Scientific Papers

Use of lactulose as a prebiotic in laying hens: its effect on growth, egg production, egg quality, blood biochemistry, digestive enzymes, gene expression and intestinal morphology | BMC Veterinary Research


  • Dibner JJ, Richards JD. Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci. 2005;84(4):634–43. https://doi.org/10.1093/ps/84.4.634.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Epps A, Blaney L. Antibiotic residues in animal waste: occurrence and degradation in conventional agricultural waste management practices. Curr Pollut Rep. 2016;2:135–55. https://doi.org/10.1007/s40726-016-0037-1.

    Article 
    CAS 

    Google Scholar
     

  • Bachaya HA, Abbas RZ, Raza MA, Iqbal Z, Rehman TU, Baber W, Hussain R. Existence of coccidiosis and associated risk factors in broiler chickens in Southern Punjab. Pakistan Pak Vet J. 2015;35(1):81–4.


    Google Scholar
     

  • Abd El-Hack ME, El-Saadony MT, Salem HM, El-Tahan AM, Soliman MM, Youssef GB, Taha AE, Soliman SM, Ahmed AE, El-Kott AF, Al Syaad KM. Alternatives to antibiotics for organic poultry production: types, modes of action and impacts on bird’s health and production. Poult sci. 2022;101(4):101696. https://doi.org/10.1016/j.psj.2022.101696.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim SA, Jang MJ, Kim SY, Yang Y, Pavlidis HO, Ricke SC. Potential for prebiotics as feed additives to limit foodborne Campylobacter establishment in the poultry gastrointestinal tract. Front Microbiol. 2019;10:91. https://doi.org/10.3389/fmicb.2019.00091.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abo-Samaha MI, Alghamdi YS, El-Shobokshy SA, Albogami S, Abd El-Maksoud EM, Farrag F, et al. Licorice extract supplementation affects antioxidant activity, growth-related genes, lipid metabolism, and immune markers in broiler chickens. Life. 2022;12(6):914. https://doi.org/10.3390/life12060914.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cummings JH, Macfarlane GT. Gastrointestinal effects of prebiotics. Br J Nutr. 2002;87(S2):S145–51. https://doi.org/10.1079/BJN/2002530.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steiner T. Managing gut health: natural growth promoters as a key to animal performance. Nottingham university press; 2006.

  • Hukins RW, Krumbeck JA, Bindels LB, Cani PD, Fahey G Jr, Goh YJ, Hamaker B, Martens EC, Mills DA, Rastal RA, Vaughan E. Prebiotics: why definition matter. Curr Opin Biotechnol. 2016;37:1–7.

    Article 

    Google Scholar
     

  • Fathima S, Shanmugasundaram R, Adams D, Selvaraj RK. Gastrointestinal microbiota and their manipulation for improved growth and performance in chickens. Foods. 2022;11:1401. https://doi.org/10.3390/foods11101401.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bird SP, Hewitt D, Ratcliffe B, Gurr MI. Effects of lactulose and lactitol on protein digestion and metabolism in conventional and germ free animal models: relevance of the results to their use in the treatment of portosystemic encephalopathy. Gut. 1990;31:1403–6. https://doi.org/10.1136/gut.31.12.1403.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuohy KM, Ziemer CJ, Klinder A, Knöbel Y, Pool-Zobel BL, Gibson GR. A human volunteer study to determine the prebiotic effects of lactulose powder on human colonic microbiota. Microb Ecol Health Dis. 2002;14(3):165–73. https://doi.org/10.1080/089106002320644357.

    Article 

    Google Scholar
     

  • Schumann C. Medical, nutritional and technological properties of lactulose. An update Eur J Nutr. 2002;41(Suppl 1):17–25. https://doi.org/10.1007/s00394-002-1103-6.

    Article 
    CAS 

    Google Scholar
     

  • Gibson GR. From probiotics to prebiotics and a healthy digestive system. J Food Sci. 2004;69:141–3. https://doi.org/10.1111/j.1365-2621.2004.tb10724.x.

    Article 

    Google Scholar
     

  • Marinho MC, Lordelo MM, Cunha LF, Freire JPB. Microbial activity in the gut of piglets: I. Effect of prebiotic and probiotic supplementation. Livest Sci. 2007;108:236–9. https://doi.org/10.1016/j.livsci.2007.01.081.

    Article 

    Google Scholar
     

  • Ballongue J, Schumann C, Quignon P. Effects of lactulose and lactitol on colonic microflora and enzymatic activity. Scand J Gastroenterol. 1997;32:41–4. https://doi.org/10.1080/00365521.1997.11720716.

    Article 
    CAS 

    Google Scholar
     

  • Bianchi G, Ronchi M, Marchedini G. Effects of lactulose on carbohydrate metabolism and diabetes mellitus. Scand J Gastroenterol. 1997;32:62–4. https://doi.org/10.1080/00365521.1997.11720721.

    Article 
    CAS 

    Google Scholar
     

  • Krueger M, Schroedl W, Isik K, Lange W, Hagemann L. Effects of lactulose on the intestinal microflora of periparturient sows and their piglets. Eur J Nutr. 2002;41:26–31. https://doi.org/10.1007/s00394-002-1104-5.

    Article 
    CAS 

    Google Scholar
     

  • Cho JH, Kim IH. Effects of lactulose supplementation on performance, blood profiles, excreta microbial shedding of Lactobacillus and Escherichia coli, relative organ weight and excreta noxious gas contents in broilers. J Anim Physiol Anim Nutr (Berl). 2014;98:424–30. https://doi.org/10.1111/jpn.12086.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Calik A, Ergün A. Effect of lactulose supplementation on growth performance, intestinal histomorphology, cecal microbial population, and short-chain fatty acid composition of broiler chickens. Poult Sci. 2015;94(9):2173–82. https://doi.org/10.3382/ps/pev182.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ricke SC, Dunkley CS, Durant JA. A review on development of novel strategies for controlling Salmonella Enteritidis colonization in laying hens: fiber – based molt diets. Poult Sci. 2013;92:502–25. https://doi.org/10.3382/ps.2012-02763.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ricke SC. Gastrointestinal Ecology of Salmonella Enteritidis in Laying Hens and Intervention by Prebiotic and Nondigestible Carbohydrate Dietary Supplementation. InProducing Safe Eggs 2017 (pp. 323–345). Academic Press.

  • Chen Y, Nakthong C, Chen T. Improvement of laying hen performance by dietary prebiotic chicory oligofructose and inulin. Int J Poult Sci. 2005;4:103–https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=45f4813c765f649511cc4b5677f4a24fdbbdc065.

    Article 

    Google Scholar
     

  • Chen Y, Chen T. Mineral utilization in layers as influenced by dietaryoligofructose and inulin. Int J Poult Sci. 2004;3:442–5. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=67c92671bb36d7b6fa2c6b00351afa3e3f944987.

    Article 

    Google Scholar
     

  • Gheisar MM, Nyachoti CM, Hancock JD, Kim IH. Effects of lactulose on growth, carcass characteristics, faecal microbiota, and blood constituents in broilers. Vet Med (Praha). 2016;61(2):90–6. https://doi.org/10.17221/8722-VETMED.

    Article 
    CAS 

    Google Scholar
     

  • Kurmasheva SS, Mosolov AA, Frolova MV, Slozhenkina MI, Gorlov IF, Knyazhechenko OA. Influence of new lactulose-containing fodder additives on basic morpho-biochical indicators of blood and resistance of broiler chicken. InIOP Confer Series. 2021;848(1):012066. https://doi.org/10.1088/1755-1315/848/1/012066. (IOP Publishing).

    Article 

    Google Scholar
     

  • NRC. Nutrient Requirements of Poultry; National Research Council: Washington, DC, USA, 1994.

  • Oкoлeлoвa TM, Лecничeнкo ИЮ, Eнгaшeв CB. Пpeбиoтик Beтeлaкт в мяcнoм и яичнoм птицeвoдcтвe. Птицeвoдcтвo. 2015;8:15–7 (УДК: 636.087.8).


    Google Scholar
     

  • Кoчиш ИИ, Poмaнoв MH, Пoзябин CB, Mяcникoвa OB, Кopeнюгa MB, Moтин MC. Bлияниe пpeбиoтикa Beтeлaкт нa микpoбиoтy кишeчникa кyp poдитeльcкoгo cтaдa. Poccийcкий жypнaл Пpoблeмы вeтepинapнoй caнитapии, гигиeны и экoлoгии. 2021;2:152–6 (УДК: 636.52/.58:615/33:619:579.62:577.2).


    Google Scholar
     

  • Ke A. Shell characteristics of eggs from historic strains of single comb white leghorn chickens and the relationships of egg shape to shell strength. Int J Poult Sci. 2004;3:17–9. https://doi.org/10.2141/jpsa.011081.

    Article 
    CAS 

    Google Scholar
     

  • Duman M, Şekeroğlu A, Yıldırım A, Eleroğlu HA, Camcı Ö. Relation between egg shape index and egg quality characteristics. Eur Poult Sci /Archiv für Geflügelkunde. 2016; 80(117) https://doi.org/10.1399/eps.2016.117.

  • Monira KN, Salahuddin M, Miah GJ. Effect of breed and holding period on egg quality characteristics of chicken. Int J Poult Sci. 2003;2(4):261–3. https://doi.org/10.2141/jpsa.0160014.

    Article 

    Google Scholar
     

  • Laptev GY, Filippova VA, Kochish II, Yildirim EA, Ilina LA, Dubrovin AV, Brazhnik EA, Novikova NI, Novikova OB, Dmitrieva ME, Smolensky VI. Examination of the expression of immunity genes and bacterial profiles in the caecum of growing chickens infected with Salmonella Enteritidis and fed a phytobiotic. Anim. 2019;9(9):615. https://doi.org/10.3390/ani9090615.

    Article 

    Google Scholar
     

  • Soutter F, Werling D, Kim S, Pastor-Fernández I, Marugán-Hernández V, Tomley FM, Blake DP. Impact of Eimeria tenella oocyst dose on parasite replication, lesion score and cytokine transcription in the caeca in three breeds of commercial layer chickens. Front Vet Sci. 2021;8:640041. https://doi.org/10.3389/fvets.2021.640041.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Réhault-Godbert S, Labas V, Helloin E, Hervé-Grépinet V, Slugocki C, Berges M, Bourin MC, Brionne A, Poirier JC, Gautron J, Coste F. Ovalbumin-related protein X is a heparin-binding ov-serpin exhibiting antimicrobial activities. J Biol Chem. 2013;288(24):17285–95. https://doi.org/10.1074/jbc.M113.469759.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gautron J, Murayama E, Vignal A, Morisson M, McKee MD, Ré S, Belghazi M, Vidal ML, Nys Y, Hincke MT. Cloning of ovocalyxin-36, a novel chicken eggshell protein related to lipopolysaccharide-binding proteins, bactericidal permeability-increasing proteins, and plunc family proteins. J Biol Chem. 2007;282(8):5273–86. https://doi.org/10.1074/jbc.M610294200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shet D, Ghosh J, Ajith S, Awachat VB, Elangovan AV. Efficacy of dietary phytase supplementation on laying performance and expression of osteopontin and calbindin genes in eggshell gland. Anim Nutr. 2018;4(1):52–8. https://doi.org/10.1016/j.aninu.2017.10.004.

    Article 
    PubMed 

    Google Scholar
     

  • Muhammad AI, Dalia AM, Loh TC, Akit H, Samsudin AA. Effect of organic and inorganic dietary selenium supplementation on gene expression in oviduct tissues and Selenoproteins gene expression in Lohman Brown-classic laying hens. BMC Vet Res. 2021;17(1):1–5. https://doi.org/10.1186/s12917-021-02964-0.

    Article 
    CAS 

    Google Scholar
     

  • Gautron J, Hincke MT, Mann K, Panhéleux M, Bain M, McKee MD, Solomon SE, Nys Y. Ovocalyxin-32, a novel chicken eggshell matrix protein: isolation, amino acid sequencing, cloning, and immunocytochemical localization. J Biol Chem. 2001;276(42):39243–52. https://doi.org/10.1074/jbc.M104543200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeong W, Lim W, Kim J, Ahn SE, Lee HC, Jeong JW, Han JY, Song G, Bazer FW. Cell-specific and temporal aspects of gene expression in the chicken oviduct at different stages of the laying cycle. Biol Reprod. 2012;86(6):172–81. https://doi.org/10.1095/biolreprod.111.098186.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bancroft JD , Layton C. The hematoxylin and eosin, connective and mesenchymal tissues with their stains. In Bancroft s Theory and practice of histological techniques, S. Kim suvarna, C. L. a. J. D. B. (Ed.), pp. 173–186. Philadelphia Churchill Livingstone. 2013.

  • Laudadio V, Passantino L, Perillo A, Lopresti G, Passantino A, Khan RU, Tufarelli V. Productive performance and histological features of intestinal mucosa of broiler chickens fed different dietary protein levels. Poult Sci. 2012;91(1):265–70. https://doi.org/10.3382/ps.2011-01675.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elhassan M. Histology of the small intestine of broiler chicks. University of Bahri J of Vet Sci. 2022;1(2):55–61.


    Google Scholar
     

  • Moharrery A, Mohammadpour AA. Effect of diets containing different qualities of barley on growth performance and serum amylase and intestinal villus morphology. Int J Poult Sci. 2005;4(8):549–56.

    Article 

    Google Scholar
     

  • Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14:491–502. https://doi.org/10.1038/nrgastro.2017.75.

    Article 
    PubMed 

    Google Scholar
     

  • Wijtten PJ, Verstijnen JJ, Van Kempen TA, Perdok HB, Gort G, Verstegen MW. Lactulose as a marker of intestinal barrier function in pigs after weaning. J Anim Sci. 2011;89(5):1347–57. https://doi.org/10.2527/jas.2010-3571.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Кoчиш ИИ, Mяcникoвa OB, Кopeнюгa MB, Moтин MC, Элькoми XC. Дeйcтвиe пpeбиoтикa Beтeлaкт нa микpoбиoм кишeчникa и пpoдyктивнocть кyp-нecyшeк в пpoмышлeнныx ycлoвияx. Maтepиaлы 2-й Meждyнapoднoй нayчнo-пpaктичecкoй кoн-фepeнции «Moлeкyляpнo-гeнeтичecкиe тexнoлoгии для aнaлизa экcпpeccии гeнoв пpoдyктивнocти и ycтoйчивocти к зaбoлeвa. 2020:363. https://www.mgavm.ru/laboratoriya/nauchnaya-deyatelnost/nauchnye-meropriyatiya/doc/25122020/materialy_konferentsii.pdf#page=364.

  • Youssef AW, Hassan HM, Ali HM, Mohamed MA. Effect of probiotics, prebiotics and organic acids on layer performance and egg quality. Asian J Poult Sci. 2013;7(2):65–74.

    Article 
    CAS 

    Google Scholar
     

  • Tang SG, Sieo CC, Ramasamy K, Saad WZ, Wong HK, Ho YW. Performance, biochemical and haematological responses, and relative organ weights of laying hens fed diets supplemented with prebiotic, probiotic and synbiotic. BMC Vet Res. 2017;13:1–2. https://doi.org/10.1186/s12917-017-1160-y.

    Article 
    CAS 

    Google Scholar
     

  • Kochish II, Myasnikova OV, Martynov VV, Smolensky VI. Intestinal microflora and expression of immunity-related genes in hens as influenced by prebiotic and probiotic feed additives. Agric Biol. 2020;55(2):315–27. https://doi.org/10.15389/agrobiology.2020.2.315eng.

    Article 

    Google Scholar
     

  • Swiatkiewicz S, Arczewska-Wlosek A. Prebiotic fructans and organic acids as feed additives improving mineral availability. World Poult Sci J. 2012;68:269–79. https://doi.org/10.1017/S0043933912000323.

    Article 

    Google Scholar
     

  • Grobas S, Mendez J, De Blas C, Mateos GG. Influence of dietary energy, supplemental fat and linoleic acid concentration on performance of laying hens at two ages. Br Poult Sci. 1999;40:681–7. https://doi.org/10.1080/00071669987089.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skřivan M, Marounek M, Bubancova I, Podsedníček M. Influence of limestone particle size on performance and egg quality in laying hens aged 24–36 weeks and 56–68 weeks. Anim Feed Sci Technol. 2010;158(1–2):110–4. https://doi.org/10.1016/j.anifeedsci.2010.03.018.

    Article 
    CAS 

    Google Scholar
     

  • Świątkiewicz S, Koreleski J, Arczewska A. Laying performance and eggshell quality in laying hens fed diets supplemented with prebiotics and organic acids. Czech J Anim Sci. 2010;55(7):294–306. https://doi.org/10.17221/207/2009-CJAS.

    Article 

    Google Scholar
     

  • Abdelqader A, Al-Fataftah AR, Daş G. Effects of dietary Bacillus subtilis and inulin supplementation on performance, eggshell quality, intestinal morphology and microflora composition of laying hens in the late phase of production. Anim Feed Sci Technol. 2013;179(1–4):103–11. https://doi.org/10.1016/j.anifeedsci.2012.11.003.

    Article 
    CAS 

    Google Scholar
     

  • Zolotareva AG, Struk AN, Mosolov AA, Gorlov IF, Slozhenkina MI, Knyazhechenko OA. Protein and prebiotic feed additives: influence on the quality indicators of rabbit meat. InIOP Conference Series. 2022;965(1):012036. https://doi.org/10.1088/1755-1315/965/1/012036. (IOP Publishing).

    Article 

    Google Scholar
     

  • Kannan M, Karunakaran R, Balakrishnan V, Prabhakar TG. Influence of prebiotics supplementation on lipid profile of broilers. Int J Poult Sci. 2005;4(12):994–7. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e3f7ece67fd4a29f29638a358514f2aa563d06a5.

    Article 

    Google Scholar
     

  • Wilson TA, Nicolosi RJ, Rogers EJ, Sacchiero R, Goldberg DJ. Studies of cholesterol and bile acid metabolism, and early atherogenesis in hamsters fed GT16-239, a novel bile acid sequestrant (BAS). ATHER. 1998;40:315–24. https://doi.org/10.1016/S0021-9150(98)00135-X.

    Article 

    Google Scholar
     

  • Klaver FAM, Van Der Meer R. The assumed assimilation of cholesterol by lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl Environ Microb. 1993;59:1120–4. https://doi.org/10.1128/aem.59.4.1120-1124.1993.

    Article 
    CAS 

    Google Scholar
     

  • Ros E. Intestinal absorption of triglyceride and cholesterol dietary and pharmacological inhibition to reduce cardiovascular risk. ATHER. 2000;51:357–79. https://doi.org/10.1016/S0021-9150(00)00456-1.

    Article 

    Google Scholar
     

  • Brionne A, Nys Y, Hennequet-Antier C, Gautron J. Hen uterine gene expression profiling during eggshell formation reveals putative proteins involved in the supply of minerals or in the shell mineralization process. BMC Genomics. 2014;15:1–7. https://doi.org/10.1186/1471-2164-15-220.

    Article 
    CAS 

    Google Scholar
     

  • Jonchère V, Brionne A, Gautron J, Nys Y. Identification of uterine ion transporters for mineralisation precursors of the avian eggshell. BMC Physiol. 2012;12(1):1–7. https://doi.org/10.1186/1472-6793-12-10.

    Article 
    CAS 

    Google Scholar
     

  • Gan L, Zhao Y, Mahmood T, Guo Y. Effects of dietary vitamins supplementation level on the production performance and intestinal microbiota of aged laying hens. Poult Sci. 2020;99(7):3594–605. https://doi.org/10.1016/j.psj.2020.04.007.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nys Y, Gautron J, Garcia-Ruiz JM, Hincke MT. Avian eggshell mineralization: biochemical and functional characterization of matrix proteins. C R Palevol. 2004;3(6–7):549–62. https://doi.org/10.1016/j.crpv.2004.08.002.

    Article 

    Google Scholar
     

  • Sah N, Mishra B. Regulation of egg formation in the oviduct of laying hen. Worlds Poult Sci J. 2018;74(3):509–22. https://doi.org/10.1017/S0043933918000442.

    Article 

    Google Scholar
     

  • Dunn IC, Joseph NT, Bain M, Edmond A, Wilson PW, Milona P, et al. Polymorphisms in eggshell organic matrix genes are associated with eggshell quality measurements in pedigree Rhode Island red hens. Anim Genet. 2009;40(1):110–4. https://doi.org/10.1111/j.1365-2052.2008.01794.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mann K, Hincke MT, Nys Y. Isolation of ovocleidin-116 from chicken eggshells, correction of its amino acid sequence and identification of disulfide bonds and glycosylated Asn. Matrix Biol. 2002;21(5):383–7. https://doi.org/10.1016/S0945-053X(02)00031-8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jonchère V, Réhault-Godbert S, Hennequet-Antier C, Cabau C, Sibut V, Cogburn LA, Nys Y, Gautron J. Gene expression profiling to identify eggshell proteins involved in physical defense of the chicken egg. BMC genom. 2010;11(1):1–9. https://doi.org/10.1186/1471-2164-11-57.

    Article 
    CAS 

    Google Scholar
     

  • Hincke MT. Ovalbumin is a component of the chicken eggshell matrix. Connect Tissue Res. 1995;31(3):227–33. https://doi.org/10.3109/03008209509010814.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gautron J, Hincke MT, Nys Y. Precursor matrix proteins in the uterine fluid change with stages of eggshell formation in hens. Connect Tissue Res. 1997;36(3):195–210. https://doi.org/10.3109/03008209709160220.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sugiyama T, Kikuchi H, Hiyama S, Nishizawa K, Kusuhara S. Expression and localisation of calbindin D28k in all intestinal segments of the laying hen. Brit Poult Sci. 2007;48(2):233–8. https://doi.org/10.1080/00071660701302270.

    Article 
    CAS 

    Google Scholar
     

  • Bar A. Differential regulation of calbindin in the calcium-transporting organs of birds with high calcium requirements. Poult Sci J. 2009;46(4):267–85. https://doi.org/10.2141/jpsa.46.267.

    Article 
    CAS 

    Google Scholar
     

  • Arazi H, Yoselewitz I, Malka Y, Kelner Y, Genin O, Pines M. Osteopontin and calbindin gene expression in the eggshell gland as related to eggshell abnormalities. Poult sci. 2009;88(3):647–53. https://doi.org/10.3382/ps.2008-00387.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ebeid TA, Suzuki T, Sugiyama T. High ambient temperature influences eggshell quality and calbindin-D28k localization of eggshell gland and all intestinal segments of laying hens. Poult Sci. 2012;91(9):2282–7. https://doi.org/10.3382/ps.2011-01898.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bar A. Calcium transport in strongly calcifying laying birds: mechanisms and regulation. Comparative Biochemistry and Physiology Part A Comp Biochem Physiol. 2009;152(4):447–69. https://doi.org/10.1016/j.cbpa.2008.11.020.

    Article 
    CAS 

    Google Scholar
     

  • Yosefi S, Braw-Tal R, Bar A. Intestinal and eggshell calbindin and bone ash as influenced by age of the laying hen and molting. Comp Biochem Physiol A Mol Integr Physiol. 2003;136:673–82. https://doi.org/10.1016/S1095-6433(03)00244-7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christakos S, Barletta F, Huening M, Dhawan P, Liu Y, Porta A, Peng X. Vitamin D target proteins: function and regulation. J Cell Biochem. 2003;88(2):238–44. https://doi.org/10.1002/jcb.10349.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun CJ, Duan ZY, Qu LJ, Zheng JX, Ning Y, Xu GY. Expression analysis for candidate genes associated with eggshell mechanical property. J Integr Agric. 2016;15(2):397–402. https://doi.org/10.1016/S2095-3119(14)60969-2.

    Article 
    CAS 

    Google Scholar
     

  • Płowiec A, Sławińska A, Siwek MZ, Bednarczyk MF. Effect of in ovo administration of inulin and Lactococcus lactis on immune-related gene expression in broiler chickens. Am J Vet Res. 2015;76(11):975–82. https://doi.org/10.2460/ajvr.76.11.975.

    Article 
    PubMed 

    Google Scholar
     

  • Teng PY, Adhikari R, Llamas-Moya S, Kim WK. Effects of combination of mannan-oligosaccharides and β-glucan on growth performance, intestinal morphology, and immune gene expression in broiler chickens. Poult Sci. 2021;100(12):101483. https://doi.org/10.1016/j.psj.2021.101483.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yaqoob MU, Abd El-Hack ME, Hassan F, El-Saadony MT, Khafaga AF, Batiha GE, Yehia N, Elnesr SS, Alagawany M, El-Tarabily KA, Wang M. The potential mechanistic insights and future implications for the effect of prebiotics on poultry performance, gut microbiome, and intestinal morphology. Poult Sci. 2021;100(7):101143. https://doi.org/10.1016/j.psj.2021.101143.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sobolewska A, Elminowska-Wenda G, Bogucka J, Dankowiakowska A, Kułakowska A, Szczerba A, Stadnicka K, Szpinda M, Bednarczyk M. The influence of in ovo injection with the prebiotic DiNovo® on the development of histomorphological parameters of the duodenum, body mass and productivity in large-scale poultry production conditions. J Anim Sci Biotechnol. 2017;8(1):1–8. https://doi.org/10.1186/s40104-017-0176-2.

    Article 
    CAS 

    Google Scholar
     

  • Samanya M, Yamauchi KE. Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comp Biochem Physiol A Mol Integr Physiol. 2002;133:95–104. https://doi.org/10.1016/S1095-6433(02)00121-6.

    Article 
    PubMed 

    Google Scholar
     

  • Xu ZR, Hu CH, Xia MS, Zhan XA, Wang MQ. Effects of dietary fructooligosaccharides on digestive enzyme activities, intestinal microflora, and morphology of male broilers. Poult Sci. 2003;82:1030–6. https://doi.org/10.1093/ps/82.6.1030.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link