Scientific Papers

Development of super-specific epigenome editing by targeted allele-specific DNA methylation | Epigenetics & Chromatin


  • Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17(8):487–500.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Luo C, Hajkova P, Ecker JR. Dynamic DNA methylation: in the right place at the right time. Science. 2018;361(6409):1336–40.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen Z, Zhang Y. Role of mammalian DNA methyltransferases in development. Annu Rev Biochem. 2020;89:135–58.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jambhekar A, Dhall A, Shi Y. Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol. 2019;20(10):625–41.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kungulovski G, Jeltsch A. Epigenome editing: state of the art, concepts, and perspectives. Trends Genet. 2016;32(2):101–13.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Stolzenburg S, Goubert D, Rots MG. Rewriting DNA methylation signatures at will: the curable genome within reach? Adv Exp Med Biol. 2016;945:475–90.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Holtzman L, Gersbach CA. Editing the epigenome: reshaping the genomic landscape. Annu Rev Genomics Hum Genet. 2018;19:43–71.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gjaltema RAF, Rots MG. Advances of epigenetic editing. Curr Opin Chem Biol. 2020;57:75–81.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sgro A, Blancafort P. Epigenome engineering: new technologies for precision medicine. Nucleic Acids Res. 2020;48(22):12453–82.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li F, Papworth M, Minczuk M, Rohde C, Zhang Y, Ragozin S, et al. Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes. Nucleic Acids Res. 2007;35(1):100–12.

    Article 
    PubMed 

    Google Scholar
     

  • Snowden AW, Gregory PD, Case CC, Pabo CO. Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol. 2002;12(24):2159–66.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173–83.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Stepper P, Kungulovski G, Jurkowska RZ, Chandra T, Krueger F, Reinhardt R, et al. Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase. Nucleic Acids Res. 2017;45(4):1703–13.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hofacker D, Broche J, Laistner L, Adam S, Bashtrykov P, Jeltsch A. Engineering of effector domains for targeted DNA methylation with reduced off-target effects. Int J Mol Sci. 2020;21(2):502.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 2014;159(3):635–46.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gowher H, Jeltsch A. Mammalian DNA methyltransferases: new discoveries and open questions. Biochem Soc Trans. 2018;46(5):1191–202.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lee JM, Ramos EM, Lee JH, Gillis T, Mysore JS, Hayden MR, et al. CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology. 2012;78(10):690–5.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bettencourt C, Lima M. Machado–Joseph disease: from first descriptions to new perspectives. Orphanet J Rare Dis. 2011;6:35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young JJ, Lavakumar M, Tampi D, Balachandran S, Tampi RR. Frontotemporal dementia: latest evidence and clinical implications. Ther Adv Psychopharmacol. 2018;8(1):33–48.

    Article 
    PubMed 

    Google Scholar
     

  • International HapMap C. The international hapmap project. Nature. 2003;426(6968):789–96.

    Article 

    Google Scholar
     

  • Vinagre J, Almeida A, Populo H, Batista R, Lyra J, Pinto V, et al. Frequency of TERT promoter mutations in human cancers. Nat Commun. 2013;4:2185.

    Article 
    PubMed 

    Google Scholar
     

  • Lin YC, Boone M, Meuris L, Lemmens I, Van Roy N, Soete A, et al. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat Commun. 2014;5:4767.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Broche J, Kungulovski G, Bashtrykov P, Rathert P, Jeltsch A. Genome-wide investigation of the dynamic changes of epigenome modifications after global DNA methylation editing. Nucleic Acids Res. 2021;49(1):158–76.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER, Wanner B, et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci U S A. 2011;108(25):10098–103.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Boyle EA, Andreasson JOL, Chircus LM, Sternberg SH, Wu MJ, Guegler CK, et al. High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding. Proc Natl Acad Sci U S A. 2017;114(21):5461–6.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tang L, Yang F, He X, Xie H, Liu X, Fu J, et al. Efficient cleavage resolves PAM preferences of CRISPR-Cas in human cells. Cell Regen. 2019;8(2):44–50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gleditzsch D, Pausch P, Muller-Esparza H, Ozcan A, Guo X, Bange G, et al. PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures. RNA Biol. 2019;16(4):504–17.

    Article 
    PubMed 

    Google Scholar
     

  • Lawhorn IE, Ferreira JP, Wang CL. Evaluation of sgRNA target sites for CRISPR-mediated repression of TP53. PLoS ONE. 2014;9(11):e113232.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galonska C, Charlton J, Mattei AL, Donaghey J, Clement K, Gu H, et al. Genome-wide tracking of dCas9-methyltransferase footprints. Nat Commun. 2018;9(1):597.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pflueger C, Tan D, Swain T, Nguyen T, Pflueger J, Nefzger C, et al. A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs. Genome Res. 2018;28(8):1193–206.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Stolzenburg S, Rots MG, Beltran AS, Rivenbark AG, Yuan X, Qian H, et al. Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Nucleic Acids Res. 2012;40(14):6725–40.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kungulovski G, Nunna S, Thomas M, Zanger UM, Reinhardt R, Jeltsch A. Targeted epigenome editing of an endogenous locus with chromatin modifiers is not stably maintained. Epigenet Chromatin. 2015;8:12.

    Article 

    Google Scholar
     

  • Vojta A, Dobrinic P, Tadic V, Bockor L, Korac P, Julg B, et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 2016;44(12):5615–28.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • O’Geen H, Ren C, Nicolet CM, Perez AA, Halmai J, Le VM, et al. dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression. Nucleic Acids Res. 2017;45(17):9901–16.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • O’Geen H, Tomkova M, Combs JA, Tilley EK, Segal DJ. Determinants of heritable gene silencing for KRAB-dCas9 + DNMT3 and Ezh2-dCas9 + DNMT3 hit-and-run epigenome editing. Nucleic Acids Res. 2022;50(6):3239–53.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wu J, Tang B, Tang Y. Allele-specific genome targeting in the development of precision medicine. Theranostics. 2020;10(7):3118–37.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Concordet JP, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018;46(W1):W242–5.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Labuhn M, Adams FF, Ng M, Knoess S, Schambach A, Charpentier EM, et al. Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications. Nucleic Acids Res. 2018;46(3):1375–85.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Stemmer M, Thumberger T, Del Sol KM, Wittbrodt J, Mateo JL. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS ONE. 2015;10(4):e0124633.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balci H, Globyte V, Joo C. Targeting G-quadruplex forming sequences with Cas9. ACS Chem Biol. 2021;16(4):596–603.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Malina A, Cameron CJF, Robert F, Blanchette M, Dostie J, Pelletier J. PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing. Nat Commun. 2015;6:10124.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Amabile A, Migliara A, Capasso P, Biffi M, Cittaro D, Naldini L, et al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell. 2016;167(1):219–32.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mlambo T, Nitsch S, Hildenbeutel M, Romito M, Muller M, Bossen C, et al. Designer epigenome modifiers enable robust and sustained gene silencing in clinically relevant human cells. Nucleic Acids Res. 2018;46(9):4456–68.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nakamura M, Gao Y, Dominguez AA, Qi LS. CRISPR technologies for precise epigenome editing. Nat Cell Biol. 2021;23(1):11–22.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • O’Geen H, Bates SL, Carter SS, Nisson KA, Halmai J, Fink KD, et al. Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner. Epigenet Chromatin. 2019;12(1):26.

    Article 

    Google Scholar
     

  • Nunez JK, Chen J, Pommier GC, Cogan JZ, Replogle JM, Adriaens C, et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell. 2021;184(9):2503–19.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Monga I, Qureshi A, Thakur N, Gupta AK, Kumar M. ASPsiRNA: a resource of ASP-siRNAs having therapeutic potential for human genetic disorders and algorithm for prediction of their inhibitory efficacy. G3. 2017;7(9):2931–43.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ciesiolka A, Stroynowska-Czerwinska A, Joachimiak P, Ciolak A, Kozlowska E, Michalak M, et al. Artificial miRNAs targeting CAG repeat expansion in ORFs cause rapid deadenylation and translation inhibition of mutant transcripts. Cell Mol Life Sci. 2021;78(4):1577–96.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Southwell AL, Skotte NH, Kordasiewicz HB, Ostergaard ME, Watt AT, Carroll JB, et al. In vivo evaluation of candidate allele-specific mutant huntingtin gene silencing antisense oligonucleotides. Mol Ther. 2014;22(12):2093–106.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ostergaard ME, Southwell AL, Kordasiewicz H, Watt AT, Skotte NH, Doty CN, et al. Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS. Nucleic Acids Res. 2013;41(21):9634–50.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Murray SF, Jazayeri A, Matthes MT, Yasumura D, Yang H, Peralta R, et al. Allele-specific inhibition of rhodopsin with an antisense oligonucleotide slows photoreceptor cell degeneration. Invest Ophthalmol Vis Sci. 2015;56(11):6362–75.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Shin JW, Kim KH, Chao MJ, Atwal RS, Gillis T, MacDonald ME, et al. Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet. 2016;25(20):4566–76.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zeitler B, Froelich S, Marlen K, Shivak DA, Yu Q, Li D, et al. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington’s disease. Nat Med. 2019;25(7):1131–42.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fink KD, Deng P, Gutierrez J, Anderson JS, Torrest A, Komarla A, Kalomoiris S, Cary W, Anderson JD, Gruenloh W, Duffy A, Tempkin T, Annett G, Wheelock V, Segal DJ, Nolta JA. Allele-specific reduction of the mutant huntingtin allele using transcription activator-like effectors in human huntington’s disease fibroblasts. Cell Transplant. 2016;25(4):677–86. https://doi.org/10.3727/096368916X690863.

    Article 
    PubMed 

    Google Scholar
     

  • Shao S, Chang L, Sun Y, Hou Y, Fan X, Sun Y. Multiplexed sgRNA expression allows versatile single nonrepetitive DNA labeling and endogenous gene regulation. ACS Synth Biol. 2018;7(1):176–86.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chiang TW, le Sage C, Larrieu D, Demir M, Jackson SP. CRISPR-Cas 9(D10A) nickase-based genotypic and phenotypic screening to enhance genome editing. Sci Rep. 2016;6:24356.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kikin O, D’Antonio L, Bagga PS. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 2006;34(Web Server issue):W676–82.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Leitao E, Beygo J, Zeschnigk M, Klein-Hitpass L, Bargull M, Rahmann S, et al. Locus-specific DNA methylation analysis by targeted deep bisulfite sequencing. Methods Mol Biol. 2018;1767:351–66.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bashtrykov P, Jeltsch A. DNA methylation analysis by bisulfite conversion coupled to double multiplexed amplicon-based next-generation sequencing (NGS). Methods Mol Biol. 2018;1767:367–82.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30(5):614–20.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pedersen JS, Valen E, Velazquez AM, Parker BJ, Rasmussen M, Lindgreen S, et al. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome. Genome Res. 2014;24(3):454–66.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Abugessaisa I, Noguchi S, Hasegawa A, Kondo A, Kawaji H, Carninci P, et al. refTSS: a reference data set for human and mouse transcription start sites. J Mol Biol. 2019;431(13):2407–22.

    Article 
    PubMed 
    CAS 

    Google Scholar
     



  • Source link