Scientific Papers

Regulatory T cells in skin regeneration and wound healing | Military Medical Research


  • Nguyen AV, Soulika AM. The dynamics of the skin’s immune system. Int J Mol Sci. 2019;20(8):1811.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cañedo-Dorantes L, Cañedo-Ayala M. Skin acute wound healing: a comprehensive review. Int J Inflam. 2019;2019:3706315.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raziyeva K, Kim Y, Zharkinbekov Z, Kassymbek K, Jimi S, Saparov A. Immunology of acute and chronic wound healing. Biomolecules. 2021;11(5):700.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avishai E, Yeghiazaryan K, Golubnitschaja O. Impaired wound healing: facts and hypotheses for multi-professional considerations in predictive, preventive and personalised medicine. EPMA J. 2017;8(1):23–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ridiandries A, Tan JTM, Bursill CA. The role of chemokines in wound healing. Int J Mol Sci. 2018;19(10):3721.

    Article 

    Google Scholar
     

  • Goldberg SR, Diegelmann RF. What makes wounds chronic. Surg Clin North Am. 2020;100(4):681–93.

    Article 
    PubMed 

    Google Scholar
     

  • Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Correa-Gallegos D, Jiang D, Rinkevich Y. Fibroblasts as confederates of the immune system. Immunol Rev. 2021;302(1):147–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan S, Zeng Y, Li J, Wang C, Li W, He Z, et al. Phenotypical changes and clinical significance of CD4+/CD8+ T cells in SLE. Lupus Sci Med. 2022;9(1):e000660.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou W, Deng J, Chen Q, Li R, Xu X, Guan Y, et al. Expression of CD4+CD25+CD127Low regulatory T cells and cytokines in peripheral blood of patients with primary liver carcinoma. Int J Med Sci. 2020;17(6):712–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aly MG, Ibrahim EH, Karakizlis H, Weimer R, Opelz G, Morath C, et al. CD4+CD25+CD127Foxp3+ and CD8+CD28 Tregs in renal transplant recipients: phenotypic patterns, association with immunosuppressive drugs, and interaction with effector CD8+ T cells and CD19+IL-10+ Bregs. Front Immunol. 2021;12:716559.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalekar LA, Rosenblum MD. Regulatory T cells in inflammatory skin disease: from mice to humans. Int Immunol. 2019;31(7):457–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Panduro M, Benoist C, Mathis D. Tissue Tregs. Annu Rev Immunol. 2016;34:609–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larouche J, Sheoran S, Maruyama K, Martino MM. Immune regulation of skin wound healing: mechanisms and novel therapeutic targets. Adv Wound Care (New Rochelle). 2018;7(7):209–31.

    Article 
    PubMed 

    Google Scholar
     

  • Nosbaum A, Prevel N, Truong HA, Mehta P, Ettinger M, Scharschmidt TC, et al. Cutting edge: regulatory T cells facilitate cutaneous wound healing. J Immunol. 2016;196(5):2010–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scharschmidt TC, Vasquez KS, Truong HA, Gearty SV, Pauli ML, Nosbaum A, et al. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity. 2015;43(5):1011–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalekar LA, Cohen JN, Prevel N, Sandoval PM, Mathur AN, Moreau JM, et al. Regulatory T cells in skin are uniquely poised to suppress profibrotic immune responses. Sci Immunol. 2019;4(39):eaaw2910.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali N, Rosenblum MD. Regulatory T cells in skin. Immunology. 2017;152(3):372–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yousef H, Alhajj M, Sharma S. Anatomy, skin (integument), epidermis. Treasure Island: StatPearls Publishing LLC; 2022.


    Google Scholar
     

  • Ehrlich F, Fischer H, Langbein L, Praetzel-Wunder S, Ebner B, Figlak K, et al. Differential evolution of the epidermal keratin cytoskeleton in terrestrial and aquatic mammals. Mol Biol Evol. 2019;36(2):328–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scieglinska D, Krawczyk Z, Sojka DR, Gogler-Pigłowska A. Heat shock proteins in the physiology and pathophysiology of epidermal keratinocytes. Cell Stress Chaperones. 2019;24(6):1027–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuchs E. Scratching the surface of skin development. Nature. 2007;445(7130):834–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang R, Wang J, Chen X, Shi Y, Xie J. Epidermal stem cells in wound healing and regeneration. Stem Cells Int. 2020;2020:9148310.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brandner JM, Zorn-Kruppa M, Yoshida T, Moll I, Beck LA, De Benedetto A. Epidermal tight junctions in health and disease. Tissue Barriers. 2015;3(1–2):e974451.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hodge BD, Sanvictores T, Brodell RT. Anatomy, skin sweat glands. Treasure Island: StatPearls Publishing LLC; 2022.


    Google Scholar
     

  • Morgun EI, Vorotelyak EA. Epidermal stem cells in hair follicle cycling and skin regeneration: a view from the perspective of inflammation. Front Cell Dev Biol. 2020;8:581697.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boothby IC, Cohen JN, Rosenblum MD. Regulatory T cells in skin injury: at the crossroads of tolerance and tissue repair. Sci Immunol. 2020;5(47):eaaz9631.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tai C, Xie Z, Li Y, Feng Y, Xie Y, Yang H, et al. Human skin dermis-derived fibroblasts are a kind of functional mesenchymal stromal cells: judgements from surface markers, biological characteristics, to therapeutic efficacy. Cell Biosci. 2022;12(1):105.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keen MA. Hyaluronic acid in dermatology. Skinmed. 2017;15(6):441–8.

    PubMed 

    Google Scholar
     

  • Papakonstantinou E, Roth M, Karakiulakis G. Hyaluronic acid: a key molecule in skin aging. Dermatoendocrinol. 2012;4(3):253–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bordoni B, Mahabadi N, Varacallo M. Anatomy, fascia. Treasure Island: StatPearls Publishing LLC; 2022.


    Google Scholar
     

  • Klein J, Permana PA, Owecki M, Chaldakov GN, Böhm M, Hausman G, et al. What are subcutaneous adipocytes really good for? Exp Dermatol. 2007;16(1):45–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010;11(1):11–8.

    Article 
    PubMed 

    Google Scholar
     

  • Brüggen MC, Strobl J, Koszik F, Naito R, Vierhapper M, Li N, et al. Subcutaneous white adipose tissue of healthy young individuals harbors a leukocyte compartment distinct from skin and blood. J Invest Dermatol. 2019;139(9):2052–5.

    Article 
    PubMed 

    Google Scholar
     

  • Brüggen MC, Stingl G. Subcutaneous white adipose tissue: the deepest layer of the cutaneous immune barrier. J Dtsch Dermatol Ges. 2020;18(11):1225–7.

    PubMed 

    Google Scholar
     

  • Shook B, Xiao E, Kumamoto Y, Iwasaki A, Horsley V. CD301b+ macrophages are essential for effective skin wound healing. J Invest Dermatol. 2016;136(9):1885–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Yun K, Mu R. A review on the biology and properties of adipose tissue macrophages involved in adipose tissue physiological and pathophysiological processes. Lipids Health Dis. 2020;19(1):164.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng Q, Sun X, Xiao L, Xie Z, Bettini M, Deng T. A unique population: adipose-resident regulatory T cells. Front Immunol. 2018;9:2075.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang W, Deng Z, Benadjaoud F, Yang D, Yang C, Shi GP. Regulatory T cells promote adipocyte beiging in subcutaneous adipose tissue. FASEB J. 2020;34(7):9755–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frayn KN, Karpe F. Regulation of human subcutaneous adipose tissue blood flow. Int J Obes (Lond). 2014;38(8):1019–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo GP, Ni B, Yang X, Wu YZ. von Willebrand factor: more than a regulator of hemostasis and thrombosis. Acta Haematol. 2012;128(3):158–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giordano A, Musumeci G, D’Angelillo A, Rossini R, Zoccai GB, Messina S, et al. Effects of glycoprotein IIb/IIIa antagonists: anti platelet aggregation and beyond. Curr Drug Metab. 2016;17(2):194–203.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Federspiel CK, Liu KD. Chapter 28—Renal repair and recovery. In: Ronco C, Bellomo R, Kellum JA, Ricci Z, editors. Critical care nephrology. 3rd ed. Philadelphia: Elsevier; 2019. p. 154–9.

    Chapter 

    Google Scholar
     

  • Sanjabi S, Oh SA, Li MO. Regulation of the immune response by TGF-β: from conception to autoimmunity and infection. Cold Spring Harb Perspect Biol. 2017;9(6):a022236.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hendley SA, Dimov A, Bhargava A, Snoddy E, Mansour D, Afifi RO, et al. Assessment of histological characteristics, imaging markers, and rt-PA susceptibility of ex vivo venous thrombi. Sci Rep. 2021;11(1):22805.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics. 2020;12(8):735.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willenborg S, Eming SA. Macrophages – sensors and effectors coordinating skin damage and repair. J Dtsch Dermatol Ges. 2014;12(3):214–21.

    PubMed 

    Google Scholar
     

  • Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol. 2015;173(2):370–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Balaji S, Steen EH, Li H, Rae MM, Blum AJ, et al. T lymphocytes attenuate dermal scarring by regulating inflammation, neovascularization, and extracellular matrix remodeling. Adv Wound Care (New Rochelle). 2019;8(11):527–37.

    Article 
    PubMed 

    Google Scholar
     

  • Hinz B. The role of myofibroblasts in wound healing. Curr Res Transl Med. 2016;64(4):171–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Jiang D, Christ S, Correa-Gallegos D, Ramesh P, Kalgudde Gopal S, Wannemacher J, et al. Injury triggers fascia fibroblast collective cell migration to drive scar formation through N-cadherin. Nat Commun. 2020;11(1):5653.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan L, Jiang D, Correa-Gallegos D, Ramesh P, Zhao J, Ye H, et al. Connexin43 gap junction drives fascia mobilization and repair of deep skin wounds. Matrix Biol. 2021;97:58–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson KE, Wilgus TA. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv Wound Care (New Rochelle). 2014;3(10):647–61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rittié L. Cellular mechanisms of skin repair in humans and other mammals. J Cell Commun Signal. 2016;10(2):103–20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, et al. Epithelialization in wound healing: a comprehensive review. Adv Wound Care (New Rochelle). 2014;3(7):445–64.

    Article 
    PubMed 

    Google Scholar
     

  • Correa-Gallegos D, Jiang D, Christ S, Ramesh P, Ye H, Wannemacher J, et al. Patch repair of deep wounds by mobilized fascia. Nature. 2019;576(7786):287–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fischer A, Wannemacher J, Christ S, Koopmans T, Kadri S, Zhao J, et al. Neutrophils direct preexisting matrix to initiate repair in damaged tissues. Nat Immunol. 2022;23(4):518–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rinkevich Y, Walmsley GG, Hu MS, Maan ZN, Newman AM, Drukker M, et al. Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science. 2015;348(6232):aaa2151.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li WW, Carter MJ, Mashiach E, Guthrie SD. Vascular assessment of wound healing: a clinical review. Int Wound J. 2017;14(3):460–9.

    Article 
    PubMed 

    Google Scholar
     

  • Xiong Y, Chu X, Yu T, Knoedler S, Schroeter A, Lu L, et al. Reactive oxygen species-scavenging nanosystems in the treatment of diabetic wounds. Adv Healthc Mater. 2023;12(25):e2300779.

  • Munoz LD, Sweeney MJ, Jameson JM. Skin resident γδ T cell function and regulation in wound repair. Int J Mol Sci. 2020;21(23):9286.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathew-Steiner SS, Roy S, Sen CK. Collagen in wound healing. Bioengineering (Basel). 2021;8(5):63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takeo M, Lee W, Ito M. Wound healing and skin regeneration. Cold Spring Harb Perspect Med. 2015;5(1):a023267.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marshall CD, Hu MS, Leavitt T, Barnes LA, Lorenz HP, Longaker MT. Cutaneous scarring: basic science, current treatments, and future directions. Adv Wound Care (New Rochelle). 2018;7(2):29–45.

    Article 
    PubMed 

    Google Scholar
     

  • Hann A, Oo YH, Perera MTPR. Regulatory T-cell therapy in liver transplantation and chronic liver disease. Front Immunol. 2021;12:719954.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohkura N, Sakaguchi S. Transcriptional and epigenetic basis of Treg cell development and function: its genetic anomalies or variations in autoimmune diseases. Cell Res. 2020;30(6):465–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar P, Saini S, Khan S, Surendra Lele S, Prabhakar BS. Restoring self-tolerance in autoimmune diseases by enhancing regulatory T-cells. Cell Immunol. 2019;339:41–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abbas AK, Benoist C, Bluestone JA, Campbell DJ, Ghosh S, Hori S, et al. Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol. 2013;14(4):307–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharabi A, Tsokos MG, Ding Y, Malek TR, Klatzmann D, Tsokos GC. Regulatory T cells in the treatment of disease. Nat Rev Drug Discov. 2018;17(11):823–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakaguchi S, Mikami N, Wing JB, Tanaka A, Ichiyama K, Ohkura N. Regulatory T cells and human disease. Annu Rev Immunol. 2020;38:541–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmetterer KG, Neunkirchner A, Pickl WF. Naturally occurring regulatory T cells: markers, mechanisms, and manipulation. FASEB J. 2012;26(6):2253–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eggenhuizen PJ, Ng BH, Ooi JD. Treg enhancing therapies to treat autoimmune diseases. Int J Mol Sci. 2020;21(19):7015.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kassan M, Galan M, Partyka M, Trebak M, Matrougui K. Interleukin-10 released by CD4+CD25+ natural regulatory T cells improves microvascular endothelial function through inhibition of NADPH oxidase activity in hypertensive mice. Arterioscler Thromb Vasc Biol. 2011;31(11):2534–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koenecke C, Lee CW, Thamm K, Föhse L, Schafferus M, Mittrücker HW, et al. IFN-γ production by allogeneic Foxp3+ regulatory T cells is essential for preventing experimental graft-versus-host disease. J Immunol. 2012;189(6):2890–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lourenço EV, La Cava A. Natural regulatory T cells in autoimmunity. Autoimmunity. 2011;44(1):33–42.

    Article 
    PubMed 

    Google Scholar
     

  • Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci U S A. 2007;104(49):19446–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valmori D, Merlo A, Souleimanian NE, Hesdorffer CS, Ayyoub M. A peripheral circulating compartment of natural naive CD4 Tregs. J Clin Invest. 2005;115(7):1953–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clark RA, Kupper TS. IL-15 and dermal fibroblasts induce proliferation of natural regulatory T cells isolated from human skin. Blood. 2007;109(1):194–202.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanamori M, Nakatsukasa H, Okada M, Lu Q, Yoshimura A. Induced regulatory T cells: their development, stability, and applications. Trends Immunol. 2016;37(11):803–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsu P, Santner-Nanan B, Hu M, Skarratt K, Lee CH, Stormon M, et al. IL-10 potentiates differentiation of human induced regulatory T cells via STAT3 and Foxo1. J Immunol. 2015;195(8):3665–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang S, Xie C, Chen Y, Wang J, Chen X, Lu Z, et al. Differential roles of TNFα-TNFR1 and TNFα-TNFR2 in the differentiation and function of CD4+Foxp3+ induced Treg cells in vitro and in vivo periphery in autoimmune diseases. Cell Death Dis. 2019;10(1):27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmitt EG, Williams CB. Generation and function of induced regulatory T cells. Front Immunol. 2013;4:152.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamada N, Núñez G. Role of the gut microbiota in the development and function of lymphoid cells. J Immunol. 2013;190(4):1389–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107(27):12204–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nutsch KM, Hsieh CS. T cell tolerance and immunity to commensal bacteria. Curr Opin Immunol. 2012;24(4):385–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio CW, Santacruz N, et al. Peripheral education of the immune system by colonic commensal microbiota. Nature. 2011;478(7368):250–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghali JR, Alikhan MA, Holdsworth SR, Kitching AR. Induced regulatory T cells are phenotypically unstable and do not protect mice from rapidly progressive glomerulonephritis. Immunology. 2017;150(1):100–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song Y, Wang N, Chen L, Fang L. Tr1 Cells as a Key Regulator for maintaining immune homeostasis in transplantation. Front Immunol. 2021;12:671579.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilliet M, Liu YJ. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J Exp Med. 2002;195(6):695–704.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sebe A, Anliker B, Rau J, Renner M. Genetically modified regulatory T cells: therapeutic concepts and regulatory aspects. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2020;63(11):1403–11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hadaschik EN, Wei X, Leiss H, Heckmann B, Niederreiter B, Steiner G, et al. Regulatory T cell-deficient scurfy mice develop systemic autoimmune features resembling lupus-like disease. Arthritis Res Ther. 2015;17(1):35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halabi-Tawil M, Ruemmele FM, Fraitag S, Rieux-Laucat F, Neven B, Brousse N, et al. Cutaneous manifestations of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Br J Dermatol. 2009;160(3):645–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ujiie H. Regulatory T cells in autoimmune skin diseases. Exp Dermatol. 2019;28(6):642–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scharschmidt TC, Vasquez KS, Pauli ML, Leitner EG, Chu K, Truong HA, et al. Commensal microbes and hair follicle morphogenesis coordinately drive treg migration into neonatal skin. Cell Host Microbe. 2017;21(4):467–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cook KW, Letley DP, Ingram RJ, Staples E, Skjoldmose H, Atherton JC, et al. CCL20/CCR6-mediated migration of regulatory T cells to the Helicobacter pylori-infected human gastric mucosa. Gut. 2014;63(10):1550–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delacher M, Imbusch CD, Hotz-Wagenblatt A, Mallm JP, Bauer K, Simon M, et al. Precursors for nonlymphoid-tissue treg cells reside in secondary lymphoid organs and are programmed by the transcription factor BATF. Immunity. 2020;52(2):295–312.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delacher M, Simon M, Sanderink L, Hotz-Wagenblatt A, Wuttke M, Schambeck K, et al. Single-cell chromatin accessibility landscape identifies tissue repair program in human regulatory T cells. Immunity. 2021;54(4):702–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirahara K, Liu L, Clark RA, Yamanaka K, Fuhlbrigge RC, Kupper TS. The majority of human peripheral blood CD4+CD25highFoxp3+ regulatory T cells bear functional skin-homing receptors. J Immunol. 2006;177(7):4488–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuo K, Nagakubo D, Komori Y, Fujisato S, Takeda N, Kitamatsu M, et al. CCR4 is critically involved in skin allergic inflammation of BALB/c mice. J Invest Dermatol. 2018;138(8):1764–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lehtimäki S, Tillander S, Puustinen A, Matikainen S, Nyman T, Fyhrquist N, et al. Absence of CCR4 exacerbates skin inflammation in an oxazolone-induced contact hypersensitivity model. J Invest Dermatol. 2010;130(12):2743–51.

    Article 
    PubMed 

    Google Scholar
     

  • Klarquist J, Denman CJ, Hernandez C, Wainwright DA, Strickland FM, Overbeck A, et al. Reduced skin homing by functional Treg in vitiligo. Pigment Cell Melanoma Res. 2010;23(2):276–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan X, Sato H, Miyaji H, McDaniel JM, Wang Y, Kaneko E, et al. Fucosyltransferase VII improves the function of selectin ligands on cord blood hematopoietic stem cells. Glycobiology. 2013;23(10):1184–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dudda JC, Perdue N, Bachtanian E, Campbell DJ. Foxp3+ regulatory T cells maintain immune homeostasis in the skin. J Exp Med. 2008;205(7):1559–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malhotra N, Leyva-Castillo JM, Jadhav U, Barreiro O, Kam C, O’Neill NK, et al. RORα-expressing T regulatory cells restrain allergic skin inflammation. Sci Immunol. 2018;3(21):eaao6923.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wohlfert EA, Grainger JR, Bouladoux N, Konkel JE, Oldenhove G, Ribeiro CH, et al. GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice. J Clin Invest. 2011;121(11):4503–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siede J, Fröhlich A, Datsi A, Hegazy AN, Varga DV, Holecska V, et al. IL-33 receptor-expressing regulatory T cells are highly activated, Th2 biased and suppress CD4 T Cell proliferation through IL-10 and TGFβ release. PLoS ONE. 2016;11(8):e0161507.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiering C, Krausgruber T, Chomka A, Fröhlich A, Adelmann K, Wohlfert EA, et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature. 2014;513(7519):564–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griesenauer B, Paczesny S. The ST2/IL-33 axis in immune cells during inflammatory diseases. Front Immunol. 2017;8:475.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali N, Zirak B, Rodriguez RS, Pauli ML, Truong HA, Lai K, et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell. 2017;169(6):1119–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanchez Rodriguez R, Pauli ML, Neuhaus IM, Yu SS, Arron ST, Harris HW, et al. Memory regulatory T cells reside in human skin. J Clin Invest. 2014;124(3):1027–36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chow Z, Mueller SN, Deane JA, Hickey MJ. Dermal regulatory T cells display distinct migratory behavior that is modulated during adaptive and innate inflammation. J Immunol. 2013;191(6):3049–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenblum MD, Gratz IK, Paw JS, Lee K, Marshak-Rothstein A, Abbas AK. Response to self antigen imprints regulatory memory in tissues. Nature. 2011;480(7378):538–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gratz IK, Truong HA, Yang SH, Maurano MM, Lee K, Abbas AK, et al. Cutting Edge: memory regulatory T cells require IL-7 and not IL-2 for their maintenance in peripheral tissues. J Immunol. 2013;190(9):4483–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaitley S, Saraswathi T. Pathophysiology of Langerhans cells. J Oral Maxillofac Pathol. 2012;16(2):239–44.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seneschal J, Clark RA, Gehad A, Baecher-Allan CM, Kupper TS. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity. 2012;36(5):873–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu CC, Ali N, Karagiannis P, Di Meglio P, Skowera A, Napolitano L, et al. Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation. J Exp Med. 2012;209(5):935–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamazaki S, Nishioka A, Kasuya S, Ohkura N, Hemmi H, Kaisho T, et al. Homeostasis of thymus-derived Foxp3+ regulatory T cells is controlled by ultraviolet B exposure in the skin. J Immunol. 2014;193(11):5488–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petukhova L, Duvic M, Hordinsky M, Norris D, Price V, Shimomura Y, et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature. 2010;466(7302):113–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zöller M, McElwee KJ, Engel P, Hoffmann R. Transient CD44 variant isoform expression and reduction in CD4+/CD25+ regulatory T cells in C3H/HeJ mice with alopecia areata. J Invest Dermatol. 2002;118(6):983–92.

    Article 
    PubMed 

    Google Scholar
     

  • Hamed FN, Åstrand A, Bertolini M, Rossi A, Maleki-Dizaji A, Messenger AG, et al. Alopecia areata patients show deficiency of FOXP3+CD39+ T regulatory cells and clonotypic restriction of Treg TCRβ-chain, which highlights the immunopathological aspect of the disease. PLoS ONE. 2019;14(7):e0210308.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukhatayev Z, Ostapchuk YO, Fang D, Le Poole IC. Engineered antigen-specific regulatory T cells for autoimmune skin conditions. Autoimmun Rev. 2021;20(3):102761.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castela E, Le Duff F, Butori C, Ticchioni M, Hofman P, Bahadoran P, et al. Effects of low-dose recombinant interleukin 2 to promote T-regulatory cells in alopecia areata. JAMA Dermatol. 2014;150(7):748–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee E, Kim M, Lee YJ. Selective expansion of tregs using the IL-2 cytokine antibody complex does not reverse established alopecia areata in C3H/HeJ mice. Front Immunol. 2022;13:874778.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathur AN, Zirak B, Boothby IC, Tan M, Cohen JN, Mauro TM, et al. Treg-cell control of a CXCL5-IL-17 inflammatory axis promotes hair-follicle-stem-cell differentiation during skin-barrier repair. Immunity. 2019;50(3):655–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Truong C, Guo W, Woodside L, Gang A, Savage P, Infarinato N, et al. Skin stem cells orchestrate de novo generation of extrathymic regulatory T cells to establish a temporary protective niche during wound healing. bioRxiv. 2021. https://doi.org/10.1101/2021.08.16.456570.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haertel E, Joshi N, Hiebert P, Kopf M, Werner S. Regulatory T cells are required for normal and activin-promoted wound repair in mice. Eur J Immunol. 2018;48(6):1001–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shime H, Odanaka M, Tsuiji M, Matoba T, Imai M, Yasumizu Y, et al. Proenkephalin+ regulatory T cells expanded by ultraviolet B exposure maintain skin homeostasis with a healing function. Proc Natl Acad Sci U S A. 2020;117(34):20696–705.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murao N, Seino K, Hayashi T, Ikeda M, Funayama E, Furukawa H, et al. Treg-enriched CD4+ T cells attenuate collagen synthesis in keloid fibroblasts. Exp Dermatol. 2014;23(4):266–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Jin Q, Fu X, Qiao J, Niu F. Connection between T regulatory cell enrichment and collagen deposition in keloid. Exp Cell Res. 2019;383(2):111549.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barros JF, Waclawiak I, Pecli C, Borges PA, Georgii JL, Ramos-Junior ES, et al. Role of chemokine receptor CCR4 and Regulatory T cells in wound healing of diabetic mice. J Invest Dermatol. 2019;139(5):1161–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji S, Zhu Z, Sun X, Fu X. Functional hair follicle regeneration: an updated review. Signal Transduct Target Ther. 2021;6(1):66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho I, Lui PP, Ali N. Treg regulation of the epithelial stem cell lineage. J Immunol Regen Med. 2020;8:100028.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sojka DK, Fowell DJ. Regulatory T cells inhibit acute IFN-γ synthesis without blocking T-helper cell type 1 (Th1) differentiation via a compartmentalized requirement for IL-10. Proc Natl Acad Sci U S A. 2011;108(45):18336–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lintzeri DA, Constantinou A, Hillmann K, Ghoreschi K, Vogt A, Blume-Peytavi U. Alopecia areata—current understanding and management. J Dtsch Dermatol Ges. 2022;20(1):59–90.

    PubMed 

    Google Scholar
     

  • Gilhar A, Laufer-Britva R, Keren A, Paus R. Frontiers in alopecia areata pathobiology research. J Allergy Clin Immunol. 2019;144(6):1478–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin BS, Furuhashi T, Nakamura M, Torii K, Morita A. Impaired inhibitory function of circulating CD4+CD25+ regulatory T cells in alopecia areata. J Dermatol Sci. 2013;70(2):141–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med. 2005;11(12):1351–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Repertinger SK, Campagnaro E, Fuhrman J, El-Abaseri T, Yuspa SH, Hansen LA. EGFR enhances early healing after cutaneous incisional wounding. J Invest Dermatol. 2004;123(5):982–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bodnar RJ. Epidermal growth factor and epidermal growth factor receptor: the yin and yang in the treatment of cutaneous wounds and cancer. Adv Wound Care (New Rochelle). 2013;2(1):24–9.

    Article 
    PubMed 

    Google Scholar
     

  • Li B, Tang H, Bian X, Ma K, Chang J, Fu X, et al. Calcium silicate accelerates cutaneous wound healing with enhanced re-epithelialization through EGF/EGFR/ERK-mediated promotion of epidermal stem cell functions. Burns Trauma. 2021;9:tkab029.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castilho RM, Squarize CH, Gutkind JS. Exploiting PI3K/mTOR signaling to accelerate epithelial wound healing. Oral Dis. 2013;19(6):551–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh B, Carpenter G, Coffey RJ. EGF receptor ligands: recent advances. F1000Res. 2016;5:2270.

  • Delacher M, Imbusch CD, Weichenhan D, Breiling A, Hotz-Wagenblatt A, Träger U, et al. Genome-wide DNA-methylation landscape defines specialization of regulatory T cells in tissues. Nat Immunol. 2017;18(10):1160–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minutti CM, Modak RV, Macdonald F, Li F, Smyth DJ, Dorward DA, et al. A macrophage-pericyte axis directs tissue restoration via amphiregulin-induced transforming growth factor beta activation. Immunity. 2019;50(3):645–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaiss DM, Minutti CM, Knipper JA. Immune- and non-immune-mediated roles of regulatory T-cells during wound healing. Immunology. 2019;157(3):190–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hui SP, Sheng DZ, Sugimoto K, Gonzalez-Rajal A, Nakagawa S, Hesselson D, et al. Zebrafish regulatory T cells mediate organ-specific regenerative programs. Dev Cell. 2017;43(6):659-72.e5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dial CF, Tune MK, Doerschuk CM, Mock JR. Foxp3+ regulatory T cell expression of keratinocyte growth factor enhances lung epithelial proliferation. Am J Respir Cell Mol Biol. 2017;57(2):162–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bigliardi PL, Neumann C, Teo YL, Pant A, Bigliardi-Qi M. Activation of the δ-opioid receptor promotes cutaneous wound healing by affecting keratinocyte intercellular adhesion and migration. Br J Pharmacol. 2015;172(2):501–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wells RG. How collagen becomes ‘stiff.’ Elife. 2022;11:e77041.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodcock HV, Eley JD, Guillotin D, Platé M, Nanthakumar CB, Martufi M, et al. The mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis. Nat Commun. 2019;10(1):6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghatak S, Maytin EV, Mack JA, Hascall VC, Atanelishvili I, Moreno Rodriguez R, et al. Roles of proteoglycans and glycosaminoglycans in wound healing and fibrosis. Int J Cell Biol. 2015;2015:834893.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Short WD, Wang X, Keswani SG. The role of T lymphocytes in cutaneous scarring. Adv Wound Care (New Rochelle). 2022;11(3):121–31.

    Article 
    PubMed 

    Google Scholar
     

  • Lin W, Haribhai D, Relland LM, Truong N, Carlson MR, Williams CB, et al. Regulatory T cell development in the absence of functional Foxp3. Nat Immunol. 2007;8(4):359–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou BY, Wang WB, Wu XL, Zhang WJ, Zhou GD, Gao Z, et al. Nintedanib inhibits keloid fibroblast functions by blocking the phosphorylation of multiple kinases and enhancing receptor internalization. Acta Pharmacol Sin. 2020;41(9):1234–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrews JP, Marttala J, Macarak E, Rosenbloom J, Uitto J. Keloids: the paradigm of skin fibrosis—pathomechanisms and treatment. Matrix Biol. 2016;51:37–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin Q, Gui L, Niu F, Yu B, Lauda N, Liu J, et al. Macrophages in keloid are potent at promoting the differentiation and function of regulatory T cells. Exp Cell Res. 2018;362(2):472–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Falanga V, Isseroff RR, Soulika AM, Romanelli M, Margolis D, Kapp S, et al. Chronic wounds. Nat Rev Dis Primers. 2022;8(1):50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haalboom M. Chronic wounds: innovations in diagnostics and therapeutics. Curr Med Chem. 2018;25(41):5772–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morton LM, Phillips TJ. Wound healing and treating wounds: differential diagnosis and evaluation of chronic wounds. J Am Acad Dermatol. 2016;74(4):589–605.

    Article 
    PubMed 

    Google Scholar
     

  • Shanmugam VK, Angra D, Rahimi H, McNish S. Vasculitic and autoimmune wounds. J Vasc Surg Venous Lymphat Disord. 2017;5(2):280–92.

    Article 
    PubMed 

    Google Scholar
     

  • Mustoe TA, O’Shaughnessy K, Kloeters O. Chronic wound pathogenesis and current treatment strategies: a unifying hypothesis. Plast Reconstr Surg. 2006;117(7 Suppl):35S-41S.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao R, Liang H, Clarke E, Jackson C, Xue M. Inflammation in chronic wounds. Int J Mol Sci. 2016;17(12):2085.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hajam EY, Panikulam P, Chu CC, Jayaprakash H, Majumdar A, Jamora C. The expanding impact of T-regs in the skin. Front Immunol. 2022;13:983700.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holl J, Kowalewski C, Zimek Z, Fiedor P, Kaminski A, Oldak T, et al. Chronic diabetic wounds and their treatment with skin substitutes. Cells. 2021;10(3):655.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rehak L, Giurato L, Meloni M, Panunzi A, Manti GM, Uccioli L. The immune-centric revolution in the diabetic foot: monocytes and lymphocytes role in wound healing and tissue regeneration-a narrative review. J Clin Med. 2022;11(3):889.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leung OM, Li J, Li X, Chan VW, Yang KY, Ku M, et al. Regulatory T cells promote apelin-mediated sprouting angiogenesis in type 2 diabetes. Cell Rep. 2018;24(6):1610–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lužnik Z, Anchouche S, Dana R, Yin J. Regulatory T cells in angiogenesis. J Immunol. 2020;205(10):2557–65.

    Article 
    PubMed 

    Google Scholar
     

  • Astarita JL, Dominguez CX, Tan C, Guillen J, Pauli ML, Labastida R, et al. Treg specialization and functions beyond immune suppression. Clin Exp Immunol. 2022;211(2):176–83.

    Article 
    PubMed Central 

    Google Scholar
     

  • Onda M, Kobayashi K, Pastan I. Depletion of regulatory T cells in tumors with an anti-CD25 immunotoxin induces CD8 T cell-mediated systemic antitumor immunity. Proc Natl Acad Sci U S A. 2019;116(10):4575–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tchiloemba B, Kauke M, Haug V, Abdulrazzak O, Safi AF, Kollar B, et al. Long-term outcomes after facial allotransplantation: systematic review of the literature. Transplantation. 2021;105(8):1869–80.

    Article 
    PubMed 

    Google Scholar
     

  • Yang JH, Johnson AC, Colakoglu S, Huang CA, Mathes DW. Clinical and preclinical tolerance protocols for vascularized composite allograft transplantation. Arch Plast Surg. 2021;48(6):703–13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knoedler L, Knoedler S, Panayi AC, Lee CAA, Sadigh S, Huelsboemer L, et al. Cellular activation pathways and interaction networks in vascularized composite allotransplantation. Front Immunol. 2023;14:1179355.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kauke M, Safi AF, Panayi AC, Palmer WJ, Haug V, Kollar B, et al. A systematic review of immunomodulatory strategies used in skin-containing preclinical vascularized composite allotransplant models. J Plast Reconstr Aesthet Surg. 2022;75(2):586–604.

    Article 
    PubMed 

    Google Scholar
     

  • Kauke-Navarro M, Noel OF, Knoedler L, Knoedler S, Panayi AC, Stoegner VA, et al. Novel strategies in transplantation: genetic engineering and vascularized composite allotransplantation. J Surg Res. 2023;291:176–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arjomandnejad M, Kopec AL, Keeler AM. CAR-T regulatory (CAR-Treg) cells: engineering and applications. Biomedicines. 2022;10(2):287.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kauke-Navarro M, Knoedler S, Panayi A, Knoedler L, Noel OF, Pomahac B. Regulatory T cells: liquid and living precision medicine for the future of VCA. Transplantation. 2022;107(1):86–97.

    Article 
    PubMed 

    Google Scholar
     

  • Kauke M, Safi AF, Zhegibe A, Haug V, Kollar B, Nelms L, et al. Mucosa and rejection in facial vascularized composite allotransplantation: a systematic review. Transplantation. 2020;104(12):2616–24.

    Article 
    PubMed 

    Google Scholar
     

  • Gupta D, Bhattacharjee O, Mandal D, Sen MK, Dey D, Dasgupta A, et al. CRISPR-Cas9 system: a new-fangled dawn in gene editing. Life Sci. 2019;232:116636.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Zeebroeck L, Arroyo Hornero R, Côrte-Real BF, Hamad I, Meissner TB, Kleinewietfeld M. Fast and efficient genome editing of human FOXP3+ regulatory T cells. Front Immunol. 2021;12:655122.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kleinewietfeld M, Hafler DA. Regulatory T cells in autoimmune neuroinflammation. Immunol Rev. 2014;259(1):231–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kleinewietfeld M, Hafler DA. The plasticity of human Treg and Th17 cells and its role in autoimmunity. Semin Immunol. 2013;25(4):305–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP, et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity. 2008;29(1):44–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mijnheer G, Prakken BJ, van Wijk F. The effect of autoimmune arthritis treatment strategies on regulatory T-cell dynamics. Curr Opin Rheumatol. 2013;25(2):260–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Figliuolo VR, Savio LEB, Safya H, Nanini H, Bernardazzi C, Abalo A, et al. P2X7 receptor promotes intestinal inflammation in chemically induced colitis and triggers death of mucosal regulatory T cells. Biochim Biophys Acta Mol Basis Dis. 2017;1863(6):1183–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schenk U, Frascoli M, Proietti M, Geffers R, Traggiai E, Buer J, et al. ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Sci Signal. 2011;4(162):ra12.

    Article 
    PubMed 

    Google Scholar
     

  • Amini L, Greig J, Schmueck-Henneresse M, Volk HD, Bézie S, Reinke P, et al. Super-Treg: toward a new era of adoptive treg therapy enabled by genetic modifications. Front Immunol. 2020;11:611638.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan CL, Kuchroo JR, Sage PT, Liang D, Francisco LM, Buck J, et al. PD-1 restraint of regulatory T cell suppressive activity is critical for immune tolerance. J Exp Med. 2021;218(1):e20182232.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cortez JT, Montauti E, Shifrut E, Gatchalian J, Zhang Y, Shaked O, et al. CRISPR screen in regulatory T cells reveals modulators of Foxp3. Nature. 2020;582(7812):416–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • MacDonald KG, Hoeppli RE, Huang Q, Gillies J, Luciani DS, Orban PC, et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J Clin Invest. 2016;126(4):1413–24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link