Scientific Papers

CRISPR screening in hematology research: from bulk to single-cell level | Journal of Hematology & Oncology


  • Mohr S, Bakal C, Perrimon N. Genomic screening with RNAi: results and challenges. Annu Rev Biochem. 2010;79:37. https://doi.org/10.1146/ANNUREV-BIOCHEM-060408-092949.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 1979;2012(337):816–21. https://doi.org/10.1126/science.1225829.

    Article 
    CAS 

    Google Scholar
     

  • Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18:67. https://doi.org/10.1038/S41579-019-0299-X.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, et al. RNA editing with CRISPR-Cas13. Science. 2017;358:1019–27. https://doi.org/10.1126/SCIENCE.AAQ0180.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013. https://doi.org/10.1016/J.CELL.2013.08.021.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kleinstiver BP, Sousa AA, Walton RT, Tak YE, Hsu JY, Clement K, et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat Biotechnol. 2019;37:276–82. https://doi.org/10.1038/S41587-018-0011-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163:759–71. https://doi.org/10.1016/J.CELL.2015.09.038.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim HK, Lee S, Kim Y, Park J, Min S, Choi JW, et al. High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells. Nat Biomed Eng. 2020. https://doi.org/10.1038/s41551-019-0505-1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell. 2015;60:385–97. https://doi.org/10.1016/J.MOLCEL.2015.10.008.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–57. https://doi.org/10.1038/s41586-019-1711-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4. https://doi.org/10.1038/nature17946.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bock C, Datlinger P, Chardon F, Coelho MA, Dong MB, Lawson KA, et al. High-content CRISPR screening. Nature Reviews Methods Primers. 2022;2:1–23. https://doi.org/10.1038/s43586-021-00093-4.

    Article 
    CAS 

    Google Scholar
     

  • Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020;38:824–44. https://doi.org/10.1038/s41587-020-0561-9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pickar-Oliver A, Gersbach CA. The next generation of CRISPR–Cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20:490–507. https://doi.org/10.1038/s41580-019-0131-5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doench JG. Am I ready for CRISPR? A user’s guide to genetic screens. Nat Rev Genet. 2018;19:67–80. https://doi.org/10.1038/nrg.2017.97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ, Brigham MD, et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc. 2017;12:828–63. https://doi.org/10.1038/nprot.2017.016.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hart T, Tong AHY, Chan K, van Leeuwen J, Seetharaman A, Aregger M, et al. Evaluation and design of genome-wide CRISPR/SpCas9 knockout screens. G3 Genes Genomes Genet. 2017;7:2719–27. https://doi.org/10.1534/G3.117.041277/-/DC1.

    Article 
    CAS 

    Google Scholar
     

  • Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science. 1979;2014(343):80–4. https://doi.org/10.1126/science.1246981.

    Article 
    CAS 

    Google Scholar
     

  • Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–7. https://doi.org/10.1126/science.1247005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soares F, Chen B, Lee JB, Ahmed M, Ly D, Tin E, et al. CRISPR screen identifies genes that sensitize AML cells to double-negative T-cell therapy. Blood. 2021;137:2171–81. https://doi.org/10.1182/blood.2019004108.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou X, Koh GCC, Nanda AS, Degasperi A, Urgo K, Roumeliotis TI, et al. A systematic CRISPR screen defines mutational mechanisms underpinning signatures caused by replication errors and endogenous DNA damage. Nat Cancer. 2021;2:643–57. https://doi.org/10.1038/s43018-021-00200-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei L, Lee D, Law C-T, Zhang MS, Shen J, Chin DW-C, et al. Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for Sorafenib resistance in HCC. Nat Commun. 2019;10:4681. https://doi.org/10.1038/s41467-019-12606-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bajaj J, Hamilton M, Shima Y, Chambers K, Spinler K, Van Nostrand EL, et al. An in vivo genome-wide CRISPR screen identifies the RNA-binding protein Staufen2 as a key regulator of myeloid leukemia. Nat Cancer. 2020;1:410–22. https://doi.org/10.1038/s43018-020-0054-2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai M, Yan G, Wang N, Daliah G, Edick AM, Poulet S, et al. In vivo genome-wide CRISPR screen reveals breast cancer vulnerabilities and synergistic mTOR/Hippo targeted combination therapy. Nat Commun. 2021;12:3055. https://doi.org/10.1038/s41467-021-23316-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu G, Guy CS, Chapman NM, Palacios G, Wei J, Zhou P, et al. Metabolic control of TFH cells and humoral immunity by phosphatidylethanolamine. Nature. 2021;595:724–9. https://doi.org/10.1038/s41586-021-03692-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan F, Li J, Milosevic J, Petroni R, Liu S, Shi Z, et al. KAT6A and ENL form an epigenetic transcriptional control module to drive critical leukemogenic gene-expression programs. Cancer Discov. 2022;12:792–811. https://doi.org/10.1158/2159-8290.CD-20-1459.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan DH, Mullokandov M, Wu Y, Voisin V, Gronda M, Hurren R, et al. Mitochondrial carrier homolog 2 is necessary for AML survival. Blood. 2020;136:81–92. https://doi.org/10.1182/BLOOD.2019000106/454408/MITOCHONDRIAL-CARRIER-HOMOLOG-2-MTCH2-IS-NECESSARY.

    Article 
    PubMed 

    Google Scholar
     

  • Lee D, Kang S-H, Choi D, Ko M, Choi E, Ahn H, et al. Genome wide CRISPR screening reveals a role for sialylation in the tumorigenesis and chemoresistance of acute myeloid leukemia cells. Cancer Lett. 2021;510:37–47. https://doi.org/10.1016/j.canlet.2021.04.006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oshima K, Zhao J, Pérez-Durán P, Brown JA, Patiño-Galindo JA, Chu T, et al. Mutational and functional genetics mapping of chemotherapy resistance mechanisms in relapsed acute lymphoblastic leukemia. Nat Cancer. 2020;1:1113–27. https://doi.org/10.1038/s43018-020-00124-1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Autry RJ, Paugh SW, Carter R, Shi L, Liu J, Ferguson DC, et al. Integrative genomic analyses reveal mechanisms of glucocorticoid resistance in acute lymphoblastic leukemia. Nat Cancer. 2020;1:329. https://doi.org/10.1038/S43018-020-0037-3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang P, Brinton LT, Gharghabi M, Sher S, Williams K, Cannon M, et al. Targeting OXPHOS de novo purine synthesis as the nexus of FLT3 inhibitor–mediated synergistic antileukemic actions. Sci Adv. 2022;8:9005. https://doi.org/10.1126/SCIADV.ABP9005/SUPPL_FILE/SCIADV.ABP9005_DATA_FILES_S1_TO_S6.ZIP.

    Article 

    Google Scholar
     

  • Damnernsawad A, Bottomly D, Kurtz SE, Eide CA, McWeeney SK, Tyner JW, et al. A genome-wide CRISPR screen identifies regulators of MAPK and MTOR pathways that mediate resistance to sorafenib in acute myeloid leukemia. Haematologica. 2022;107:77–85. https://doi.org/10.3324/HAEMATOL.2020.257964.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou P, Wu C, Wang Y, Qi R, Bhavanasi D, Zuo Z, et al. A genome-wide CRISPR screen identifies genes critical for resistance to FLT3 inhibitor AC220. Cancer Res. 2017;77:4402–13. https://doi.org/10.1158/0008-5472.CAN-16-1627.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beeharry N, Landrette S, Gayle S, Hernandez M, Grotzke JE, Young PR, et al. LAM-003, a new drug for treatment of tyrosine kinase inhibitor–resistant FLT3-ITD–positive AML. Blood Adv. 2019;3:3661–73. https://doi.org/10.1182/BLOODADVANCES.2019001068.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brinton LT, Zhang P, Williams K, Canfield D, Orwick S, Sher S, et al. Synergistic effect of BCL2 and FLT3 co-inhibition in acute myeloid leukemia. J Hematol Oncol. 2020;13:1–10. https://doi.org/10.1186/S13045-020-00973-4/FIGURES/4.

    Article 

    Google Scholar
     

  • Butler M, van Ingen Schenau DS, Yu J, Jenni S, Dobay MP, Hagelaar R, et al. BTK inhibition sensitizes acute lymphoblastic leukemia to asparaginase by suppressing the amino acid response pathway. Blood. 2021;138:2383–95. https://doi.org/10.1182/BLOOD.2021011787.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishio T, Kumar S, Shimono J, Daenthanasanmak A, Dubois S, Lin Y, et al. Genome-wide CRISPR screen identifies CDK6 as a therapeutic target in adult T-cell leukemia/lymphoma. Blood. 2022;139:1541–56. https://doi.org/10.1182/BLOOD.2021012734.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, He X, Zhang L, Dong H, Huang F, Xian J, et al. Disruption of dNTP homeostasis by ribonucleotide reductase hyperactivation overcomes AML differentiation blockade. Blood. 2022;139:3752–70. https://doi.org/10.1182/BLOOD.2021015108.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guièze R, Liu VM, Rosebrock D, Jourdain AA, Hernández-Sánchez M, Martinez Zurita A, et al. Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid Malignancies. Cancer Cell. 2019;36:369. https://doi.org/10.1016/J.CCELL.2019.08.005.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang X, Veltri DP, Long EO. Genome-wide CRISPR screen reveals cancer cell resistance to NK cells induced by NK-derived IFN-γ. Front Immunol. 2019;10:2879. https://doi.org/10.3389/FIMMU.2019.02879/BIBTEX.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan X, Chen D, Wang Y, Guo Y, Tong C, Wei J, et al. Identification of NOXA as a pivotal regulator of resistance to CAR T-cell therapy in B-cell malignancies. Signal Transduct Target Ther. 2022;7:98. https://doi.org/10.1038/s41392-022-00915-1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dufva O, Koski J, Maliniemi P, Ianevski A, Klievink J, Leitner J, et al. Integrated drug profiling and CRISPR screening identify essential pathways for CAR T-cell cytotoxicity. Blood. 2020;135:597–609. https://doi.org/10.1182/BLOOD.2019002121.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adamson B, Norman TM, Jost M, Cho MY, Nuñez JK, Chen Y, et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell. 2016;167:1867-1882.e21. https://doi.org/10.1016/j.cell.2016.11.048.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixit A, Parnas O, Li B, Chen J, Fulco CP, Jerby-Arnon L, et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell. 2016;167:1853-1866.e17. https://doi.org/10.1016/j.cell.2016.11.038.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H, David E, et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-Seq. Cell. 2016;167:1883-1896.e15. https://doi.org/10.1016/j.cell.2016.11.039.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Datlinger P, Rendeiro AF, Schmidl C, Krausgruber T, Traxler P, Klughammer J, et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat Methods. 2017;14:297–301. https://doi.org/10.1038/nmeth.4177.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie S, Duan J, Li B, Zhou P, Hon GC. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol Cell. 2017;66:285–99. https://doi.org/10.1016/j.molcel.2017.03.007.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Genga RMJ, Kernfeld EM, Parsi KM, Parsons TJ, Ziller MJ, Maehr R. Single-cell RNA-sequencing-based CRISPRi screening resolves molecular drivers of early human endoderm development. Cell Rep. 2019;27:708-718.e10. https://doi.org/10.1016/j.celrep.2019.03.076.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Norman TM, Horlbeck MA, Replogle JM, Ge AY, Xu A, Jost M, et al. Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science. 1979;2019(365):786–93. https://doi.org/10.1126/science.aax4438.

    Article 
    CAS 

    Google Scholar
     

  • Tian R, Abarientos A, Hong J, Hashemi SH, Yan R, Dräger N, et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat Neurosci. 2021;24:1020–34. https://doi.org/10.1038/s41593-021-00862-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alda-Catalinas C, Bredikhin D, Hernando-Herraez I, Santos F, Kubinyecz O, Eckersley-Maslin MA, et al. A single-cell transcriptomics CRISPR-activation screen identifies epigenetic regulators of the zygotic genome activation program. Cell Syst. 2020;11:25. https://doi.org/10.1016/J.CELS.2020.06.004.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belk JA, Yao W, Ly N, Freitas KA, Chen Y-T, Shi Q, et al. Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence. Cancer Cell. 2022;40:768-786.e7. https://doi.org/10.1016/j.ccell.2022.06.001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giladi A, Paul F, Herzog Y, Lubling Y, Weiner A, Yofe I, et al. Single-cell characterization of haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis. Nat Cell Biol. 2018;20:836–46. https://doi.org/10.1038/s41556-018-0121-4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang Y, Liao S, Liu G, Xiong X, Liu H, Li F, et al. Advanced single-cell pooled CRISPR screening identifies C19orf53 required for cell proliferation based on mTORC1 regulators. Cell Biol Toxicol. 2022;38:43–68. https://doi.org/10.1007/s10565-021-09586-0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Islam S, Kjällquist U, Moliner A, Zajac P, Fan JB, Lönnerberg P, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011;21:1160–7. https://doi.org/10.1101/GR.110882.110.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramsköld D, Luo S, Wang Y-C, Li R, Deng Q, Faridani OR, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 2012;30:777–82. https://doi.org/10.1038/nbt.2282.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH, et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol. 2014;32:1053–8. https://doi.org/10.1038/nbt.2967.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202–14. https://doi.org/10.1016/j.cell.2015.05.002.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single cell transcriptomics applied to embryonic stem cells. Cell. 2015;161:1187. https://doi.org/10.1016/J.CELL.2015.04.044.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049. https://doi.org/10.1038/ncomms14049.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Li T, Liu F, Chen Y, Yao J, Li Z, et al. Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-Seq systems. Mol Cell. 2019;73:130-142.e5. https://doi.org/10.1016/j.molcel.2018.10.020.

    Article 
    PubMed 

    Google Scholar
     

  • Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science. 1979;2017(357):661–7. https://doi.org/10.1126/SCIENCE.AAM8940/SUPPL_FILE/AAM8940_CAO_SM_TABLES_S1_TO_S14.XLSX.

    Article 

    Google Scholar
     

  • Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, Yao Z, et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science. 1979;2018(360):176–82. https://doi.org/10.1126/SCIENCE.AAM8999/SUPPL_FILE/PAPV2.PDF.

    Article 

    Google Scholar
     

  • Datlinger P, Rendeiro AF, Boenke T, Senekowitsch M, Krausgruber T, Barreca D, et al. Ultra-high-throughput single-cell RNA sequencing and perturbation screening with combinatorial fluidic indexing. Nat Methods. 2021;18:635–42. https://doi.org/10.1038/s41592-021-01153-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aicher TP, Carroll S, Raddi G, Gierahn T, Wadsworth MH, Hughes TK, et al. Seq-Well: a sample-efficient, portable picowell platform for massively parallel single-cell RNA-sequencing. Methods Mol Biol. 2019;1979:111. https://doi.org/10.1007/978-1-4939-9240-9_8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan HC, Fu GK, Fodor SPA. Expression profiling. Combinatorial labeling of single cells for gene expression cytometry. Science. 2015;347:1258367. https://doi.org/10.1126/science.1258367.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clark IC, Fontanez KM, Meltzer RH, Xue Y, Hayford C, May-Zhang A, et al. Microfluidics-free single-cell genomics with templated emulsification. Nat Biotechnol. 2023. https://doi.org/10.1038/s41587-023-01685-z.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hill AJ, McFaline-Figueroa JL, Starita LM, Gasperini MJ, Matreyek KA, Packer J, et al. On the design of CRISPR-based single-cell molecular screens. Nat Methods. 2018;15:271–4. https://doi.org/10.1038/nmeth.4604.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 2014;343:776–9. https://doi.org/10.1126/science.1247651.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feldman D, Singh A, Garrity A, Blainey P. Lentiviral co-packaging mitigates the effects of intermolecular recombination and multiple integrations in pooled genetic screens. BioRxiv. 2018. https://doi.org/10.1101/262121.

    Article 

    Google Scholar
     

  • Adamson B, Norman TM, Jost M, Weissman JS. Approaches to maximize sgRNA-barcode coupling in Perturb-seq screens. BioRxiv. 2018. https://doi.org/10.1101/298349.

    Article 

    Google Scholar
     

  • Wroblewska A, Dhainaut M, Ben-Zvi B, Rose SA, Park ES, Amir EAD, et al. Protein barcodes enable high-dimensional single-cell CRISPR screens. Cell. 2018;175:1141-1155.e16. https://doi.org/10.1016/j.cell.2018.09.022.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song Q, Ni K, Liu M, Li Y, Wang L, Wang Y, et al. Direct-seq: programmed gRNA scaffold for streamlined scRNA-seq in CRISPR screen. Genome Biol. 2020;21:136. https://doi.org/10.1186/s13059-020-02044-w.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Replogle JM, Norman TM, Xu A, Hussmann JA, Chen J, Cogan JZ, et al. Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing. Nat Biotechnol. 2020;38:954–61. https://doi.org/10.1038/s41587-020-0470-y.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choo XY, Lim YM, Katwadi K, Yap L, Tryggvason K, Sun AX, et al. Evaluating capture sequence performance for single-cell CRISPR activation experiments. ACS Synth Biol. 2021;10:640–5. https://doi.org/10.1021/acssynbio.0c00499.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang M, Wang J, Torre E, Dueck H, Shaffer S, Bonasio R, et al. SAVER: gene expression recovery for single-cell RNA sequencing. Nat Methods. 2018;15:539–42. https://doi.org/10.1038/s41592-018-0033-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015;16:1–13. https://doi.org/10.1186/S13059-015-0844-5/FIGURES/6.

    Article 

    Google Scholar
     

  • Murphy AE, Skene NG. A balanced measure shows superior performance of pseudobulk methods in single-cell RNA-sequencing analysis. Nat Commun. 2022;13:7851. https://doi.org/10.1038/s41467-022-35519-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papalexi E, Mimitou EP, Butler AW, Foster S, Bracken B, Mauck WM, et al. Characterizing the molecular regulation of inhibitory immune checkpoints with multimodal single-cell screens. Nat Genet. 2021;53:322–31. https://doi.org/10.1038/s41588-021-00778-2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barry T, Wang X, Morris JA, Roeder K, Katsevich E. SCEPTRE improves calibration and sensitivity in single-cell CRISPR screen analysis. Genome Biol. 2021;22:1–19. https://doi.org/10.1186/S13059-021-02545-2/FIGURES/5.

    Article 

    Google Scholar
     

  • Yang L, Zhu Y, Yu H, Cheng X, Chen S, Chu Y, et al. scMAGeCK links genotypes with multiple phenotypes in single-cell CRISPR screens. Genome Biol. 2020;21:19. https://doi.org/10.1186/s13059-020-1928-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duan B, Zhou C, Zhu C, Yu Y, Li G, Zhang S, et al. Model-based understanding of single-cell CRISPR screening. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-10216-x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li W, Xu H, Xiao T, Cong L, Love MI, Zhang F, et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 2014;15:554. https://doi.org/10.1186/S13059-014-0554-4/TABLES/2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schraivogel D, Gschwind AR, Milbank JH, Leonce DR, Jakob P, Mathur L, et al. Targeted Perturb-seq enables genome-scale genetic screens in single cells. Nat Methods. 2020;17:629–35. https://doi.org/10.1038/s41592-020-0837-5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez-Meira A, O’Sullivan J, Rahman H, Mead AJ. TARGET-Seq: A Protocol for High-Sensitivity Single-Cell Mutational Analysis and Parallel RNA Sequencing. STAR Protoc. 2020;1:100125. https://doi.org/10.1016/j.xpro.2020.100125.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uzbas F, Opperer F, Sönmezer C, Shaposhnikov D, Sass S, Krendl C, et al. BART-Seq: cost-effective massively parallelized targeted sequencing for genomics, transcriptomics, and single-cell analysis. Genome Biol. 2019;20:155. https://doi.org/10.1186/s13059-019-1748-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marshall JL, Doughty BR, Subramanian V, Guckelberger P, Wang Q, Chen LM, et al. HyPR-seq: single-cell quantification of chosen RNAs via hybridization and sequencing of DNA probes. Proc Natl Acad Sci. 2020;117:33404–13. https://doi.org/10.1073/PNAS.2010738117.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saikia M, Burnham P, Keshavjee SH, Wang MFZ, Heyang M, Moral-Lopez P, et al. Simultaneous multiplexed amplicon sequencing and transcriptome profiling in single cells. Nat Methods. 2019;16:59–62. https://doi.org/10.1038/s41592-018-0259-9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gasperini M, Hill AJ, McFaline-Figueroa JL, Martin B, Kim S, Zhang MD, et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell. 2019;176:377-390.e19. https://doi.org/10.1016/J.CELL.2018.11.029.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu S, Cao Z, Liu Z, He Y, Wang Y, Yuan P, et al. Guide RNAs with embedded barcodes boost CRISPR-pooled screens. Genome Biol. 2019;20:1–12. https://doi.org/10.1186/S13059-019-1628-0/FIGURES/4.

    Article 

    Google Scholar
     

  • Ran FA, Hsu PD, Lin C-Y, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154:1380–9. https://doi.org/10.1016/J.CELL.2013.08.021.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stockman VB, Ghamsari L, Lasso G, Honig B, Shapira SD, Wang HH. A high-throughput strategy for dissecting mammalian genetic interactions. PLoS ONE. 2016;11:e0167617. https://doi.org/10.1371/journal.pone.0167617.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong ASL, Choi GCG, Cheng AA, Purcell O, Lu TK. Massively parallel high-order combinatorial genetics in human cells. Nat Biotechnol. 2015;33:952–61. https://doi.org/10.1038/nbt.3326.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou P, Chan BKC, Wan YK, Yuen CTL, Choi GCG, Li X, et al. A three-way combinatorial CRISPR screen for analyzing interactions among druggable targets. Cell Rep. 2020;32:108020. https://doi.org/10.1016/J.CELREP.2020.108020.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong ASL, Choi GCG, Cui CH, Pregernig G, Milani P, Adam M, et al. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proc Natl Acad Sci. 2016;113:2544–9. https://doi.org/10.1073/PNAS.1517883113.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kyuho H, Edwin EJ, Gaelen TH, David WM, Amy L, Michael CB. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat Biotechnol. 2017;35:463–74. https://doi.org/10.1038/nbt.3834.

    Article 
    CAS 

    Google Scholar
     

  • John Paul S, Dongxin Z, Roman S, Jens L, Amanda B, Ana B-G, et al. Combinatorial CRISPR–Cas9 screens for de novo mapping of genetic interactions. Nat Methods. 2017;14:573–6. https://doi.org/10.1038/nmeth.4225.

    Article 
    CAS 

    Google Scholar
     

  • Thompson NA, Ranzani M, van der Weyden L, Iyer V, Offord V, Droop A, et al. Combinatorial CRISPR screen identifies fitness effects of gene paralogues. Nat Commun. 2021;12:1302. https://doi.org/10.1038/s41467-021-21478-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao C, Ttofali F, Slotkowski RA, Denny SR, Cecil TD, Leenay RT, et al. Modular one-pot assembly of CRISPR arrays enables library generation and reveals factors influencing crRNA biogenesis. Nat Commun. 2019;10:2948. https://doi.org/10.1038/s41467-019-10747-3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 1979;2013(339):819–23. https://doi.org/10.1126/science.1231143.

    Article 
    CAS 

    Google Scholar
     

  • Rubin AJ, Parker KR, Satpathy AT, Qi Y, Wu B, Ong AJ, et al. Coupled single-cell CRISPR screening and epigenomic profiling reveals causal gene regulatory networks. Cell. 2019;176:361-376.e17. https://doi.org/10.1016/j.cell.2018.11.022.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lotfollahi M, Klimovskaia Susmelj A, De Donno C, Hetzel L, Ji Y, Ibarra IL, et al. Predicting cellular responses to complex perturbations in high-throughput screens. Mol Syst Biol. 2023. https://doi.org/10.15252/msb.202211517.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao D, Binan L, Bezney J, Simonton B, Freedman J, Frangieh CJ, et al. Compressed Perturb-seq: highly efficient screens for regulatory circuits using random composite perturbations. BioRxiv. 2023. https://doi.org/10.1101/2023.01.23.525200.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wessels H-H, Méndez-Mancilla A, Hao Y, Papalexi E, Mauck WM, Lu L, et al. Efficient combinatorial targeting of RNA transcripts in single cells with Cas13 RNA Perturb-seq. Nat Methods. 2023;20:86–94. https://doi.org/10.1038/s41592-022-01705-x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fiskus W, Sharma S, Shah B, Portier BP, Devaraj SGT, Liu K, et al. Highly effective combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor against human AML cells. Leukemia. 2014;28:2155–64. https://doi.org/10.1038/leu.2014.119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang L, Chan AKN, Miyashita K, Delaney CD, Wang X, Li H, et al. High-resolution characterization of gene function using single-cell CRISPR tiling screen. Nat Commun. 2021;12:4063. https://doi.org/10.1038/s41467-021-24324-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morris JA, Caragine C, Daniloski Z, Domingo J, Barry T, Lu L, et al. Discovery of target genes and pathways at GWAS loci by pooled single-cell CRISPR screens. Science (1979). 2023;380:eadh7699. https://doi.org/10.1126/science.adh7699.

    Article 
    CAS 

    Google Scholar
     

  • Jun S, Lim H, Chun H, Lee JH, Bang D. Single-cell analysis of a mutant library generated using CRISPR-guided deaminase in human melanoma cells. Commun Biol. 2020;3:154. https://doi.org/10.1038/s42003-020-0888-2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joung J, Ma S, Tay T, Geiger-Schuller KR, Kirchgatterer PC, Verdine VK, et al. A transcription factor atlas of directed differentiation. Cell. 2023;186:209-229.e26. https://doi.org/10.1016/J.CELL.2022.11.026.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luginbühl J, Kouno T, Nakano R, Chater TE, Sivaraman DM, Kishima M, et al. Decoding neuronal diversification by multiplexed single-cell RNA-Seq. Stem Cell Rep. 2021;16:810–24. https://doi.org/10.1016/j.stemcr.2021.02.006.

    Article 
    CAS 

    Google Scholar
     

  • Ursu O, Neal JT, Shea E, Thakore PI, Jerby-Arnon L, Nguyen L, et al. Massively parallel phenotyping of coding variants in cancer with Perturb-seq. Nat Biotechnol. 2022;40:896–905. https://doi.org/10.1038/s41587-021-01160-7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roth TL, Li PJ, Blaeschke F, Nies JF, Apathy R, Mowery C, et al. Pooled knock-in targeting for genome engineering of cellular immunotherapies. Cell. 2020;181:728. https://doi.org/10.1016/J.CELL.2020.03.039.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin X, Simmons SK, Guo A, Shetty AS, Ko M, Nguyen L, et al. In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with autism risk genes. Science (1979). 2020;370:eaaz6063. https://doi.org/10.1126/science.aaz6063.

    Article 
    CAS 

    Google Scholar
     

  • Kuhn M, Santinha AJ, Platt RJ. Moving from in vitro to in vivo CRISPR screens. Gene Genome Editing. 2021;2:100008. https://doi.org/10.1016/j.ggedit.2021.100008.

    Article 
    CAS 

    Google Scholar
     

  • Feldman D, Singh A, Schmid-Burgk JL, Carlson RJ, Mezger A, Garrity AJ, et al. Optical pooled screens in human cells. Cell. 2019;179:787-799.e17. https://doi.org/10.1016/J.CELL.2019.09.016.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feldman D, Funk L, Le A, Carlson RJ, Leiken MD, Tsai F, et al. Pooled genetic perturbation screens with image-based phenotypes. Nat Protoc. 2022;17:476–512. https://doi.org/10.1038/s41596-021-00653-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eng CHL, Lawson M, Zhu Q, Dries R, Koulena N, Takei Y, et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature. 2019;568:235–9. https://doi.org/10.1038/S41586-019-1049-Y.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science. 2015;348:aaa6090. https://doi.org/10.1126/SCIENCE.AAA6090.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L. Single-cell in situ RNA profiling by sequential hybridization. Nat Methods. 2014;11:360–1. https://doi.org/10.1038/nmeth.2892.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Femino AM, Fay FS, Fogarty K, Singer RH. Visualization of single RNA transcripts in situ. Science. 1998;280:585–90. https://doi.org/10.1126/SCIENCE.280.5363.585.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Ferrante TC, Terry R, et al. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat Protoc. 2015;10:442. https://doi.org/10.1038/NPROT.2014.191.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N, Vesuna S, et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science. 1979;2018:361. https://doi.org/10.1126/science.aat5691.

    Article 
    CAS 

    Google Scholar
     

  • Dhainaut M, Rose SA, Akturk G, Wroblewska A, Nielsen SR, Park ES, et al. Spatial CRISPR genomics identifies regulators of the tumor microenvironment. Cell. 2022;185:1223-1239.e20. https://doi.org/10.1016/J.CELL.2022.02.015.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liscovitch-Brauer N, Montalbano A, Deng J, Méndez-Mancilla A, Wessels H-H, Moss NG, et al. Profiling the genetic determinants of chromatin accessibility with scalable single-cell CRISPR screens. Nat Biotechnol. 2021;39:1270–7. https://doi.org/10.1038/s41587-021-00902-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pierce SE, Granja JM, Greenleaf WJ. High-throughput single-cell chromatin accessibility CRISPR screens enable unbiased identification of regulatory networks in cancer. Nat Commun. 2021;12:2969. https://doi.org/10.1038/s41467-021-23213-w.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10:1213–8. https://doi.org/10.1038/nmeth.2688.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klann TS, Barrera A, Ettyreddy AR, Rickels RA, Bryois J, Jiang S, et al. Genome-wide annotation of gene regulatory elements linked to cell fitness. BioRxiv. 2021. https://doi.org/10.1101/2021.03.08.434470.

    Article 

    Google Scholar
     

  • Chardon FM, McDiarmid TA, Page NF, Martin B, Domcke S, Regalado SG, et al. Multiplex, single-cell CRISPRa screening for cell type specific regulatory elements. BioRxiv. 2023. https://doi.org/10.1101/2023.03.28.534017.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, et al. Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 2017;14:865–8. https://doi.org/10.1038/nmeth.4380.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peterson VM, Zhang KX, Kumar N, Wong J, Li L, Wilson DC, et al. Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol. 2017;35:936–9. https://doi.org/10.1038/nbt.3973.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mimitou EP, Cheng A, Montalbano A, Hao S, Stoeckius M, Legut M, et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat Methods. 2019;16:409–12. https://doi.org/10.1038/s41592-019-0392-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frangieh CJ, Melms JC, Thakore PI, Geiger-Schuller KR, Ho P, Luoma AM, et al. Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nat Genet. 2021;53:332–41. https://doi.org/10.1038/s41588-021-00779-1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rivello F, van Buijtenen E, Matuła K, van Buggenum JAGL, Vink P, van Eenennaam H, et al. Single-cell intracellular epitope and transcript detection reveals signal transduction dynamics. Cell Rep Methods. 2021;1:100070. https://doi.org/10.1016/j.crmeth.2021.100070.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katzenelenbogen Y, Sheban F, Yalin A, Yofe I, Svetlichnyy D, Jaitin DA, et al. Coupled scRNA-Seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell. 2020;182:872-885.e19. https://doi.org/10.1016/J.CELL.2020.06.032.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung H, Parkhurst CN, Magee EM, Phillips D, Habibi E, Chen F, et al. Joint single-cell measurements of nuclear proteins and RNA in vivo. Nat Methods. 2021;18:1204–12. https://doi.org/10.1038/s41592-021-01278-1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Replogle JM, Saunders RA, Pogson AN, Hussmann JA, Lenail A, Guna A, et al. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell. 2022;185:2559-2575.e28. https://doi.org/10.1016/j.cell.2022.05.013.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian R, Gachechiladze MA, Ludwig CH, Laurie MT, Hong JY, Nathaniel D, et al. CRISPR Interference-based platform for multimodal genetic screens in human iPSC-derived neurons. Neuron. 2019;104:239-255.e12. https://doi.org/10.1016/j.neuron.2019.07.014.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shifrut E, Carnevale J, Tobin V, Roth TL, Woo JM, Bui CT, et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell. 2018;175:1958-1971.e15. https://doi.org/10.1016/j.cell.2018.10.024.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hein MY, Weissman JS. Functional single-cell genomics of human cytomegalovirus infection. Nat Biotechnol. 2022;40:391–401. https://doi.org/10.1038/s41587-021-01059-3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Z, Sziraki A, Lee J, Zhou W, Cao J. PerturbSci-Kinetics: Dissecting key regulators of transcriptome kinetics through scalable single-cell RNA profiling of pooled CRISPR screens. BioRxiv. 2023. https://doi.org/10.1101/2023.01.29.526143.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blair JD, Hartman A, Zenk F, Dalgarno C, Treutlein B, Satija R. Phospho-seq: Integrated, multi-modal profiling of intracellular protein dynamics in single cells. BioRxiv. 2023. https://doi.org/10.1101/2023.03.27.534442.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen W, Guillaume-Gentil O, Rainer PY, Gäbelein CG, Saelens W, Gardeux V, et al. Live-seq enables temporal transcriptomic recording of single cells. Nature. 2022;608:733–40. https://doi.org/10.1038/s41586-022-05046-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roth TL, Li PJ, Blaeschke F, Nies JF, Apathy R, Mowery C, et al. Pooled knockin targeting for genome engineering of cellular immunotherapies. Cell. 2020;181:728-744.e21. https://doi.org/10.1016/j.cell.2020.03.039.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou W, Gao F, Romero-Wolf M, Jo S, Rothenberg EV. Single-cell deletion analyses show control of pro-T cell developmental speed and pathways by Tcf7, Spi1, Gata3, Bcl11a, Erg, and Bcl11b. Sci Immunol. 2022;7:5. https://doi.org/10.1126/SCIIMMUNOL.ABM1920/SUPPL_FILE/SCIIMMUNOL.ABM1920_TABLES_S1_TO_S12.ZIP.

    Article 

    Google Scholar
     



  • Source link