Scientific Papers

Distinct patterns of distribution, community assembly and cross-domain co-occurrence of planktonic archaea in four major estuaries of China | Environmental Microbiome


  • Fuhrman JA, McCallum K, Davis AA. Novel major archaebacterial group from marine plankton. Nature. 1992;356:148–149. https://doi.org/10.1038/356148a0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeLong EF. Archaea in coastal marine environments. Proceedings of the National Academy of Sciences of the United States of America. 1992;89(12):5685–5689. https://doi.org/10.1073/pnas.89.12.5685.

  • Santoro AE, Richter RA, Dupont CL. Planktonic marine archaea. Annual Review of Marine Science. 2019;11:131–158. https://doi.org/10.1146/annurev-marine-121916-063141.

    Article 

    Google Scholar
     

  • Rinke C, Rubino F, Messer LF, Youssef N, Parks DH, Chuvochina M, Brown M, Jeffries T, Tyson GW, Seymour JR, Hugenholtz P. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). The ISME Journal. 2019;13:663–675. https://doi.org/10.1038/s41396-018-0282-y.

  • Könneke M, Bernhard AE, Torre JRdl, Walker CB, Waterbury JB, Stahl DA. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature. 2005;437:543–546. https://doi.org/10.1038/nature03911.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karner MB, DeLong EF, Karl DM. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature. 2001;409:507–510. https://doi.org/10.1038/35054051.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou D, Liu H, Li M. Community, distribution, and ecological roles of estuarine archaea. Frontiers in Microbiology. 2020;11:2060. https://doi.org/10.3389/fmicb.2020.02060.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campbell BJ, Kirchman DL. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. The ISME Journal. 2013;7:210–220. https://doi.org/10.1038/ismej.2012.93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Logares R, Lindström ES, Langenheder S, Logue JB, Paterson H, Laybourn-Parry J, Rengefors K, Tranvik L, Bertilsson S. Biogeography of bacterial communities exposed to progressive long-term environmental change. The ISME Journal. 2013;7:937–948. https://doi.org/10.1038/ismej.2012.168.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie W, Zhang C, Zhou X, Wang P. Salinity-dominated change in community structure and ecological function of archaea from the lower Pearl River to coastal South China Sea. Applied Microbiology and Biotechnology. 2014;98:7971-7982. https://doi.org/10.1007/s00253-014-5838-9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hugoni M, Agogué H, Taib N, Domaizon I, Moné A, Galand PE, Bronner G, Debroas D, Mary I. Temporal dynamics of active prokaryotic nitrifiers and archaeal communities from river to sea. Microbial Ecology. 2015;70:473–483. https://doi.org/10.1007/s00248-015-0601-z.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie W, Luo H, Murugapiran SK, Dodsworth JA, Chen S, Sun Y, Hedlund BP, Wang P, Fang H, Deng M, Zhang C. Localized high abundance of Marine Group II archaea in the subtropical Pearl River Estuary: implications for their niche adaptation. Environmental Microbiology. 2018;20(2):734–754. https://doi.org/10.1111/1462-2920.14004.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Pan J, Liu Y, Li M, Gu J. Diversity and distribution of archaea in global estuarine ecosystems. Science of the Total Environment. 2018;637:349–358. https://doi.org/10.1016/j.scitotenv.2018.05.016.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rinke C, Chuvochina M, Mussig AJ, Chaumeil P-A, Davín AA, Waite DW, Whitman WB, Parks DH, Hugenholtz P. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nature Microbiology. 2021;6:946–959. https://doi.org/10.1038/s41564-021-00918-8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Chen F, Zhang C, Wang M, Kan J. Estuarine gradients dictate spatiotemporal variations of microbiome networks in the Chesapeake Bay. Environmental Microbiome. 2021;16:22. https://doi.org/10.1186/s40793-021-00392-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai L, Feng C, Xie L, Xu B, Wei W, Jiao N, Zhang R. Ecological dynamics and impacts of viruses in Chinese and global estuaries. Water Research. 2022;226:119237. https://doi.org/10.1016/j.watres.2022.119237.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei G, Li M, Li F, Li H, Gao Z. Distinct distribution patterns of prokaryotes between sediment and water in the Yellow River estuary. Applied Microbiology and Biotechnology. 2016;100:9683–9697. https://doi.org/10.1038/s41598-018-20044-6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mosier AC, Francis CA. Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environmental Microbiology. 2008;10(11):3002–3016. https://doi.org/10.1111/j.1462-2920.2008.01764.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veettil VP, Abdulaziz A, Chekidhenkuzhiyil J, Ramkollath LK, Hamza FK, Kalam BK, Ravunnikutty MK, Nair S. Bacterial domination over archaea in ammonia oxidation in a monsoon-driven tropical estuary. Microbial Ecology. 2015;69:544–553. https://doi.org/10.1007/s00248-014-0519-x.

    Article 
    CAS 

    Google Scholar
     

  • Liu J, Yu S, Zhao M, He B, Zhang X. Shifts in archaeaplankton community structure along ecological gradients of Pearl Estuary. FEMS Microbiology Ecology. 2014;90(2):424–435. https://doi.org/10.1111/1574-6941.12404.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams TA, Foster PG, Cox CJ, Embley TM. An archaeal origin of eukaryotes supports only two primary domains of life. Nature. 2013;504:231–236. https://doi.org/10.1038/nature12779.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moissl-Eichinger C, Pausan M, Taffner J, Berg G, Bang C, Schmitz RA. Archaea are interactive components of complex microbiomes. Trends in Microbiology. 2018;26(1):70–85. https://doi.org/10.1016/j.tim.2017.07.004.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parada AE, Fuhrman JA. Marine archaeal dynamics and interactions with the microbial community over 5 years from surface to seafloor. The ISME Journal. 2017;11:2510–2525. https://doi.org/10.1038/ismej.2017.104.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reji L, Tolar BB, Smith JM, Chavez FP, Francis CA. Differential co-occurrence relationships shaping ecotype diversification within Thaumarchaeota populations in the coastal ocean water column. The ISME Journal. 2019;13:1144-1158. https://doi.org/10.1038/s41396-018-0311-x.

  • Ministry of Ecology and Environment (MEE) of the People’s Republic of China. Bulletin of marine ecology and environment status of China in 2021 (in Chinese). 2022.

  • General Administration of Quality Supervision, Inspection and Quarantine (AQSIQ) of the People’s Republic of China. The specification for marine monitoring of China-Part 4: Seawater analysis (GB 17378.4-2007) (in Chinese). 2007.

  • Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial Ecology. 2015;75:129–137. https://doi.org/10.3354/ame01753.

    Article 

    Google Scholar
     

  • Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental Microbiology. 2016;18(5):1403–1414. https://doi.org/10.1111/1462-2920.13023.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang K, Yan H, Peng X, Hu H, Zhang H, Hou D, Chen W, Qian P, Liu J, Cai J, Chai X, Zhang D. Community assembly of bacteria and archaea in coastal waters governed by contrasting mechanisms: a seasonal perspective. Molecular Ecology. 2020;29(19):3762–3776. https://doi.org/10.1111/mec.15600.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957–2963. https://doi.org/10.1093/bioinformatics/btr507.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–2461. https://doi.org/10.1093/bioinformatics/btq461.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edgar RC. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv. 2016. https://doi.org/10.1101/081257.

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research. 2013;41(D1):D590–D596. https://doi.org/10.1093/nar/gks1219.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A, Hugenholtz P. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Research. 2022;50(D1):D785–D794. https://doi.org/10.1093/nar/gkab776.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nature Methods. 2013;10(12):1200–1202. https://doi.org/10.1038/nmeth.2658.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wickham H, Chang W, Wickham MH. Package ‘ggplot2’: create elegant data visualisations using the grammar of graphics. 2016. https://github.com/tidyverse/ggplot2.

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. Package ‘vegan’: community ecology package. 2013. https://github.com/vegandevs/vegan.

  • Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environmental Microbiology. 2006;8(4):732–740. https://doi.org/10.1111/j.1462-2920.2005.00956.x.

    Article 
    PubMed 

    Google Scholar
     

  • Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, Bohannan BJ. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. The ISME Journal. 2016;10:655–664. https://doi.org/10.1038/ismej.2015.142.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elzhov TV, Mullen KM, Bolker B. Package ‘minpack.lm’: R interface to the Levenberg-Marquardt nonlinear least-squares algorithm found in MINPACK. R version 1.2.1. 2016. http://CRAN.Rproject.org/package=minpack.lm.

  • Harrell FE. Package ‘hmisc’: harrell miscellaneous. R version 4.7.0. 2019. https://hbiostat.org/R/Hmisc/.

  • Venkataraman A, Bassis CM, Beck JM, Young VB, Curtis JL, Huffnagle GB, Schmidt TM. Application of a neutral community model to assess structuring of the human lung microbiome. mBio. 2015;6(1):e02284–14. https://doi.org/10.1128/mBio.02284-14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nature Microbiology. 2016;1:16005. https://doi.org/10.1038/nmicrobiol.2016.5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Decelle J, Romac S, Stern RF, Bendif EM, Zingone A, Audic S, Guiry MD, Guillou L, Tessier D, Gall FL, Gourvil P, Santos ALD, Probert I, Vaulot D, Vargas Cd, Christen R. Phyto REF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Molecular Ecology Resources. 2015;15(6):1435–1445. https://doi.org/10.1111/1755-0998.12401.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deutschmann IM, Delage E, Giner CR, Sebastián M, Poulain J, Arístegui J, Duarte CM, Acinas SG, Massana R, Gasol JM, Eveillard D, Chaffron S, Logares R. Disentangling marine microbial networks across space. bioRxiv. 2021. https://doi.org/10.1101/2021.07.12.451729:451729.

    Article 

    Google Scholar
     

  • Deutschmann IM, Lima-Mendez G, Krabberød AK, Raes J, Vallina SM, Faust K, Logares R. Disentangling environmental effects in microbial association networks. Microbiome. 2021;9:232. https://doi.org/10.1186/s40168-021-01141-7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tackmann J, Rodrigues JoFM, Mering Cv. Rapid inference of direct interactions in large-scale ecological networks from heterogeneous microbial sequencing data. Cell Systems. 2019;9:286–296. https://doi.org/10.1016/j.cels.2019.08.002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aliferis CF, Statnikov A, Tsamardinos I, Mani S, Koutsoukos XD. Local causal and Markov blanket induction for causal discovery and feature selection for classification part I: algorithms and empirical evaluation. Journal of Machine Learning Research. 2010;11:171–234. https://doi.org/10.5555/1756006.1756013.

    Article 

    Google Scholar
     

  • Gu Z, Gu L, Eils R, Schlesner M, Brors B. Circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30(19):2811–2812. https://doi.org/10.1093/bioinformatics/btu393.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grandjean M. Gephi: Introduction to network analysis and visualisation. 2015. http://www.martingrandjean.ch/gephi-introduction/.

  • Guimerà R, Amaral LAN. Functional cartography of complex metabolic networks. Nature. 2005;433:895-900. https://doi.org/10.1038/nature03288.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Csardi G. Package ‘igraph’: network analysis and visualization. 2013. https://igraph.org/.

  • Olesen JM, Bascompte J, Dupont YL, Jordano P. The modularity of pollination networks. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(50):19891-19896. https://doi.org/10.1073/pnas.0706375104.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vipindas PV, Jabir T, Jasmin C, Balu T, Rehitha TV, Adarsh BM, Nair S, Abdulla MH, Abdulaziz A. Diversity and seasonal distribution of ammonia-oxidizing archaea in the water column of a tropical estuary along the southeast Arabian Sea. World Journal of Microbiology and Biotechnology. 2018;34:188. https://doi.org/10.1007/s11274-018-2570-0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin W, Zheng Y, Zhao F, Wang Y, Urakawa H, Martens-Habbena W, Liu H, Huang X, Zhang X, Nakagawa T, Mende DR, Bollmann A, Wang B, Zhang Y, Amin SA, Nielsen JL, Mori K, Takahashi R, Armbrust EV, Winkler M-KH, DeLong EF, Li M, Lee P-H, Zhou J, Zhang C, Zhang T, Stahl DA, Ingalls AE. Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea. The ISME Journal. 2020;14:2595–2609. https://doi.org/10.1038/s41396-020-0710-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santoro AE, Saito MA, Goepfert TJ, Lamborg CH, Dupont CL, DiTullio GR. Thaumarchaeal ecotype distributions across the equatorial Pacific Ocean and their potential roles in nitrification and sinking flux attenuation. Limnology and Oceanography. 2017;62(5):1984–2003. https://doi.org/10.1002/lno.10547.

    Article 
    CAS 

    Google Scholar
     

  • Wang K, Hu H, Yan H, Hou D, Wang Y, Dong P, Zhang D. Archaeal biogeography and interactions with microbial community across complex subtropical coastal waters. Molecular Ecology. 2019;28(12):3101–3118. https://doi.org/10.1111/mec.15105.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hugoni M, Taib N, Debroas D, Domaizon I, Dufournel IJ, Gisèle Bronner IS, Agogué H, Mary I, Galand PE. Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(15):6004–6009. https://doi.org/10.1073/pnas.1216863110.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim JG, Gwak JH, Jung MY, An SU, Hyun JH, Kang S, Rhee SK. Distinct temporal dynamics of planktonic archaeal and bacterial assemblages in the bays of the Yellow Sea. PloS One. 2019;14(8):e0221408. https://doi.org/10.1371/journal.pone.0221408.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gillies LE, Thrash JC, deRada S, Rabalais NN, Mason OU. Archaeal enrichment in the hypoxic zone in the northern Gulf of Mexico. Environmental Microbiology. 2015;17(10):3847–3856. https://doi.org/10.1111/1462-2920.12853.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su J, Wang K. Changjiang river plume and suspended sediment transport in Hangzhou Bay. Continental Shelf Research. 1989;9(1):93–111. https://doi.org/10.1016/0278-4343(89)90085-X.

    Article 

    Google Scholar
     

  • Wang B, Liu N, Yang M, Wang L, Liang X, Liu C. Co-occurrence of planktonic bacteria and archaea affects their biogeographic patterns in China’s coastal wetlands. Environmental Microbiome. 2021;16:19. https://doi.org/10.1186/s40793-021-00388-9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siqueira T, Saito VS, Bini LM, Melo AS, Petsch DK, Landeiro VL, Tolonen KT, Jyrkänkallio‐Mikkola J, Soininen J, Heino J. Community size can affect the signals of ecological drift and niche selection on biodiversity. Ecology. 2020;101(6):e03014. https://doi.org/10.1002/ecy.3014.

    Article 
    PubMed 

    Google Scholar
     

  • DeLong EF. Exploring marine planktonic archaea: then and now. Frontiers in Microbiology. 2021;11:616086. https://doi.org/10.3389/fmicb.2020.616086.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, Chaffron S, Ignacio-Espinosa C, Roux S, Vincent F, Bittner L, Darzi Y, Wang J, Audic S, Berline L, Bontempi G, Cabello AM, Coppola L, Cornejo-Castillo FM, d’Ovidio F, Meester LD, Isabel Ferrera, Garet-Delmas M-J, Guidi L, Lara E, Pesant S, Royo-Llonch M, Salazar G, Sánchez P, Sebastian M, Souffreau C, Dimier C, Picheral M, Searson S, Kandels-Lewis S, coordinators TO, Gorsky G, Not F, Ogata H, Speich S, Stemmann L, Weissenbach J, Wincker P, Acinas SG, Sunagawa S, Bork P, Sullivan MB, Karsenti E, Bowler C, Vargas Cd, Raes J. Determinants of community structure in the global plankton interactome. Science. 2015;348(6237):1262073. https://doi.org/10.1126/science.1262073.

  • Steele JA, Countway PD, Xia L, Vigil PD, Beman JM, Kim DY, Chow C-ET, Sachdeva R, Jones AC, Schwalbach MS, Rose JM, Hewson I, Patel A, Sun F, Caron DA, Fuhrman JA. Marine bacterial, archaeal and protistan association networks reveal ecological linkages. The ISME Journal. 2011;5:1414–1425. https://doi.org/10.1038/ismej.2011.24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beman JM, Steele JA, Fuhrman JA. Co-occurrence patterns for abundant marine archaeal and bacterial lineages in the deep chlorophyll maximum of coastal California. The ISME Journal. 2011;5:1077–1085. https://doi.org/10.1038/ismej.2010.204.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Tao J, Chen Y, Wang W, Fan L, Zhang C. Interactions between Marine Group II archaea and phytoplankton revealed by population correlations in the northern coast of South China Sea. Frontiers in Microbiology. 2022;12:785532. https://doi.org/10.3389/fmicb.2021.785532.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodríguez-Ramos T, Nieto-Cid M, Auladell A, Guerrero-Feijóo E, Varela MM. Vertical niche partitioning of archaea and bacteria linked to shifts in dissolved organic matter quality and hydrography in north Atlantic waters. Frontiers in Marine Science. 2021;8:673171. https://doi.org/10.3389/fmars.2021.673171.

    Article 

    Google Scholar
     

  • Wu J, Hong Y, He X, Liu X, Ye J, Jiao L, Li Y, Wang Y, Ye F, Yang Y, Du J. Niche differentiation of ammonia-oxidizing archaea and related autotrophic carbon fixation potential in the water column of the South China Sea. iScience. 2022;25(5):104333. https://doi.org/10.1016/j.isci.2022.104333.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayer B, Pelikan C, Bittner MJ, Reinthaler T, Könneke M, Herndl GJ, Offre P. Proteomic response of three marine ammonia-oxidizing archaea to hydrogen peroxide and their metabolic interactions with a heterotrophic alphaproteobacterium. mSystems. 2019;4(4):e00181-19. https://doi.org/10.1128/mSystems.00181-19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo W, Stedmon CA, Han Y, Wu F, Yu X, Hu M. The conservative and non-conservative behavior of chromophoric dissolved organic matter in Chinese estuarine waters. Marine Chemistry. 2007;107(3):357–366. https://doi.org/10.1016/j.marchem.2007.03.006.

    Article 
    CAS 

    Google Scholar
     

  • Canuel EA, Hardison AK. Sources, ages, and alteration of organic matter in estuaries. Annual Review of Marine Science. 2016;8:409–434. https://doi.org/10.1146/annurev-marine-122414-034058.

    Article 

    Google Scholar
     

  • Orsi WD, Smith JM, Liu S, Liu Z, Sakamoto CM, Wilken S, Poirier C, Richards TA, Keeling PJ, Worden AZ, Santoro AE. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. The ISME Journal. 2016;10:2158–2173. https://doi.org/10.1038/ismej.2016.20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link