhang Z, Cai W, Liu W, Xu M, Yin H, et al. Biodiversity and species competition regulate the resilience of microbial biofilm community. Mol Ecol. 2017;26:6170–82.

    Article 
    PubMed 

    Google Scholar
     

  • Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgar RC. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. 2016.

  • Rognes T, Flouri T, Nichols B, Quince C, Mahe F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aßhauer KP, Wemheuer B, Daniel R, Meinicke P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics. 2015;31:2882–4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng Y, Jiang Y-H, Yang Y, He Z, Luo F, Zhou J. Molecular ecological network analyses. BMC Bioinformatics. 2012;13:113.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian B, Zhu M, Pei Y, Ran G, Shi Y, Ding J. Climate warming alters the soil microbial association network and role of keystone taxa in determining wheat quality in the field. Agric, Ecosyst Environ. 2022;326.

  • Wang C, Li X, Jin D, Gong P, Li Q, Zhang Y, et al. Implications of environmentally shaped microbial communities for insecticide resistance in Sitobion miscanthi. Environ Res. 2022;215:114409.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guimerà R, Amaral LAN. Functional cartography of complex metabolic networks. Nature. 2005;433:895–900.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olesen JM, Bascompte J, Dupont YL, Jordano P. The modularity of pollination networks. PNAS. 2007;104:19891–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye Z, Li J, Wang J, Zhang C, Liu G, Dong Q. Diversity and co-occurrence network modularization of bacterial communities determine soil fertility and crop yields in arid fertigation agroecosystems. Biol Fertility Soils. 2021;57:809–24.

    Article 
    CAS 

    Google Scholar
     

  • Andreote FD, Pereira ESMC. Microbial communities associated with plants: learning from nature to apply it in agriculture. Curr Opin Microbiol. 2017;37:29–34.

    Article 
    PubMed 

    Google Scholar
     

  • Matsumoto H, Fan X, Wang Y, Kusstatscher P, Duan J, Wu S, et al. Bacterial seed endophyte shapes Disease resistance in rice. Nat Plants. 2021;7:60–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong C, Singh BK, He JZ, Han YL, Li PP, Wan LH, et al. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome. 2021;9:171.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong C, Wang L, Li Q, Shang Q. Epiphytic and endophytic fungal communities of tomato plants. Hortic Plant J. 2021;7:38–48.

    Article 
    CAS 

    Google Scholar
     

  • Michl K, Berg G, Cernava T. The microbiome of cereal plants: the current state of knowledge and the potential for future applications. Environ Microbiome. 2023;18:28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunter PJ, Pink DAC, Bending GD. Cultivar-level genotype differences influence diversity and composition of lettuce (Lactuca sp.) phyllosphere fungal communities. Fungal Ecol. 2015;17:183–6.

    Article 

    Google Scholar
     

  • Remus-Emsermann MNP, Schlechter RO. Phyllosphere microbiology: at the interface between microbial individuals and the plant host. New Phytol. 2018;218:1327–33.

    Article 
    PubMed 

    Google Scholar
     

  • Kong X, Han Z, Tai X, Jin D, Ai S, Zheng X et al. Maize (Zea mays L. Sp.) varieties significantly influence bacterial and fungal community in bulk soil, rhizosphere soil and phyllosphere. FEMS Microbiol Ecol. 2020;96.

  • Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JH. Leaf Microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J. 2012;6:1812–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamonts K, Trivedi P, Garg A, Janitz C, Grinyer J, Holford P, et al. Field study reveals core plant microbiota and relative importance of their drivers. Environ Microbiol. 2018;20:124–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou JZ, Deng Y, Luo F, He ZL, Yang YF. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. MBio. 2011;2:e0012211.

    Article 

    Google Scholar
     

  • Barberan A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012;6:343–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lovell D, Pawlowsky-Glahn V, Egozcue JJ, Marguerat S. J B. Proportionality: a valid alternative to correlation for relative data. PLoS Comp Biol. 2015;11.

  • Peschel S, Müller CL, von Mutius E, Boulesteix A-L, Depner M. NetCoMi: network construction and comparison for microbiome data in R. Brief Bioinform. 2021;22:1–18.

    Article 

    Google Scholar
     

  • Mougi A, Kondoh M. Diversity of interaction types and ecological community stability. Science. 2012;337:349–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 2016;14:e1002352.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enya J, Koitabashi M, Shinohara H, Yoshida S, Tsukiboshi T, Negishi H, et al. Phylogenetic diversities of dominant culturable bacillus, Pseudomonas and Pantoea species on tomato leaves and their possibility as biological control agents. J Phytopathol. 2007;155:446–53.

    Article 
    CAS 

    Google Scholar
     

  • Lopez-Velasco G, Welbaum GE, Boyer RR, Mane SP, Ponder MA. Changes in spinach phylloepiphytic bacteria communities following minimal processing and refrigerated storage described using pyrosequencing of 16S rRNA amplicons. J Appl Microbiol. 2011;110:1203–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ravva SV, Sarreal CZ, Mandrell RE. Bacterial communities in aerosols and manure samples from two different dairies in central and Sonoma valleys of California. PLoS ONE. 2011;6:e17281.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michavila G, Adler C, De Gregorio PR, Lami MJ, Di Caram MC, Zenoff AM, et al. Pseudomonas protegens CS1 from the lemon phyllosphere as a candidate for citrus canker biocontrol agent. Plant Biol. 2017;19:608–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue R, Liu S, Stirling E, Wang Y, Zhao K, Matsumoto H et al. Core community drives phyllosphere bacterial diversity and function in multiple ecosystems. Sci Total Environ. 2023;896.

  • Stone BWG, Weingarten EA, Jackson CR. The role of the phyllosphere microbiome in plant health and function. Annual Plant Reviews. 2018;1:1–24.


    Google Scholar
     

  • Kasana RC, Pandey CB. Exiguobacterium: an overview of a versatile genus with potential in industry and agriculture. Crit Rev Biotechnol. 2018;38:141–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Gupta HS. Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold tolerant bacterial strain from the Uttarakhand Himalayas. Indian J Microbiol. 2010;50:50–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venkadesaperumal G, Amaresan N, Kumar K. Plant growth promoting capability and genetic diversity of bacteria isolated from mud volcano and lime cave of Andaman and Nicobar Islands. Braz J Microbiol. 2014;45:1271–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link