Scientific Papers

Regulatory T cells contribute to the immunosuppressive phenotype of neutrophils in a mouse model of chronic lymphocytic leukemia | Experimental Hematology & Oncology


  • Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R, Mantovani A. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer. 2020;20(9):485–503.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tie Y, Tang F, Wei YQ, Wei XW. Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J Hematol Oncol. 2022;15(1):61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mocsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J Exp Med. 2013;210(7):1283–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giese MA, Hind LE, Huttenlocher A. Neutrophil plasticity in the tumor microenvironment. Blood. 2019;133(20):2159–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Johnson KCC, Gatti-Mays ME, Li Z. Emerging strategies in targeting tumor-resident myeloid cells for cancer immunotherapy. J Hematol Oncol. 2022;15(1):118.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wachowska M, Wojciechowska A, Muchowicz A. The role of neutrophils in the pathogenesis of chronic lymphocytic leukemia. Int J Mol Sci. 2021;23(1):365.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dubois N, Crompot E, Meuleman N, Bron D, Lagneaux L, Stamatopoulos B. Importance of Crosstalk between Chronic lymphocytic leukemia cells and the Stromal Microenvironment: direct contact, soluble factors, and Extracellular vesicles. Front Oncol. 2020;10:1422.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arruga F, Gyau BB, Iannello A, Vitale N, Vaisitti T, Deaglio S. Immune Response Dysfunction in Chronic lymphocytic leukemia: dissecting Molecular Mechanisms and Microenvironmental Conditions. Int J Mol Sci. 2020;21(5):1825.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roessner PM, Seiffert M. T-cells in chronic lymphocytic leukemia: Guardians or drivers of disease? Leukemia. 2020;34(8):2012–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo S, Wang M, Wang H, Hu D, Zipfel PF, Hu Y. How does complement affect hematological malignancies: from Basic Mechanisms to clinical application. Front Immunol. 2020;11:593610.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parikh SA, Leis JF, Chaffee KG, Call TG, Hanson CA, Ding W, et al. Hypogammaglobulinemia in newly diagnosed chronic lymphocytic leukemia: natural history, clinical correlates, and outcomes. Cancer. 2015;121(17):2883–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subramaniam N, Bottek J, Thiebes S, Zec K, Kudla M, Soun C, et al. Proteomic and bioinformatic profiling of neutrophils in CLL reveals functional defects that predispose to bacterial infections. Blood Adv. 2021;5(5):1259–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manukyan G, Papajik T, Gajdos P, Mikulkova Z, Urbanova R, Gabcova G, et al. Neutrophils in chronic lymphocytic leukemia are permanently activated and have functional defects. Oncotarget. 2017;8(49):84889–901.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gatjen M, Brand F, Grau M, Gerlach K, Kettritz R, Westermann J, et al. Splenic marginal zone Granulocytes acquire an accentuated neutrophil B-Cell helper phenotype in chronic lymphocytic leukemia. Cancer Res. 2016;76(18):5253–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Podaza E, Risnik D, Colado A, Elias E, Almejun MB, Fernandez Grecco H, et al. Chronic lymphocytic leukemia cells increase neutrophils survival and promote their differentiation into CD16(high) CD62L(dim) immunosuppressive subset. Int J Cancer. 2019;144(5):1128–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monteith AJ, Miller JM, Maxwell CN, Chazin WJ, Skaar EP. Neutrophil extracellular traps enhance macrophage killing of bacterial pathogens. Sci Adv. 2021;7(37):eabj2101.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouchery T, Harris N. Neutrophil-macrophage cooperation and its impact on tissue repair. Immunol Cell Biol. 2019;97(3):289–98.

    Article 
    PubMed 

    Google Scholar
     

  • Okeke EB, Uzonna JE. The Pivotal Role of Regulatory T cells in the regulation of Innate Immune cells. Front Immunol. 2019;10:680.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R, et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci U S A. 2002;99(10):6955–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson AJ, Lucas DM, Muthusamy N, Smith LL, Edwards RB, De Lay MD, et al. Characterization of the TCL-1 transgenic mouse as a preclinical drug development tool for human chronic lymphocytic leukemia. Blood. 2006;108(4):1334–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bresin A, D’Abundo L, Narducci MG, Fiorenza MT, Croce CM, Negrini M, Russo G. TCL1 transgenic mouse model as a tool for the study of therapeutic targets and microenvironment in human B-cell chronic lymphocytic leukemia. Cell Death Dis. 2016;7:e2071.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goral A, Firczuk M, Fidyt K, Sledz M, Simoncello F, Siudakowska K, et al. A specific CD44lo CD25lo subpopulation of Regulatory T cells inhibits anti-leukemic Immune response and promotes the progression in a mouse model of chronic lymphocytic leukemia. Front Immunol. 2022;13:781364.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bazzoni F, Tamassia N, Rossato M, Cassatella MA. Understanding the molecular mechanisms of the multifaceted IL-10-mediated anti-inflammatory response: lessons from neutrophils. Eur J Immunol. 2010;40(9):2360–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Impellizzieri D, Ridder F, Raeber ME, Egholm C, Woytschak J, Kolios AGA, et al. IL-4 receptor engagement in human neutrophils impairs their migration and extracellular trap formation. J Allergy Clin Immunol. 2019;144(1):267–79. e4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woytschak J, Keller N, Krieg C, Impellizzieri D, Thompson RW, Wynn TA, et al. Type 2 Interleukin-4 receptor signaling in Neutrophils antagonizes their expansion and Migration during infection and inflammation. Immunity. 2016;45(1):172–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RCore Team. R: A Language and Environment for Statistical Computing: R Foundation for Statistical Computing; 2021 [updated 2021]. Available from: https://www.R-project.org/.

  • RStudio Team. RStudio: Integrated Development Environment for R: RStudio, PBC; 2022 [updated 2022]. Available from: http://www.rstudio.com/.

  • Dowle M, Srinivasan A. data.table: Extension of `data.frame` 2021 [updated 2021]. Available from: https://CRAN.R-project.org/package=data.table.

  • Wickham H, François R, Henry L, Müller K. dplyr: A Grammar of Data Manipulation 2022 [updated 2022]. Available from: https://CRAN.R-project.org/package=dplyr.

  • Gu Z, ComplexHeatmap. Make Complex Heatmaps. iMeta Wiley. 2021;1(3):e43.

    Article 

    Google Scholar
     

  • Sakai R, Biederstedt E, dendsort. Modular Leaf Ordering Methods for Dendrogram Nodes 2021 [updated 2021]. Available from: https://github.com/evanbiederstedt/dendsort.

  • Gohel D. flextable: Functions for Tabular Reporting 2022 [updated 2022]. Available from: https://CRAN.R-project.org/package=flextable.

  • Galletti G, Scielzo C, Barbaglio F, Rodriguez TV, Riba M, Lazarevic D, et al. Targeting Macrophages sensitizes chronic lymphocytic leukemia to apoptosis and inhibits Disease Progression. Cell Rep. 2016;14(7):1748–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boivin G, Faget J, Ancey PB, Gkasti A, Mussard J, Engblom C, et al. Durable and controlled depletion of neutrophils in mice. Nat Commun. 2020;11(1):2762.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borella R, De Biasi S, Paolini A, Boraldi F, Lo Tartaro D, Mattioli M, et al. Metabolic reprograming shapes neutrophil functions in severe COVID-19. Eur J Immunol. 2022;52(3):484–502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krysa SJ, Allen LH. Metabolic reprogramming mediates delayed apoptosis of human Neutrophils infected with Francisella tularensis. Front Immunol. 2022;13:836754.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gummlich L. Obesity-induced neutrophil reprogramming. Nat Rev Cancer. 2021;21(7):412.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sinha S, Rosin NL, Arora R, Labit E, Jaffer A, Cao L, et al. Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19. Nat Med. 2022;28(1):201–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo N, Ni K, Luo T, Lan G, Arina A, Xu Z, et al. Reprogramming of neutrophils as non-canonical Antigen presenting cells by Radiotherapy-Radiodynamic Therapy to Facilitate Immune-Mediated Tumor Regression. ACS Nano. 2021;15(11):17515–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, Wei C, Xiong S, Dong L, Chen Z, Chen SJ, Cheng L. Trajectory of chemical cocktail-induced neutrophil reprogramming. J Hematol Oncol. 2020;13(1):171.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blanter M, Gouwy M, Struyf S. Studying neutrophil function in vitro: cell models and environmental factors. J Inflamm Res. 2021;14:141–62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takashima A, Yao Y. Neutrophil plasticity: acquisition of phenotype and functionality of antigen-presenting cell. J Leukoc Biol. 2015;98(4):489–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park HY, Jin JO, Song MG, Park JI, Kwak JY. Expression of dendritic cell markers on cultured neutrophils and its modulation by anti-apoptotic and pro-apoptotic compounds. Exp Mol Med. 2007;39(4):439–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tak T, Wijten P, Heeres M, Pickkers P, Scholten A, Heck AJR, et al. Human CD62L(dim) neutrophils identified as a separate subset by proteome profiling and in vivo pulse-chase labeling. Blood. 2017;129(26):3476–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uhl B, Vadlau Y, Zuchtriegel G, Nekolla K, Sharaf K, Gaertner F, et al. Aged neutrophils contribute to the first line of defense in the acute inflammatory response. Blood. 2016;128(19):2327–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richards H, Williams A, Jones E, Hindley J, Godkin A, Simon AK, Gallimore A. Novel role of regulatory T cells in limiting early neutrophil responses in skin. Immunology. 2010;131(4):583–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okeke EB, Mou Z, Onyilagha N, Jia P, Gounni AS, Uzonna JE. Deficiency of Phosphatidylinositol 3-Kinase delta signaling leads to diminished numbers of Regulatory T cells and increased neutrophil activity resulting in Mortality due to endotoxic shock. J Immunol. 2017;199(3):1086–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Itala M, Vainio O, Remes K. Functional abnormalities in granulocytes predict susceptibility to bacterial infections in chronic lymphocytic leukaemia. Eur J Haematol. 1996;57(1):46–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rawat K, Syeda S, Shrivastava A. Neutrophil-derived granule cargoes: paving the way for tumor growth and progression. Cancer Metastasis Rev. 2021;40(1):221–44.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Romano A, Parrinello NL, Vetro C, Tibullo D, Giallongo C, La Cava P, et al. The prognostic value of the myeloid-mediated immunosuppression marker Arginase-1 in classic Hodgkin lymphoma. Oncotarget. 2016;7(41):67333–46.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He G, Zhang H, Zhou J, Wang B, Chen Y, Kong Y, et al. Peritumoural neutrophils negatively regulate adaptive immunity via the PD-L1/PD-1 signalling pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 2015;34:141.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang TT, Zhao YL, Peng LS, Chen N, Chen W, Lv YP, et al. Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway. Gut. 2017;66(11):1900–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rivas JR, Liu Y, Alhakeem SS, Eckenrode JM, Marti F, Collard JP, et al. Interleukin-10 suppression enhances T-cell antitumor immunity and responses to checkpoint blockade in chronic lymphocytic leukemia. Leukemia. 2021;35(11):3188–200.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ozturk S, Kalter V, Roessner PM, Sunbul M, Seiffert M. IDO1-Targeted therapy does not control Disease Development in the Emicro-TCL1 mouse model of chronic lymphocytic leukemia. Cancers (Basel). 2021;13(8).

  • Seki T, Kumagai T, Kwansa-Bentum B, Furushima-Shimogawara R, Anyan WK, Miyazawa Y, et al. Interleukin-4 (IL-4) and IL-13 suppress excessive neutrophil infiltration and hepatocyte damage during acute murine schistosomiasis japonica. Infect Immun. 2012;80(1):159–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ratthe C, Pelletier M, Chiasson S, Girard D. Molecular mechanisms involved in interleukin-4-induced human neutrophils: expression and regulation of suppressor of cytokine signaling. J Leukoc Biol. 2007;81(5):1287–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Himmel ME, Crome SQ, Ivison S, Piccirillo C, Steiner TS, Levings MK. Human CD4 + FOXP3 + regulatory T cells produce CXCL8 and recruit neutrophils. Eur J Immunol. 2011;41(2):306–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewkowicz N, Klink M, Mycko MP, Lewkowicz P. Neutrophil–CD4 + CD25 + T regulatory cell interactions: a possible new mechanism of infectious tolerance. Immunobiology. 2013;218(4):455–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link