Scientific Papers

Dynamics of loops surrounding the active site architecture in GH5_2 subfamily TfCel5A for cellulose degradation | Biotechnology for Biofuels and Bioproducts


  • Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 2007;315(5813):804–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang KD, Li W, Wang YF, Zheng YL, Tan FC, Ma XQ, Yao LS, Bayer EA, Wang LS, Li FL. Processive degradation of crystalline cellulose by a multimodular endoglucanase via a wirewalking mode. Biomacromol. 2018;19(5):1686–96.

    Article 
    CAS 

    Google Scholar
     

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42(Database):D490-495.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M, Eijsink VG. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science. 2010;330(6001):219–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng F, Tu T, Wang X, Wang Y, Ma R, Su X, Xie X, Yao B, Luo H. Enhancing the catalytic activity of a novel GH5 cellulase GtCel5 from Gloeophyllum trabeum CBS 900.73 by site-directed mutagenesis on loop 6. Biotechnol Biofuels. 2018;11:76.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yennamalli RM, Rader AJ, Kenny AJ, Wolt JD, Sen TZ. Endoglucanases: insights into thermostability for biofuel applications. Biotechnol Biofuels. 2013. https://doi.org/10.1186/1754-6834-6-136.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu G, Qu Y. Integrated engineering of enzymes and microorganisms for improving the efficiency of industrial lignocellulose deconstruction. Eng Microbiol. 2021;1:100005.

    Article 
    CAS 

    Google Scholar
     

  • Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MW, Kelly RM. Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev. 2014;38(3):393–448.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu G, Qu Y. Engineering of filamentous fungi for efficient conversion of lignocellulose: tools, recent advances and prospects. Biotechnol Adv. 2019;37(4):519–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Henrissat B, Claeyssens M, Tomme P, Lemesle L, Mornon JP. Cellulase families revealed by hydrophobic cluster analysis. Gene. 1989;81(1):83–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aspeborg H, Coutinho PM, Wang Y, Brumer H 3rd, Henrissat B. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol. 2012;12:186.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Z, Friedland GD, Pereira JH, Reveco SA, Chan R, Park JI, Thelen MP, Adams PD, Arkin AP, Keasling JD, et al. Tracing determinants of dual substrate specificity in glycoside hydrolase family 5. J Biol Chem. 2012;287(30):25335–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu S, Shao S, Li L, Cheng Z, Tian L, Gao P, Wang L. Substrate-binding specificity of chitinase and chitosanase as revealed by active-site architecture analysis. Carbohydr Res. 2015;418:50–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian L, Liu S, Wang S, Wang L. Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis. Sci Rep. 2016;6:23605.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Stahlberg J, Beckham GT. Fungal cellulases. Chem Rev. 2015;115(3):1308–448.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang PS, Feldmeier K, Parmeggiani F, Velasco DAF, Hocker B, Baker D. De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nat Chem Biol. 2016;12(1):29–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glasgow EM, Kemna EI, Bingman CA, Ing N, Deng K, Bianchetti CM, Takasuka TE, Northen TR, Fox BG. A structural and kinetic survey of GH5_4 endoglucanases reveals determinants of broad substrate specificity and opportunities for biomass hydrolysis. J Biol Chem. 2020;295(51):17752–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang H, Shi P, Liu Y, Xia W, Wang X, Cao H, Ma R, Luo H, Bai Y, Yao B. Loop 3 of fungal endoglucanases of glycoside hydrolase family 12 modulates catalytic efficiency. Appl Environ Microbiol. 2017. https://doi.org/10.1128/AEM.03123-16.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo J, Song C, Cui W, Han L, Zhou Z. Counteraction of stability-activity trade-off of Nattokinase through flexible region shifting. Food Chem. 2023;423:136241.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang P, Wang X, Ye J, Rao S, Zhou J, Du G, Liu S. Enhanced thermostability and catalytic activity of Streptomyces mobaraenesis transglutaminase by rationally engineering its flexible regions. J Agric Food Chem. 2023;71(16):6366–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamerlin SC, Rucker R, Boresch S. A molecular dynamics study of WPD-loop flexibility in PTP1B. Biochem Biophys Res Commun. 2007;356(4):1011–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Meng S, Nie K, Schwaneberg U, Davari MD, Xu H, Ji Y, Liu L. Flexibility regulation of loops surrounding the tunnel entrance in cytochrome P450 enhanced substrate access substantially. ACS Catal. 2022;12:12800–8.

    Article 
    CAS 

    Google Scholar
     

  • Wu M, Bu L, Vuong TV, Wilson DB, Crowley MF, Sandgren M, Ståhlberg J, Beckham GT, Hansson H. Loop motions important to product expulsion in the Thermobifida fusca glycoside hydrolase family 6 cellobiohydrolase from structural and computational studies. J Biol Chem. 2013;288(46):33107–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang X, Wang Y, Xu L, Chen G, Wang L. Substrate binding interferes with active site conformational dynamics in endoglucanase Cel5A from Thermobifida fusca. Biochem Biophys Res Commun. 2017;491(1):236–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song Y, Wu X, Zhao Y, Jiang X, Wang L. Comparative molecular dynamics simulations identify a salt-sensitive loop responsible for the halotolerant activity of GH5 cellulases. J Biomol Struct Dyn. 2021. https://doi.org/10.1080/07391102.2021.1930167.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bu L, Crowley MF, Himmel ME, Beckham GT. Computational investigation of the pH dependence of loop flexibility and catalytic function in glycoside hydrolases. J Biol Chem. 2013;288(17):12175–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartoli-German I, Haiech J, Chippaux M, Barras F. Informational suppression to investigate structural functional and evolutionary aspects of the cellulase EGZ. J Mol Biol. 1995;246(1):82–94.

    Article 

    Google Scholar
     

  • Varrot A, Davies GJ. Direct experimental observation of the hydrogen-bonding network of a glycosidase along its reaction coordinate revealed by atomic resolution analyses of endoglucanase Cel5A. Acta Crystallogr D Biol Crystallogr. 2003;59(3):447–52.

    Article 
    PubMed 

    Google Scholar
     

  • Chapon V, Czjzek M, El Hassouni M, Py B, Juy M, Barras F. Type II protein secretion in gram-negative pathogenic bacteria: the study of the structure/secretion relationships of the cellulase cel5 (formerly EGZ) from Erwinia chrysanthemi. J Mol Biol. 2001;310(5):1055–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu X, Shi Z, Tian W, Liu M, Huang S, Liu X, Yin H, Wang L. A thermostable and CBM2-linked GH10 xylanase from Thermobifida fusca for paper bleaching. Front Bioeng Biotechnol. 2022;10:939550.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu X, Zhang S, Zhang Q, Zhao Y, Chen G, Guo W, Wang L. The contribution of specific subsites to catalytic activities in active site architecture of a GH11 xylanase. Appl Microbiol Biotechnol. 2020;104(20):8735–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun Z, Liu Q, Qu G, Feng Y, Reetz MT. Utility of B-factors in protein science: interpreting rigidity, flexibility, and internal motion and engineering thermostability. Chem Rev. 2019;119(3):1626–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumagai Y, Yamashita K, Tagami T, Uraji M, Wan K, Okuyama M, Yao M, Kimura A, Hatanaka T. The loop structure of Actinomycete glycoside hydrolase family 5 mannanases governs substrate recognition. FEBS J. 2015;282(20):4001–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang PH, Lin WL, Hsieh HY, Lin TY, Chen CH, Tewary SK, Lee HL, Yuan SF, Yang B, Yao JY, et al. A flexible loop for mannan recognition and activity enhancement in a bifunctional glycoside hydrolase family 5. Biochim Biophys Acta Gen Subj. 2018;1862(3):513–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davies GJ, Mackenzie L, Varrot A, Dauter M, Brzozowski AM, Schulein M, Withers SG. Snapshots along an enzymatic reaction coordinate: analysis of a retaining beta-glycoside hydrolase. Biochemistry. 1998;37(34):11707–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ducros V, Czjzek M, Belaich A, Gaudin C, Fierobe HP, Belaich JP, Davies GJ, Haser R. Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5. Structure. 1995;3(9):939–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu X, Tian Z, Jiang X, Zhang Q, Wang L. Enhancement in catalytic activity of Aspergillus niger XynB by selective site-directed mutagenesis of active site amino acids. Appl Microbiol Biotechnol. 2018;102(1):249–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vocadlo DJ, Davies GJ. Mechanistic insights into glycosidase chemistry. Curr Opin Chem Biol. 2008;12(5):539–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng B, Yang W, Zhao X, Wang Y, Lou Z, Rao Z, Feng Y. Crystal structure of hyperthermophilic endo-β-1,4-glucanase: implications for catalytic mechanism and thermostability. J Biol Chem. 2012;287(11):8336–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ardevol A, Rovira C. Reaction mechanisms in carbohydrate-active enzymes: glycoside hydrolases and glycosyltransferases: insights from ab Initio quantum mechanics/molecular mechanics dynamic simulations. J Am Chem Soc. 2015;137(24):7528–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fenwick MK, Mehta AP, Zhang Y, Abdelwahed SH, Begley TP, Ealick SE. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase. Nat Commun. 2015;6:6480.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keen BA, Jozwiakowski SK, Bailey LJ, Bianchi J, Doherty AJ. Molecular dissection of the domain architecture and catalytic activities of human PrimPol. Nucleic Acids Res. 2014;42(9):5830–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rutten L, Mannie JP, Stead CM, Raetz CR, Reynolds CM, Bonvin AM, Tommassen JP, Egmond MR, Trent MS, Gros P. Active-site architecture and catalytic mechanism of the lipid A deacylase LpxR of Salmonella typhimurium. Proc Natl Acad Sci USA. 2009;106(6):1960–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakladar S, Wang Y, Clark T, Cheng L, Ko S, Vocadlo DJ, Bennet AJ. A mechanism-based inactivator of glycoside hydrolases involving formation of a transient non-classical carbocation. Nat Commun. 2014;5:5590.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Wang S, Wu X, Liu S, Li D, Xu H, Gao P, Chen G, Wang L. Subsite-specific contributions of different aromatic residues in the active site architecture of glycoside hydrolase family 12. Sci Rep. 2015. https://doi.org/10.1038/srep18357.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu MQ, Li JY, Rehman AU, Xu X, Gu ZJ, Wu RC. Laboratory evolution of GH11 endoxylanase through DNA shuffling: effects of distal residue substitution on catalytic activity and active site architecture. Front Bioeng Biotechnol. 2019;7:350.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31(3):426–8.

    Article 
    CAS 

    Google Scholar
     

  • Bacia K, Haustein E, Schwille P. Fluorescence correlation spectroscopy: principles and applications. Cold Spring Harb Protoc. 2014;2014(7):709–25.

    Article 
    PubMed 

    Google Scholar
     

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al. Clustal W and clustal X version 2.0. Bioinformatics. 2007;23(21):2947–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44(Web Server):W242–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14(6):1188–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 1996;118(9):2309–2309.

    Article 
    CAS 

    Google Scholar
     

  • Jiang XK, Chen GJ, Wang LS. Structural and dynamic evolution of the amphipathic N-terminus diversifies enzyme thermostability in the glycoside hydrolase family 12. Phys Chem Chem Phys. 2016;18(31):21340–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013;29(7):845–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link