Scientific Papers

Untangling an insect’s virome from its endogenous viral elements | BMC Genomics


  • Koonin EV, Dolja VV. Metaviromics: a tectonic shift in understanding virus evolution. Virus Res. 2018;246:A1–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y-Z, Shi M, Holmes EC. Using metagenomics to characterize an expanding virosphere. Cell. 2018;172(6):1168–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greninger AL. A decade of RNA virus metagenomics is (not) enough. Virus Res. 2018;244:218–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stork NE. How many species of insects and other terrestrial arthropods are there on earth? Annu Rev Entomol. 2018;63(1):31–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coatsworth H, Bozic J, Carrillo J, Buckner EA, Rivers AR, Dinglasan RR, et al. Intrinsic variation in the vertically transmitted core virome of the mosquito Aedes aegypti. Mol Ecol. 2022;31(9):2545–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Longdon B, Jiggins FM. Vertically transmitted viral endosymbionts of insects: do sigma viruses walk alone? Proc R Soc B. 2012;279(1744):3889–98.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Longdon B, Day JP, Schulz N, Leftwich PT, de Jong MA, Breuker CJ, et al. Vertically transmitted Rhabdoviruses are found across three insect families and have dynamic interactions with their hosts. Proc R Soc B. 2017;284(20162381). https://doi.org/10.1098/rspb.2016.2381.

  • González R, Butković A, Elena SF. Chapter Three – From foes to friends: Viral infections expand the limits of host phenotypic plasticity. In: Kielian M, Mettenleiter TC, Roossinck MJ, editors. Advances in Virus Research. 106: Academic Press; 2020. p. 85–121.

  • Simmonds P, Aiewsakun P, Katzourakis A. Prisoners of war—host adaptation and its constraints on virus evolution. Nat Rev Microbiol. 2019;17(5):321–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mauck KE. Variation in virus effects on host plant phenotypes and insect vector behavior: What can it teach us about virus evolution? Curr Opin Virol. 2016;21:114–23.

    Article 
    PubMed 

    Google Scholar
     

  • Bolling BG, Weaver SC, Tesh RB, Vasilakis N. Insect-specific virus discovery: significance for the arbovirus community. Viruses. 2015;7(9):4911–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li C-X, Shi M, Tian J-H, Lin X-D, Kang Y-J, Chen L-J, et al. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. eLife. 2015;4:e05378.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Käfer S, Paraskevopoulou S, Zirkel F, Wieseke N, Donath A, Petersen M, et al. Re-assessing the diversity of negative strand RNA viruses in insects. PLoS Pathog. 2019;15(12):e1008224.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu S, Chen Y, Bonning BC. RNA virus discovery in insects. Curr Opin Insect Sci. 2015;8:54–61.

    Article 
    PubMed 

    Google Scholar
     

  • Wu H, Pang R, Cheng T, Xue L, Zeng H, Lei T, et al. Abundant and diverse RNA viruses in insects revealed by RNA-Seq analysis: Ecological and evolutionary implications. mSystems. 2020;5(4):e00039–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilbert C, Belliardo C. The diversity of endogenous viral elements in insects. Curr Opin Insect Sci. 2022;49:48–55.

    Article 
    PubMed 

    Google Scholar
     

  • Veglia AJ, Bistolas KSI, Voolstra CR, Hume BCC, Ruscheweyh HJ, Planes S, Allemand D, et al. Endogenous viral elements reveal associations between a non-retroviral RNA virus and symbiotic dinoflagellate genomes. Commun Biol. 2023;6(1):566. https://doi.org/10.1038/s42003-023-04917-9.

  • Blair CD, Olson KE, Bonizzoni M. The widespread occurrence and potential biological roles of endogenous viral elements in insect genomes. Curr Issues Mol Biol. 2020;34:13–30.

    Article 
    PubMed 

    Google Scholar
     

  • Frank JA, Feschotte C. Co-option of endogenous viral sequences for host cell function. Curr Opin Virol. 2017;25:81–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holmes EC. The evolution of endogenous viral elements. Cell Host Microbe. 2011;10(4):368–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo Y, Ji N, Bai L, Ma J, Li Z. Aphid viruses: a brief view of a long history. Front Insect Sci. 2022;2:846716.

    Article 

    Google Scholar
     

  • Ray S, Casteel CL. Effector-mediated plant–virus–vector interactions. Plant Cell. 2022;34(5):1514–31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng Y, Krueger EN, Liu S, Dorman K, Bonning BC, Miller WA. Discovery of known and novel viral genomes in soybean aphid by deep sequencing. Phytobiomes J. 2017;1(1):36–45.

    Article 

    Google Scholar
     

  • Teixeira MA, Sela N, Atamian HS, Bao E, Chaudhary R, MacWilliams J, et al. Sequence analysis of the potato aphid Macrosiphum euphorbiae transcriptome identified two new viruses. PLoS One. 2018;13(3):e0193239.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kondo H, Fujita M, Hisano H, Hyodo K, Andika IB, Suzuki N. Virome analysis of aphid populations that infest the barley field: the discovery of two novel groups of Nege/Kita-like viruses and other novel RNA viruses. Front Microbiol. 2020;11:509.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li T, Li H, Wu Y, Li S, Yuan G, Xu P. Identification of a novel Densovirus in aphid, and uncovering the possible antiviral process during its infection. Front Immunol. 2022;13:905628.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wamonje FO, Michuki GN, Braidwood LA, Njuguna JN, Musembi Mutuku J, Djikeng A, et al. Viral metagenomics of aphids present in bean and maize plots on mixed-use farms in Kenya reveals the presence of three dicistroviruses including a novel Big Sioux River virus-like dicistrovirus. Virol J. 2017;14(1):188.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • An X, Zhang W, Ye C, Smagghe G, Wang J-J, Niu J. Discovery of a widespread presence Bunyavirus that may have symbiont-like relationships with different species of aphids. Insect Sci. 2022;29(4):1120–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang T, Guo M, Zhang W, Niu J, Wang J-J. First report of a Mesonivirus and its derived small RNAs in an aphid species Aphis citricidus (Hemiptera: Aphididae), implying viral infection activity. J Insect Sci. 2020;20(2):14.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blackman RL, Eastop VF, Museum NH. Aphids on the world’s crops: an identification and information guide. Wiley; 2000.

  • Xu Y, Gray SM. Aphids and their transmitted potato viruses: a continuous challenges in potato crops. J Integr Agric. 2020;19(2):367–75.

    Article 

    Google Scholar
     

  • Teixeira M, Sela N, Ng J, Casteel CL, Peng H-C, Bekal S, et al. A novel virus from Macrosiphum euphorbiae with similarities to members of the family Flaviviridae. J Gen Virol. 2016;97(5):1261–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Planelló R, Llorente L, Herrero Ó, Novo M, Blanco-Sánchez L, Díaz-Pendón JA, et al. Transcriptome analysis of aphids exposed to glandular trichomes in tomato reveals stress and starvation related responses. Sci Rep. 2022;12(1):20154.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atamian HS, Chaudhary R, Cin VD, Bao E, Girke T, Kaloshian I. In planta expression or delivery of potato aphid Macrosiphum euphorbiae effectors Me10 and Me23 enhances aphid fecundity. Mol Plant Microbe Interact. 2013;26(1):67–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clavijo G, van Munster M, Monsion B, Bochet N, Brault V. Transcription of Densovirus endogenous sequences in the Myzus persicae genome. J Gen Virol. 2016;97(4):1000–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jayasinghe WH, Kim H, Nakada Y, Masuta C. A plant virus satellite RNA directly accelerates wing formation in its insect vector for spread. Nat Commun. 2021;12(1):7087.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parker BJ, Brisson JA. A laterally transferred viral gene modifies aphid wing plasticity. Curr Biol. 2019;29(12):2098–103.e5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shang F, Niu J, Ding B-Y, Zhang W, Wei D-D, Wei D, et al. The miR-9b microRNA mediates dimorphism and development of wing in aphids. Proc Natl Acad Sci. 2020;117(15):8404–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu S, Coates BS, Bonning BC. Endogenous viral elements integrated into the genome of the soybean aphid, aphis glycines. Insect Biochem Mol Biol. 2020;123:103405.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foottit RG, Maw HE, CD VOND, Hebert PD. Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes. Mol Ecol Res. 2008;8(6):1189–201.

  • McLean AHC, Hrcek J, Parker BJ, Mathe-Hubert H, Kaech H, Paine C, et al. Multiple phenotypes conferred by a single insect symbiont are independent. Proc Biol Sci. 1929;2020(287):20200562.


    Google Scholar
     

  • Henry Lee M, Peccoud J, Simon J-C, Hadfield Jarrod D, Maiden Martin JC, Ferrari J, et al. Horizontally transmitted symbionts and host colonization of ecological niches. Curr Biol. 2013;23(17):1713–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bender W, Spierer P, Hogness DS, Chambon P. Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. J Mol Biol. 1983;168(1):17–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldstein EB, de Anda AY, Henry LM, Parker BJ. Variation in density, immune gene suppression, and coinfection outcomes among strains of the aphid endosymbiont Regiella insecticola. Evolution. 2023;77(7):1704–11.

    Article 
    PubMed 

    Google Scholar
     

  • Henry LM, Maiden MCJ, Ferrari J, Godfray HCJ. Insect life history and the evolution of bacterial mutualism. Ecol Lett. 2015;18(6):516–25.

    Article 
    PubMed 

    Google Scholar
     

  • Schmieder R, Lim YW, Edwards R. Identification and removal of ribosomal RNA sequences from metatranscriptomes. Bioinformatics. 2012;28(3):433–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35(21):7188–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalantar KL, Carvalho T, de Bourcy CFA, Dimitrov B, Dingle G, Egger R, et al. IDseq—an open source cloud-based pipeline and analysis service for metagenomic pathogen detection and monitoring. GigaScience. 2020;9(10):giaa111.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2012;29(1):15–21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruby JG, Bellare P, Derisi JL. PRICE: software for the targeted assembly of components of (Meta) genomic sequence data. G3 (Bethesda). 2013;3(5):865–80.

    Article 
    PubMed 

    Google Scholar
     

  • Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchfink B, Reuter K, Drost HG. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18(4):366–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bohl JA, Lay S, Chea S, Ahyong V, Parker DM, Gallagher S, et al. Discovering disease-causing pathogens in resource-scarce Southeast Asia using a global metagenomic pathogen monitoring system. Proc Natl Acad Sci. 2022;119(11):e2115285119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batson J, Dudas G, Haas-Stapleton E, Kistler AL, Li LM, Logan P, et al. Single mosquito metatranscriptomics identifies vectors, emerging pathogens and reservoirs in one assay. eLife. 2021;10:e68353.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):3.

    Article 

    Google Scholar
     

  • Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, De Jesus JG, Main BJ, et al. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol. 2019;20(1):8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrews S. FastQC: A quality control tool for high throughput sequence data [Online]. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/2010.

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wheeler TJ, Eddy SR. nhmmer: DNA homology search with profile HMMs. Bioinformatics. 2013;29(19):2487–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. 2017;35(11):1026–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roach MJ, Schmidt SA, Borneman AR. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinformatics. 2018;19(1):460.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Challis R, Richards E, Rajan J, Cochrane G, Blaxter M. BlobToolKit – Interactive quality assessment of genome assemblies. G3 Genes Genomes Genet. 2020;10(4):1361–74.

    Article 
    CAS 

    Google Scholar
     

  • Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022;50(D1):D20–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021;38(10):4647–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levy Karin E, Mirdita M, Söding J. MetaEuk—sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics. Microbiome. 2020;8(1):48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarke HV. Genotypic and endosymbiont-mediated variation in parasitoid susceptibility and other fitness traits of the potato aphid, Macrosiphum euphorbiae. Doctoral Thesis. University of Dundee; 2013.

  • Turner D, Ackermann HW, Kropinski AM, Lavigne R, Sutton JM, Reynolds DM. Comparative analysis of 37 acinetobacter bacteriophages. Viruses. 2017;10(1):5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blitvich BJ, Firth AE. Insect-specific Flaviviruses: a systematic review of their discovery, host range, mode of transmission, superinfection exclusion potential and genomic organization. Viruses. 2015;7(4):1927–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazeaud C, Freppel W, Chatel-Chaix L. The multiples fates of the Flavivirus RNA genome during pathogenesis. Front Gen. 2018;9:595.

    Article 
    CAS 

    Google Scholar
     

  • François S, Filloux D, Roumagnac P, Bigot D, Gayral P, Martin DP, et al. Discovery of parvovirus-related sequences in an unexpected broad range of animals. Sci Rep. 2016;6(1):30880.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wenger JA, Cassone BJ, Legeai F, Johnston JS, Bansal R, Yates AD, et al. Whole genome sequence of the soybean aphid, aphis glycines. Insect Biochem Mol Biol. 2020;123:102917.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Consortium IAG. Genome sequence of the pea aphid acyrthosiphon pisum. PLoS Biol. 2010;8(2):e1000313.

    Article 

    Google Scholar
     

  • Horst AM, Nigg JC, Dekker FM, Falk BW. Endogenous viral elements are widespread in Arthropod genomes and commonly give rise to PIWI-interacting RNAs. J Virol. 2019;93(6):e02124–e2218.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryabov EV, Keane G, Naish N, Evered C, Winstanley D. Densovirus induces winged morphs in asexual clones of the rosy apple aphid, dysaphis plantaginea. Proc Natl Acad Sci. 2009;106(21):8465–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nigg JC, Kuo YW, Falk BW. Endogenous viral element-derived piwi-interacting RNAs (piRNAs) are not required for production of ping-pong-dependent piRNAs from Diaphorina citri Densovirus. Bio. 2020;11(5):e02209.

    CAS 

    Google Scholar
     

  • Kapoor A, Simmonds P, Lipkin WI. Discovery and characterization of mammalian endogenous parvoviruses. J Virol. 2010;84(24):12628–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, Fu Y, Xie J, Cheng J, Ghabrial SA, Li G, et al. Widespread endogenization of densoviruses and parvoviruses in animal and human genomes. J Virol. 2011;85(19):9863–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinheiro PV, Wilson JR, Xu Y, Zheng Y, Rebelo AR, Fattah-Hosseini S, et al. Plant viruses transmitted in two different modes produce differing effects on small RNA-mediated processes in their aphid vector. Phytobiomes J. 2019;3(1):71–81.

    Article 

    Google Scholar
     

  • Kuno G, Chang GJ, Tsuchiya KR, Karabatsos N, Cropp CB. Phylogeny of the genus flavivirus. J Virol. 1998;72(1):73–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link