Scientific Papers

Assessing evidence on the impacts of nature-based interventions for climate change mitigation: a systematic map of primary and secondary research from subtropical and tropical terrestrial regions | Environmental Evidence


  • IPCC. Climate Change and Land. In: PR Shukla, J Skea, E Calvo Buendia, V Masson-Delmotte, HO Pörtner, DC Roberts, P Zhai, R Slade, S Connors, R van Diemen, M Ferrat, E Haughey, S Luz, S Neogi, M Pathak, J Petzold, J Portugal Pereira, P Vyas, E Huntley, K Kissick, M. Belkacemi, J. Malley, (eds.). An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. https://www.ipcc.ch/site/assets/uploads/2019/11/SRCCL-Full-Report-Compiled-191128.pdf. Accessed 5 Feb 2023.

  • Mills M, Bode M, Mascia MB, Weeks R, Gelcich S, Dudley N, et al. How conservation initiatives go to scale. Nat Sustain. 2019;2(10):935–40.

    Article 

    Google Scholar
     

  • IUCN. Global standard for nature-based solutions. A user-friendly framework for the verification, design and scaling up of NbS. 1st ed. Gland: IUCN; 2020.


    Google Scholar
     

  • Chausson A, Turner B, Seddon D, Chabaneix N, Girardin CAJ, Kapos V, et al. Mapping the effectiveness of nature-based solutions for climate change adaptation. Glob Change Biol. 2020;26(11):6134–55.

    Article 

    Google Scholar
     

  • UNEP. Resolution adopted by the United Nations Environment Assembly on 2 March 2022: Nature-based solutions for supporting sustainable development. 2022. https://wedocs.unep.org/bitstream/handle/20.500.11822/39864/NATURE-BASED%20SOLUTIONS%20FOR%20SUPPORTING%20SUSTAINABLE%20DEVELOPMENT.%20English.pdf?sequence=1&isAllowed=y. Accessed 27 Jun 2023.

  • Miralles-Wilhelm F. Nature-based solutions in agriculture: Sustainable management and conservation of land, water and biodiversity. Virginia: FAO and TNC; 2021.


    Google Scholar
     

  • White house council on environmental quality, white house office of science and technology policy, white house domestic, climate policy office. Opportunities for accelerating nature-based solutions: a roadmap for climate progress, thriving nature, equity, and prosperity, report to the national climate task force. Washington, DC; 2022.

  • Griscom BW, Busch J, Cook-Patton SC, Ellis PW, Funk J, Leavitt SM, et al. National mitigation potential from natural climate solutions in the tropics. Philos Trans R Soc B Biol Sci. 2020;375(1794):20190126.

    Article 
    CAS 

    Google Scholar
     

  • UNEP and IUCN. Nature-based solutions for climate change mitigation. Nairobi and Gland; 2021. https://wedocs.unep.org/xmlui/bitstream/handle/20.500.11822/37318/NBSCCM.pdf. Accessed 5 Feb 2023.

  • Griscom BW, Adams J, Ellis PW, Houghton RA, Lomax G, Miteva DA, et al. Natural climate solutions. Proc Natl Acad Sci USA. 2017;114(44):11645–50.

    Article 
    CAS 

    Google Scholar
     

  • Turner B, Devisscher T, Chabaneix N, Woroniecki S, Messier C, Seddon N. The role of nature-based solutions in supporting social-ecological resilience for climate change adaptation. Ann Rev Environ Resour. 2022;47(1):123–48.

    Article 

    Google Scholar
     

  • Doswald N, Munroe R, Roe D, Giuliani A, Castelli I, Stephens J, et al. Effectiveness of ecosystem-based approaches for adaptation: review of the evidence-base. Clim Dev. 2014;6(2):185–201.

    Article 

    Google Scholar
     

  • Henderson B, Frank S, Havlik P, Valin H. Policy strategies and challenges for climate change mitigation in the Agriculture, forestry and other land use (AFOLU) SECTOR. Paris: OECD; 2021.


    Google Scholar
     

  • UNDP. UNDP social and environmental standards—standard 1. UNDP; 2015. https://info.undp.org/sites/bpps/SES_Toolkit/SitePages/Standard%201.aspx. Accessed 5 Feb 2023.

  • UNEP. Nature-based solutions for urban challenges. Nairobi: UN Environment Programme; 2013.


    Google Scholar
     

  • Roe S, Streck C, Beach R, Busch J, Chapman M, Daioglou V, et al. Land-based measures to mitigate climate change: potential and feasibility by country. Glob Change Biol. 2021;27(23):6025–58.

    Article 
    CAS 

    Google Scholar
     

  • Smith P, Adams J, Beerling DJ, Beringer T, Calvin KV, Fuss S, et al. Land-management options for greenhouse gas removal and their impacts on ecosystem services and the sustainable development goals. Ann Rev Environ Resour. 2019;44:255–86.

    Article 

    Google Scholar
     

  • CBD. Kunming-Montreal global biodiversity framework. 2022. https://prod.drupal.www.infra.cbd.int/sites/default/files/2022-12/221222-CBD-PressRelease-COP15-Final.pdf. Accessed 5 Feb 2023.

  • UNFCCC. Second periodic review of the long-term global goal under the Convention and of overall progress towards achieving it. Bonn: UNFCCC; 2022.


    Google Scholar
     

  • Meyfroidt P. Approaches and terminology for causal analysis in land systems science. J Land Use Sci. 2016;11(5):501–22.

    Article 

    Google Scholar
     

  • Ostrom E. A general framework for analyzing sustainability of social-ecological systems. Science. 2009;325(5939):419–22.

    Article 
    CAS 

    Google Scholar
     

  • Lundmark T, Bergh J, Hofer P, Lundström A, Nordin A, Poudel BC, et al. Potential roles of Swedish forestry in the context of climate change mitigation. Forests. 2014;5(4):557–78.

    Article 

    Google Scholar
     

  • Pirard R, Dal Secco L, Warman R. Do timber plantations contribute to forest conservation? Environ Sci Policy. 2016;1(57):122–30.

    Article 

    Google Scholar
     

  • Snilsveit B, Stevenson J, Langer L, Tannous N, Ravat Z, Nduku P, et al. Incentives for climate mitigation in the land use sector—the effects of payment for environmental services on environmental and socioeconomic outcomes in low- and middle-income countries: a mixed-methods systematic review. Campbell Syst Rev. 2019;15(3): e1045.

    Article 

    Google Scholar
     

  • Borner J, Baylis K, Corbera E, Ezzine-de-Blas D, Honey-Roses J, Persson UM, et al. The effectiveness of payments for environmental services. World Dev. 2017;96:359–74.

    Article 

    Google Scholar
     

  • Reid JL, Fagan ME, Zahawi RA. Positive site selection bias in meta-analyses comparing natural regeneration to active forest restoration. Sci Adv. 2018;4(5):eaas9143.

    Article 

    Google Scholar
     

  • Shimamoto CY, Padial AA, Da Rosa CM, Marques MCM. Restoration of ecosystem services in tropical forests: a global meta-analysis. PLoS ONE. 2018;13(12):e0208523.

    Article 

    Google Scholar
     

  • Crouzeilles R, Ferreira MS, Chazdon RL, Lindenmayer DB, Sansevero JBB, Monteiro L, et al. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci Adv. 2017;3(11): e1701345.

    Article 

    Google Scholar
     

  • Hua F, Bruijnzeel LA, Meli P, Martin PA, Zhang J, Nakagawa S, et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science. 2022;376(6595):839–44.

    Article 
    CAS 

    Google Scholar
     

  • Miller DC, Ordoñez PJ, Brown SE, Forrest S, Nava NJ, Hughes K, et al. The impacts of agroforestry on agricultural productivity, ecosystem services, and human well-being in low-and middle-income countries: an evidence and gap map. Campbell Syst Rev. 2020;16(1): e1066.

    Article 

    Google Scholar
     

  • Castle SE, Miller DC, Ordonez PJ, Baylis K, Hughes K. The impacts of agroforestry interventions on agricultural productivity, ecosystem services, and human well-being in low- and middle-income countries: a systematic review. Campbell Syst Rev. 2021;17(2): e1167.

    Article 

    Google Scholar
     

  • Ellis EA, Montero SA, Gomez IUH, Montero JAR, Ellis PW, Rodriguez-Ward D, et al. Reduced-impact logging practices reduce forest disturbance and carbon emissions in community managed forests on the Yucatan Peninsula, Mexico. For Ecol Manag. 2019;1(437):396–410.

    Article 

    Google Scholar
     

  • Rosenstock TS, Lamanna NN, Arslan A, Richards M. What is the evidence base for climate-smart agriculture in East and Southern Africa? A systematic map. In: Rosenstock TS, Nowak A, Girvetz E, editors. The climate-smart agriculture papers: investigating the business of a productive, resilient and low emission future. Cham: Springer International Publishing; 2019.

    Chapter 

    Google Scholar
     

  • Bukoski JJ, Cook-Patton SC, Melikov C, Ban H, Chen JL, Goldman ED, et al. Rates and drivers of aboveground carbon accumulation in global monoculture plantation forests. Nat Commun. 2022;13(1):4206.

    Article 
    CAS 

    Google Scholar
     

  • WBCSD. Accelerating business solutions for climate and nature. Report I: mapping nature-based solutions and natural climate solutions. 2020. https://www.wbcsd.org/contentwbc/download/10892/160980/1. Accessed 5 Feb 2023.

  • Brancalion PHS, Holl KD. Guidance for successful tree planting initiatives. J Appl Ecol. 2020;57(12):2349–61.

    Article 

    Google Scholar
     

  • Edwards DP, Fisher B, Boyd E. Protecting degraded rainforests: enhancement of forest carbon stocks under REDD+: enhancing forest carbon with REDD+. Conserv Lett. 2010;3(5):313–6.

    Article 

    Google Scholar
     

  • Alexander S, Nelson CR, Aronson J, Lamb D, Cliquet A, Erwin KL, et al. Opportunities and challenges for ecological restoration within REDD+. Restor Ecol. 2011;19(6):683–9.

    Article 

    Google Scholar
     

  • Ruseva T, Hedrick J, Marland G, Tovar H, Sabou C, Besombes E. Rethinking standards of permanence for terrestrial and coastal carbon: implications for governance and sustainability. Curr Opin Environ Sustain. 2020;45:69–77.

    Article 

    Google Scholar
     

  • Haim D, White EM, Alig RJ. Agriculture afforestation for carbon sequestration under carbon markets in the United States: leakage behavior from regional allowance programs. Appl Econ Perspect Policy. 2016;38(1):132–51.

    Article 

    Google Scholar
     

  • Badgley G, Freeman J, Hamman JJ, Haya B, Trugman AT, Anderegg WRL, et al. Systematic over-crediting in California’s forest carbon offsets program. Glob Change Biol. 2022;28(4):1433–45.

    Article 
    CAS 

    Google Scholar
     

  • Roopsind A, Sohngen B, Brandt J. Evidence that a national REDD+ program reduces tree cover loss and carbon emissions in a high forest cover, low deforestation country. Proc Natl Acad Sci USA. 2019;116(49):24492–9.

    Article 
    CAS 

    Google Scholar
     

  • Roy J, Prakash A, Some S, Singh C, Bezner Kerr R, Caretta MA, et al. Synergies and trade-offs between climate change adaptation options and gender equality: a review of the global literature. Humanit Soc Sci Commun. 2022;9(1):1–13.

    Article 

    Google Scholar
     

  • Betley EC, Sigouin A, Pascua P, Cheng SH, MacDonald KI, Arengo F, et al. Assessing human well-being constructs with environmental and equity aspects: a review of the landscape. People Nat. 2021. https://doi.org/10.1002/pan3.10293.

    Article 

    Google Scholar
     

  • Mahajan SL, Glew L, Rieder E, Ahmadia G, Darling E, Fox HE, et al. Systems thinking for planning and evaluating conservation interventions. Conserv Sci Pract. 2019;1(7): e44.

    Article 

    Google Scholar
     

  • McKinnon MC, Cheng SH, Dupre S, Edmond J, Garside R, Glew L, et al. What are the effects of nature conservation on human well-being? A systematic map of empirical evidence from developing countries. Environ Evid. 2016;5(1):1.

    Article 

    Google Scholar
     

  • Palomo I, Locatelli B, Otero I, Colloff M, Crouzat E, Cuni-Sanchez A, et al. Assessing nature-based solutions for transformative change. One Earth. 2021;4(5):730–41.

    Article 

    Google Scholar
     

  • National Research Council. The drama of the commons. Washington DC: National Academies Press; 2002.


    Google Scholar
     

  • O’Connell MJ, Nasirwa O, Carter M, Farmer KH, Appleton M, Arinaitwe J, et al. Capacity building for conservation: problems and potential solutions for sub-Saharan Africa. Oryx. 2019;53(2):273–83.

    Article 

    Google Scholar
     

  • Wunder S, Borner J, Ezzine-de-Blas D, Feder S, Pagiola S. Payments for environmental services: past performance and pending potentials. Ann Rev Resour Econ. 2020;12:209–34.

    Article 

    Google Scholar
     

  • Mahanty S, Suich H, Tacconi L. Access and benefits in payments for environmental services and implications for REDD+: lessons from seven PES schemes. Land Use Policy. 2013;31:38–47.

    Article 

    Google Scholar
     

  • Jacquet J, Jamieson D. Soft but significant power in the Paris agreement. Nat Clim Change. 2016;6(7):643–6.

    Article 

    Google Scholar
     

  • Tegegne YT, Cramm M, Van Brusselen J. Sustainable forest management, FLEGT, and REDD+: exploring interlinkages to strengthen forest policy coherence. Sustainability. 2018;10(12):4841.

    Article 

    Google Scholar
     

  • Díaz S, Pascual U, Stenseke M, Martín-López B, Watson RT, Molnár Z, et al. Assessing nature’s contributions to people. Science. 2018;359(6373):270–2.

    Article 

    Google Scholar
     

  • Dudley N, Jonas H, Nelson F, Parrish J, Pyhälä A, Stolton S, et al. The essential role of other effective area-based conservation measures in achieving big bold conservation targets. Glob Ecol Conserv. 2018;1(15): e00424.

    Article 

    Google Scholar
     

  • Cottrell C. Avoiding a new era in biopiracy: including indigenous and local knowledge in nature-based solutions to climate change. Environ Sci Policy. 2022;1(135):162–8.

    Article 

    Google Scholar
     

  • Seddon N, Smith A, Smith P, Key I, Chausson A, Girardin C, et al. Getting the message right on nature-based solutions to climate change. Glob Change Biol. 2021;27(8):1518–46.

    Article 

    Google Scholar
     

  • Mitchard ETA. The tropical forest carbon cycle and climate change. Nature. 2018;559(7715):527–34.

    Article 
    CAS 

    Google Scholar
     

  • Cheng SH, Costedoat S, Sterling EJ, Chamberlain C, Jagadish A, Lichtenthal P, et al. What evidence exists on the links between natural climate solutions and climate change mitigation outcomes in subtropical and tropical terrestrial regions? A systematic map protocol. Environ Evid. 2022;11(1):15.

    Article 

    Google Scholar
     

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience. 2001;51(11):933–8.

    Article 

    Google Scholar
     

  • Cheng SH, Augustin C, Bethel A, Gill D, Anzaroot S, Brun J, et al. Using machine learning to advance synthesis and use of conservation and environmental evidence. Conserv Biol. 2018;32(4):762–4.

    Article 
    CAS 

    Google Scholar
     

  • Hickisch R, Hodgetts T, Johnson PJ, Sillero-Zubiri C, Tockner K, Macdonald DW. Effects of publication bias on conservation planning. Conserv Biol. 2019;33(5):1151–63.

    Article 
    CAS 

    Google Scholar
     

  • Zhou G, Houlton BZ, Wang W, Huang W, Xiao Y, Zhang Q, et al. Substantial reorganization of China’s tropical and subtropical forests: based on the permanent plots. Glob Change Biol. 2014;20(1):240–50.

    Article 

    Google Scholar
     

  • Noon ML, Goldstein A, Ledezma JC, Roehrdanz PR, Cook-Patton SC, Spawn-Lee SA, et al. Mapping the irrecoverable carbon in Earth’s ecosystems. Nat Sustain. 2022;5(1):37–46.

    Article 

    Google Scholar
     

  • Jiang ZH, Zhong YM, Yang JP, Wu YXY, Li H, Zheng L. Effect of nitrogen fertilizer rates on carbon footprint and ecosystem service of carbon sequestration in rice production. Sci Total Environ. 2019;20(670):210–7.

    Article 

    Google Scholar
     

  • Tan SD, Chen B, Zheng HB, Xu F, Xu HQ, Wei JB, et al. Effects of cultivation techniques on CH4 emissions, net ecosystem production, and rice yield in a paddy ecosystem. Atmos Pollut Res. 2019;10(1):274–82.

    Article 
    CAS 

    Google Scholar
     

  • Lenka S, Lenka NK, Singh AB, Singh B, Raghuwanshi J. Global warming potential and greenhouse gas emission under different soil nutrient management practices in soybean-wheat system of central India. Environ Sci Pollut Res. 2017;24(5):4603–12.

    Article 
    CAS 

    Google Scholar
     

  • Rozendaal DMA, Requena Suarez D, De Sy V, Avitabile V, Carter S, Adou Yao CY, et al. Aboveground forest biomass varies across continents, ecological zones and successional stages: refined IPCC default values for tropical and subtropical forests. Environ Res Lett. 2022;17(1): 014047.

    Article 
    CAS 

    Google Scholar
     

  • Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R. Error propagation and scaling for tropical forest biomass estimates. Philos Trans R Soc Lond B Biol Sci. 2004;359(1443):409–20.

    Article 

    Google Scholar
     

  • Spawn SA, Sullivan CC, Lark TJ, Gibbs HK. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci Data. 2020;7(1):112.

    Article 

    Google Scholar
     

  • Ferraro PJ, Hanauer MM. Quantifying causal mechanisms to determine how protected areas affect poverty through changes in ecosystem services and infrastructure. Proc Natl Acad Sci USA. 2014;111(11):4332–7.

    Article 
    CAS 

    Google Scholar
     

  • Iacona GD, Sutherland WJ, Mappin B, Adams VM, Armsworth PR, Coleshaw T, et al. Standardized reporting of the costs of management interventions for biodiversity conservation: conservation cost standards. Conserv Biol. 2018;32(5):979–88.

    Article 

    Google Scholar
     

  • Adams VM, Pressey RL, Stoeckl N. Estimating land and conservation management costs: the first step in designing a stewardship program for the Northern Territory. Biol Conserv. 2012;148(1):44–53.

    Article 

    Google Scholar
     

  • Ban NC, Adams V, Pressey RL, Hicks J. Promise and problems for estimating management costs of marine protected areas. Conserv Lett. 2011;4(3):241–52.

    Article 

    Google Scholar
     

  • White TB, Petrovan SO, Christie AP, Martin PA, Sutherland WJ. What is the price of conservation? A review of the status Quo and recommendations for improving cost reporting. Bioscience. 2022;72(5):461–71.

    Article 

    Google Scholar
     

  • Pienkowski T, Cook C, Verma M, Carrasco LR. Conservation cost-effectiveness: a review of the evidence base. Conserv Sci Pract. 2021. https://doi.org/10.1111/csp2.357.

    Article 

    Google Scholar
     

  • Alix-Garcia J, Aronson G, Radeloff V, Reyes CR, Shapiro E, Sims K, et al. Impacts of payments for ecosystem services programme in Mexico. 3ie Ser Rep. 2015;20:1–121.


    Google Scholar
     

  • Brancalion PHS, Meli P, Tymus JRC, Lenti FEB, Benini RM, Silva APM, et al. What makes ecosystem restoration expensive? A systematic cost assessment of projects in Brazil. Biol Conserv. 2019;240:108274.

    Article 

    Google Scholar
     

  • Naidoo R, Balmford A, Ferraro PJ, Polasky S, Ricketts TH, Rouget M. Integrating economic costs into conservation planning. Trends Ecol Evol. 2006;21(12):681–7.

    Article 

    Google Scholar
     

  • Rodewald AD, Strimas-Mackey M, Schuster R, Arcese P. Tradeoffs in the value of biodiversity feature and cost data in conservation prioritization. Sci Rep. 2019;9(1):15921.

    Article 

    Google Scholar
     

  • Bodin B, Garavaglia V, Pingault N, Ding H, Wilson S, Meybeck A, et al. A standard framework for assessing the costs and benefits of restoration: introducing The Economics of Ecosystem Restoration. Restor Ecol. 2022;30(3): e13515.

    Article 

    Google Scholar
     

  • Pullin AS, Bangpan M, Dalrymple S, Dickson K, Haddaway NR, Healey JR, et al. Human well-being impacts of terrestrial protected areas. Environ Evid. 2013;2(1):19.

    Article 

    Google Scholar
     

  • Bromham L, Dinnage R, Hua X. Interdisciplinary research has consistently lower funding success. Nature. 2016;534(7609):684–7.

    Article 
    CAS 

    Google Scholar
     

  • Gill DA, Mascia MB, Ahmadia GN, Glew L, Lester SE, Barnes M, et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature. 2017;543(7647):665–9.

    Article 
    CAS 

    Google Scholar
     

  • Stem C, Margoluis R, Salafsky N, Brown M. Monitoring and evaluation in conservation: a review of trends and approaches. Conserv Biol. 2005;19(2):295–309.

    Article 

    Google Scholar
     

  • Roe D, Seddon N, Elliott J. Biodiversity loss is a development issue: a rapid review of evidence, IIED issue paper. London: IIED; 2019.


    Google Scholar
     

  • Chaigneau T, Brown K. Challenging the win-win discourse on conservation and development: analyzing support for marine protected areas. Ecol Soc. 2016. https://doi.org/10.5751/ES-08204-210136.

    Article 

    Google Scholar
     

  • O’Brien KL, Leichenko RM. Winners and losers in the context of global change. Ann Assoc Am Geogr. 2003;93(1):89–103.

    Article 

    Google Scholar
     

  • Wood KA. Negative results provide valuable evidence for conservation. Perspect Ecol Conserv. 2020;18(4):235–7.


    Google Scholar
     

  • Tanaka K, Boucher O, Ciais P, Johansson DJA, Morfeldt J. Cost-effective implementation of the Paris agreement using flexible greenhouse gas metrics. Sci Adv. 2021;7(22):eabf9020.

    Article 
    CAS 

    Google Scholar
     

  • Nicolescu B. Multidisciplinarity, interdisciplinarity, indisciplinarity, and transdisciplinarity: similarities and differences. RCC Perspect. 2014;2:19–26.


    Google Scholar
     

  • Cheng SH, McKinnon MC, Masuda YJ, Garside R, Jones KW, Miller DC, et al. Strengthen causal models for better conservation outcomes for human well-being. PLoS ONE. 2020;15(3): e0230495.

    Article 
    CAS 

    Google Scholar
     

  • McKinnon MC, Cheng SH, Garside R, Masuda YJ, Miller DC. Sustainability: map the evidence. Nature. 2015;528(7581):185–7.

    Article 
    CAS 

    Google Scholar
     

  • Stephenson P, Burgess N, Jungmann L, Loh J, O’Connor S, Oldfield T, et al. Overcoming the challenges to conservation monitoring: integrating data from in-situ reporting and global data sets to measure impact and performance. Biodiversity. 2015;27(16):1–18.


    Google Scholar
     

  • Mascia MB, Fox HE, Glew L, Ahmadia GN, Agrawal A, Barnes M, et al. A novel framework for analyzing conservation impacts: evaluation, theory, and marine protected areas. Ann NY Acad Sci. 2017;1399(1):93–115.

    Article 

    Google Scholar
     

  • Seddon N, Turner B, Berry P, Chausson A, Girardin CAJ. Why nature-based solutions to climate change must be grounded in sound biodiversity science. Res Gate. 2018. https://doi.org/10.20944/preprints201812.0077.v1.

    Article 

    Google Scholar
     

  • Moore JW, Schindler DE. Getting ahead of climate change for ecological adaptation and resilience. Science. 2022;376(6600):1421–6.

    Article 
    CAS 

    Google Scholar
     

  • Bennett NJ, Roth R, Klain SC, Chan KMA, Clark DA, Cullman G, et al. Mainstreaming the social sciences in conservation. Conserv Biol. 2017;31(1):56–66.

    Article 

    Google Scholar
     

  • Mahajan et al. Introducing Elinor for monitoring the governance and management of area-based conservation. in submission.

  • Knight AT, Cook CN, Redford KH, Biggs D, Romero C, Ortega-Argueta A, et al. Improving conservation practice with principles and tools from systems thinking and evaluation. Sustain Sci. 2019;14(6):1531–48.

    Article 

    Google Scholar
     

  • Cvitanovic C, McDonald J, Hobday AJ. From science to action: principles for undertaking environmental research that enables knowledge exchange and evidence-based decision-making. J Environ Manage. 2016;1(183):864–74.

    Article 

    Google Scholar
     

  • Cook CN, Mascia MB, Schwartz MW, Possingham HP, Fuller RA. Achieving conservation science that bridges the knowledge-action boundary. Conserv Biol. 2013;27(4):669–78.

    Article 

    Google Scholar
     



  • Source link