Scientific Papers

A preclinical platform for assessing long-term drug efficacy exploiting mechanically tunable scaffolds colonized by a three-dimensional tumor microenvironment | Biomaterials Research


  • European commission. Summary Report on the statistics on the use of animals for scientific purposes in the Member States of the European Union and Norway in 2019. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0016.

  • Mcmillin DW, Negri JM, Mitsiades CS. The role of tumour-stromal interactions in modifying drug response: challenges and opportunities. Nat Rev Drug Discov. 2013;12:217–28.

    Article 
    CAS 

    Google Scholar
     

  • Tommelein J, Verset L, Boterberg T, Demetter P, Bracke M, De Wever O. Cancer-associated fibroblasts connect metastasis-promoting communication in colorectal cancer. Front Oncol. 2015;5:1–11.

    Article 

    Google Scholar
     

  • De Vlieghere E, Verset L, Demetter P, Bracke M, De Wever O. Cancer-associated fibroblasts as target and tool in cancer therapeutics and diagnostics. Virchows Archiv. 2015;467:367–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26259962. [Cited 2016 Mar 11].

    Article 

    Google Scholar
     

  • Gao Q, Yang Z, Xu S, Li X, Yang X, Jin P, et al. Heterotypic CAF-tumor spheroids promote early peritoneal metastatis of ovarian cancer. J Exp Med. 2019;216(3):688–703.

  • Jeong SY, Lee JH, Shin Y, Chung S, Kuh HJ. Co-culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment. PLoS One. 2016;11:1–17.

    Article 
    CAS 

    Google Scholar
     

  • Eder T, Weber A, Neuwirt H, Grünbacher G, Ploner C, Klocker H, et al. Cancer-associated fibroblasts modify the response of prostate cancer cells to androgen and anti-androgens in three-dimensional spheroid culture. Int J Mol Sci. 2016;17:1458.

    Article 

    Google Scholar
     

  • Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T, Sboner A, et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 2017;7:462–77.

    Article 

    Google Scholar
     

  • Krall N, Superti-Furga G, Vladimer GI. Patient-derived model systems and the development of next-generation anticancer therapeutics. Curr Opin Chem Biol. 2020;56:72–8.

    Article 
    CAS 

    Google Scholar
     

  • Kopper O, de Witte CJ, Lõhmussaar K, Valle-Inclan JE, Hami N, Kester L, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat Med. 2019;25:838–49.

    Article 
    CAS 

    Google Scholar
     

  • De Jaeghere E, De Vlieghere E, Van Hoorick J, Van Vlierberghe S, Wagemans G, Pieters L, et al. Heterocellular 3D scaffolds as biomimetic to recapitulate the tumor microenvironment of peritoneal metastases in vitro and in vivo. Biomaterials. 2018;158:95–105.

    Article 

    Google Scholar
     

  • Byrne AT, Alférez DG, Amant F, Annibali D, Arribas J, Biankin AV, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer. 2017;17:254–68.

    Article 
    CAS 

    Google Scholar
     

  • Eggert S, Gutbrod MS, Liebsch G, Meier R, Meinert C, Hutmacher DW. Automated 3D microphysiometry facilitates high-content and highly reproducible oxygen measurements within 3D cell culture models. ACS Sens. 2021;6:1248.

    Article 
    CAS 

    Google Scholar
     

  • Ozturk MS, Lee VK, Zou H, Friedel RH, Intes X, Dai G. High-resolution tomographic analysis of in vitro 3D glioblastoma tumor model under long-term drug treatment. Sci Adv. 2020;6:eaay7513.

    Article 
    CAS 

    Google Scholar
     

  • Neufeld L, Yeini E, Reisman N, Shtilerman Y, Ben-Shushan D, Pozzi S, et al. Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment. Sci Adv. 2021;7:1–19.

    Article 

    Google Scholar
     

  • Vang R, Shih I-M, Robert JK. Ovarian low-grade and high-grade serous carcinoma. Adv Anat Pathol. 2009;16:267–82.

    Article 

    Google Scholar
     

  • Cheasley D, Fernandez ML, Köbel M, Kim H, Dawson A, Hoenisch J, et al. Molecular characterization of low-grade serous ovarian carcinoma identifies genomic aberrations according to hormone receptor expression. NPJ Precis Oncol. 2022;6:47.

    Article 
    CAS 

    Google Scholar
     

  • Slomovitz B, Gourley C, Carey MS, Malpica A, Shih IM, Huntsman D, et al. Low-grade serous ovarian cancer: State of the science. Gynecol Oncol. 2020;156:715–25. https://doi.org/10.1016/j.ygyno.2019.12.033.

    Article 

    Google Scholar
     

  • Gershenson DM, Miller A, Brady WE, Paul J, Carty K, Rodgers W, et al. Trametinib versus standard of care in patients with recurrent low-grade serous ovarian cancer (GOG 281/LOGS): an international, randomised, open-label, multicentre, phase 2/3 trial. The Lancet. 2022;399:541–53.

    Article 
    CAS 

    Google Scholar
     

  • Houben A, Roose P, Van den Bergen H, Declercq H, Van Hoorick J, Gruber P, et al. Flexible oligomer spacers as the key to solid-state photopolymerization of hydrogel precursors. Mater Today Chem. 2017;4:84–9. https://doi.org/10.1016/j.mtchem.2017.01.005.

    Article 

    Google Scholar
     

  • Arslan A, Vanmol K, Dobos A, Natale A, Van Hoorick J, Roose P, et al. Increasing the microfabrication performance of synthetic hydrogel precursors through molecular design. Biomacromolecules. 2021;22:4919.

    Article 
    CAS 

    Google Scholar
     

  • Arslan A, Steiger W, Roose P, Van den Bergen H, Gruber P, Zerobin E, et al. Polymer architecture as key to unprecedented high-resolution 3D-printing performance: the case of biodegradable hexa-functional telechelic urethane-based poly-ε-caprolactone. Mater Today. 2021;44:25–39.

    Article 
    CAS 

    Google Scholar
     

  • Roose P, Van den Bergen H, Houben A, Bontinck D, Van Vlierberghe S. A Semiempirical scaling model for the solid- and liquid-state photopolymerization kinetics of semicrystalline acrylated oligomers. Macromolecules. 2018;51:5027–38. Available from: http://pubs.acs.org/doi/10.1021/acs.macromol.8b00706.  [cited 2019 May 2].

    Article 
    CAS 

    Google Scholar
     

  • Minsart M, Mignon A, Arslan A, Allan IU, Van Vlierberghe S, Dubruel P. Activated carbon containing PEG-based hydrogels as novel candidate dressings for the treatment of malodorous wounds. Macromol Mater Eng. 2021;306:1–12.

    Article 

    Google Scholar
     

  • De Vlieghere E, Gremonprez F, Verset L, Mariën L, Jones CJ, De Craene B, et al. Tumor-environment biomimetics delay peritoneal metastasis formation by deceiving and redirecting disseminated cancer cells. Biomaterials. 2015;54:148–57.

    Article 

    Google Scholar
     

  • De Thaye E, Van de Vijver K, Van der Meulen J, Taminau J, Wagemans G, Denys H, et al. Establishment and characterization of a cell line and patient-derived xenograft (PDX) from peritoneal metastasis of low-grade serous ovarian carcinoma. Sci Rep. 2020;10:1–10.

    Article 

    Google Scholar
     

  • Derrien A, Gouard S, Maurel C, Gaugler MH, Bruchertseifer F, Morgenstern A, et al. Therapeutic efficacy of alpha-RIT using a 213Bi-anti-hCD138 antibody in a mouse model of ovarian peritoneal carcinomatosis. Front Med (Lausanne). 2015;2:1–10.


    Google Scholar
     

  • The jamovi project (2021). jamovi. (Version 2.2) [Computer Software]. Available from:
    https://www.jamovi.org.

  • Sheiko SS, Dobrynin AV. Architectural code for rubber elasticity: from supersoft to superfirm materials. Macromolecules. 2019;52:7531–46.

    Article 
    CAS 

    Google Scholar
     

  • Cavo M, Delle Cave D, D’Amone E, Gigli G, Lonardo E, del Mercato LL. A synergic approach to enhance long-term culture and manipulation of MiaPaCa-2 pancreatic cancer spheroids. Sci Rep. 2020;10:1–11.

    Article 

    Google Scholar
     

  • Pietilä EA, Gonzalez-Molina J, Moyano-Galceran L, Jamalzadeh S, Zhang K, Lehtinen L, et al. Co-evolution of matrisome and adaptive adhesion dynamics drives ovarian cancer chemoresistance. Nat Commun. 2021;12. Available from:
    https://pubmed.ncbi.nlm.nih.gov/34162871/.  [Cited 2023 Aug 31].

  • Guimarães CF, Gasperini L, Marques AP, Reis RL. The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater. 2020;5:351–70.

    Article 

    Google Scholar
     

  • Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15:786–801.

    Article 
    CAS 

    Google Scholar
     

  • Wei SC, Fattet L, Tsai JH, Guo Y, Pai VH, Majeski HE, et al. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat Cell Biol. 2015;17:678–88.

    Article 
    CAS 

    Google Scholar
     

  • Reuten R, Zendehroud S, Nicolau M, Fleischhauer L, Laitala A, Kiderlen S, et al. Basement membrane stiffness determines metastases formation. Nat Mater. 2021;20:892.

    Article 
    CAS 

    Google Scholar
     

  • Panciera T, Citron A, Di Biagio D, Battilana G, Gandin A, Giulitti S, et al. Reprogramming normal cells into tumour precursors requires ECM stiffness and oncogene-mediated changes of cell mechanical properties. Nat Mater. 2020;19:797.

    Article 
    CAS 

    Google Scholar
     

  • Stowers RS, Shcherbina A, Israeli J, Gruber JJ, Chang J, Nam S, et al. Matrix stiffness induces a tumorigenic phenotype in mammary epithelium through changes in chromatin accessibility. Nat Biomed Eng. 2019;3:1009.

    Article 

    Google Scholar
     

  • Dvorak HF. Tumors: wounds that do not heal. N Engl J Med. 1986;315:1650–9.

    Article 
    CAS 

    Google Scholar
     

  • Au SH, Chamberlain MD, Mahesh S, Sefton MV, Wheeler AR. Hepatic organoids for microfluidic drug screening. Lab Chip. 2014;14:3290.

    Article 
    CAS 

    Google Scholar
     

  • Peirsman A, Blondeel E, Ahmed T, Anckaert J, Audenaert D, Boterberg T, et al. MISpheroID: a knowledgebase and transparency tool for minimum information in spheroid identity. Nat Methods. 2021;18:1294–303.

    Article 
    CAS 

    Google Scholar
     

  • Gilbertson RJ, Rich JN. Making a tumour’s bed: Glioblastoma stem cells and the vascular niche. Nat Rev Cancer. 2007;7:733–6.

    Article 
    CAS 

    Google Scholar
     

  • Carlier C, Laforce B, Van Malderen SJM, Gremonprez F, Tucoulou R, Villanova J, et al. Nanoscopic tumor tissue distribution of platinum after intraperitoneal administration in a xenograft model of ovarian cancer. J Pharm Biomed Anal. 2016;131:256–62. https://doi.org/10.1016/j.jpba.2016.09.004.

    Article 
    CAS 

    Google Scholar
     

  • Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;926:920–6.

    Article 

    Google Scholar
     

  • Sasame J, Ikegaya N, Kawazu M, Natsumeda M, Hayashi T, Isoda M, et al. HSP90 inhibition overcomes resistance to molecular targeted therapy in BRAFV600E-mutant high-grade glioma. Clin Cancer Res. 2022;28:2425–39.

    Article 
    CAS 

    Google Scholar
     

  • Garcia-Carbonero R, Carnero A, Paz-Ares L. Inhibition of HSP90 molecular chaperones: moving into the clinic. Lancet Oncol. 2013;14:e358–69.

    Article 
    CAS 

    Google Scholar
     

  • Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11:2301–19.

    Article 
    CAS 

    Google Scholar
     

  • Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731–40.

    Article 
    CAS 

    Google Scholar
     

  • Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. G:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191–8.

    Article 
    CAS 

    Google Scholar
     

  • Pradhan S, Clary JM, Seliktar D, Lipke EA. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres. Biomaterials. 2016;115:141–54.

    Article 

    Google Scholar
     

  • Pradhan S, Smith AM, Garson CJ, Hassani I, Seeto WJ, Pant K, et al. A microvascularized tumor-mimetic platform for assessing anti-cancer drug efficacy. Sci Rep. 2018;8:1–15.

    Article 

    Google Scholar
     

  • Jiang T, Munguia-Lopez J, Flores-Torres S, Grant J, Vijayakumar S, de Leon-Rodriguez A, et al. Bioprintable alginate/gelatin hydrogel 3D in vitro model systems induce cell spheroid formation. J Vis Exp. 2018;2018:1–11.


    Google Scholar
     

  • Franchi-Mendes T, Lopes N, Brito C. Heterotypic tumor spheroids in agitation-based cultures: a scaffold-free cell model that sustains long-term survival of endothelial cells. Front Bioeng Biotechnol. 2021;9:1–14.

    Article 

    Google Scholar
     

  • Talukdar S, Mandal M, Hutmacher DW, Russell PJ, Soekmadji C, Kundu SC. Engineered silk fibroin protein 3D matrices for in vitro tumor model. Biomaterials. 2011;32:2149–59.

    Article 
    CAS 

    Google Scholar
     

  • Grist SM, Nasseri SS, Laplatine L, Schmok JC, Yao D, Hua J, et al. Long-term monitoring in a microfluidic system to study tumour spheroid response to chronic and cycling hypoxia. Sci Rep. 2019;9:1–13.

    Article 
    CAS 

    Google Scholar
     

  • Cartaxo AL, Estrada MF, Domenici G, Roque R, Silva F, Gualda EJ, et al. A novel culture method that sustains ER α signaling in human breast cancer tissue microstructures. J Exp Clin Cancer Res. 2020;4:1–14.


    Google Scholar
     

  • Ovadia EM, Pradhan L, Sawicki LA, Cowart JE, Huber RE, Polson SW, et al. Understanding ER+ breast cancer dormancy using bioinspired synthetic matrices for long-term 3D culture and insights into late recurrence. Adv Biosyst. 2020;4:1–15.


    Google Scholar
     

  • Sbrana FV, Pinos R, Barbaglio F, Ribezzi D, Scagnoli F, Scarfò L, et al. 3D bioprinting allows the establishment of long-term 3D culture model for chronic lymphocytic leukemia cells. Front Immunol. 2021;12:1–15.

    Article 

    Google Scholar
     

  • Svozilová H, Plichta Z, Proks V, Studená R, Baloun J, Doubek M, et al. Rgds-modified superporous poly(2-hydroxyethyl methacrylate)-based scaffolds as 3d in vitro leukemia model. Int J Mol Sci. 2021;22:1–17.

    Article 

    Google Scholar
     

  • Hassani I, Anbiah B, Kuhlers P, Habbit NL, Ahmed B. Engineered colorectal cancer tissue recapitulates key attributes of a patient-derived xenograft tumor line.
    Biofabrication. 2022;14:4.

  • Morello G, Quarta A, Gaballo A, Moroni L, Gigli G, Polini A, et al. A thermo-sensitive chitosan/pectin hydrogel for long-term tumor spheroid culture. Carbohydr Polym. 2021;274:118633.

    Article 
    CAS 

    Google Scholar
     

  • Gronbach L, Jurmeister P, Schäfer-Korting M, Keilholz U, Tinhofer I, Zoschke C. Primary extracellular matrix enables long-term cultivation of human tumor oral mucosa models. Front Bioeng Biotechnol. 2020;8:1–9.

    Article 

    Google Scholar
     

  • Xie F, Sun L, Pang Y, Xu G, Jin B, Xu H, et al. Three-dimensional bio-printing of primary human hepatocellular carcinoma for personalized medicine. Biomaterials. 2021;265:120416.

    Article 
    CAS 

    Google Scholar
     

  • Wan X, Ball S, Willenbrock F, Yeh S, Vlahov N, Koennig D, et al. Perfused three-dimensional organotypic culture of human cancer cells for therapeutic evaluation. Sci Rep. 2017;7:1–13.

    Article 

    Google Scholar
     

  • Del Bufalo F, Manzo T, Hoyos V, Yagyu S, Caruana I, Jacot J, et al. 3D modeling of human cancer: a PEG-fibrin hydrogel system to study the role of tumor microenvironment and recapitulate the in vivo effect of oncolytic adenovirus. Biomaterials. 2016;84:76–85.

    Article 

    Google Scholar
     

  • Gupta P, Pérez-Mancera PA, Kocher H, Nisbet A, Schettino G, Velliou EG. A novel scaffold-based hybrid multicellular model for pancreatic ductal adenocarcinoma—toward a better mimicry of the in vivo tumor microenvironment. Front Bioeng Biotechnol. 2020;8:290.

    Article 

    Google Scholar
     

  • Florczyk SJ, Liu G, Kievit FM, Lewis AM, Wu JD, Zhang M. 3D porous chitosan-alginate scaffolds: a new matrix for studying prostate cancer cell-lymphocyte interactions in vitro. Adv Healthc Mater. 2012;1:590–9.

    Article 
    CAS 

    Google Scholar
     

  • Villasante A, Marturano-Kruik A, Vunjak-Novakovic G. Bioengineered human tumor within a bone niche. Biomaterials. 2014;35:5785–94.

    Article 
    CAS 

    Google Scholar
     



  • Source link