Scientific Papers

Read-depth based approach on whole genome resequencing data reveals important insights into the copy number variation (CNV) map of major global buffalo breeds | BMC Genomics


  • Yindee M, Vlamings BH, Wajjwalku W, Techakumphu M, Lohachit C, Sirivaidyapong S, et al. Y-chromosomal variation confirms independent domestications of swamp and river buffalo. Anim Genet. 2010;41:433–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Degrandi TM, Pita S, Panzera Y, de Oliveira EHC, Marques JRF, Figueiró MR, et al. Karyotypic evolution of ribosomal sites in buffalo subspecies and their crossbreed. Genet Mol Biol. 2014;37:375.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minervino AHH, Zava M, Vecchio D, Borghese A. Bubalus bubalis: a short story. Front Vet Sci. 2020;7:971.

    Article 

    Google Scholar
     

  • New Breeds / Lines – ICAR- National Bureau of Animal Genetic Resources. https://nbagr.icar.gov.in/en/new-breeds-lines/. Accessed 6 May 2023.

  • Bastianetto E, de Oliveira DAA, McManus C, Bagolin D, de Leite J, Melo RC. CB de. Genetic material from buffalo and cattle: crucial importance in the formalization of bilateral trade between India and Brazil. Anim Reprod. 2020;17:e20200031.

  • Selokar NL, Singh MK, Kumar D, Sharma R, Chauhan MS, Yadav PS. Buffalo Cloning: Multiplying India’s Black Gold. Genomic, Proteomics, and Biotechnology. 2022;:239–48.

  • Rehman SU, Hassan FU, Luo X, Li Z, Liu Q. Whole-genome sequencing and characterization of Buffalo Genetic Resources: recent advances and Future Challenges. Anim (Basel). 2021;11:1–20.


    Google Scholar
     

  • Chen Z, Zhu M, Wu Q, Lu H, Lei C, Ahmed Z, et al. Analysis of genetic diversity and selection characteristics using the whole genome sequencing data of five buffaloes, including Xilin buffalo, in Guangxi, China. Front Genet. 2023;13:1084824.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmad SF, Singh A, Panda S, Malla WA, Kumar A, Dutt T. Genome-wide elucidation of CNV regions and their association with production and reproduction traits in composite Vrindavani cattle. Gene. 2022;830:146510.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Sun D, Yu Y, Zhang Y. Genetic variation and divergence among Swamp Buffalo, River Buffalo and cattle: a microsatellite survey on five populations in China. Asian-Australas J Anim Sci. 2008;21:1238–43.

    Article 

    Google Scholar
     

  • Du C, Deng T, Zhou Y, Ye T, Zhou Z, Zhang S, et al. Systematic analyses for candidate genes of milk production traits in water buffalo (Bubalus Bubalis). Anim Genet. 2019;50:207–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ravi Kumar D, Nandhini PB, Joel Devadasan M, Sivalingam J, Mengistu DW, Verma A et al. Genome-wide association study revealed suggestive QTLs for production and reproduction traits in indian Murrah buffalo. 3 Biotech. 2023;13.

  • Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, et al. Mapping copy number variation by population-scale genome sequencing. Nat 2011. 2011;470:7332.


    Google Scholar
     

  • Zarrei M, MacDonald JR, Merico D, Scherer SW. A copy number variation map of the human genome. Nat Rev Genet. 2015;16:172–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pirooznia M, Goes F, Zandi PP. Whole-genome CNV analysis: Advances in computational approaches. Front Genet. 2015;6 MAR:138.

  • Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SFA, et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 2007;17:1665–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011;21:974–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Zheng Z, Cai Y, Chen T, Li C, Fu W, et al. CNVcaller: highly efficient and widely applicable software for detecting copy number variations in large populations. Gigascience. 2017;6:1–12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klambauer G, Schwarzbauer K, Mayr A, Clevert DA, Mitterecker A, Bodenhofer U et al. cn.MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. Nucleic Acids Res. 2012;40.

  • Kommadath A, Grant JR, Krivushin K, Butty AM, Baes CF, Carthy TR, et al. A large interactive visual database of copy number variants discovered in taurine cattle. Gigascience. 2019;8:1–12.

    Article 
    CAS 

    Google Scholar
     

  • Liu S, Kang X, Catacchio CR, Liu M, Fang L, Schroeder SG, et al. Computational detection and experimental validation of segmental duplications and associated copy number variations in water buffalo (Bubalus bubalis). Funct Integr Genomics. 2019;19:409–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laseca N, Molina A, Valera M, Antonini A, Demyda-Peyrás S. Copy number variation (CNV): a new genomic insight in horses. Animals. 2022;12:1435.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stafuzza NB, Silva RMDO, Fragomeni BDO, Masuda Y, Huang Y, Gray K, et al. A genome-wide single nucleotide polymorphism and copy number variation analysis for number of piglets born alive. BMC Genomics. 2019;20:1–11.

    Article 

    Google Scholar
     

  • Jia C, Wang H, Li C, Wu X, Zan L, Ding X, et al. Genome-wide detection of copy number variations in polled yak using the Illumina BovineHD BeadChip. BMC Genomics. 2019;20:1–14.

    Article 

    Google Scholar
     

  • Sohrabi SS, Mohammadabadi M, Wu DD, Esmailizadeh A. Detection of breed-specific copy number variations in domestic chicken genome. Genome. 2018;61:7–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi SY, Li LJ, Zhang ZJ, Wang EY, Wang J, Xu JW, et al. Copy number variation of MYLK4 gene and its growth traits of Capra hircus (goat). Anim Biotechnol. 2020;31:532–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang Y, Li Y, Wang X, Yu J, Cai Y, Zheng Z, et al. An atlas of CNV maps in cattle, goat and sheep. Sci China Life Sci. 2021;64:1747–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang LY, Abyzov A, Korbel JO, Snyder M, Gerstein M. MSB: a mean-shift-based approach for the analysis of structural variation in the genome. Genome Res. 2009;19:106–17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suvakov M, Panda A, Diesh C, Holmes I, Abyzov A. CNVpytor: a tool for copy number variation detection and analysis from read depth and allele imbalance in whole-genome sequencing. Gigascience. 2021. 10.

  • Yang L, Han J, Deng T, Li F, Han X, Xia H, et al. Comparative analyses of copy number variations between swamp buffaloes and river buffaloes. Anim Genet. 2023;54:199–206.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strillacci MG, Moradi-Shahrbabak H, Davoudi P, Ghoreishifar SM, Mokhber M, Masroure AJ, et al. A genome-wide scan of copy number variants in three iranian indigenous river buffaloes. BMC Genomics. 2021;22:1–14.

    Article 

    Google Scholar
     

  • Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Reviews Genet 2011. 2011;12:5.


    Google Scholar
     

  • Hu Y, Xia H, Li M, Xu C, Ye X, Su R, et al. Comparative analyses of copy number variations between Bos taurus and Bos indicus. BMC Genomics. 2020;21:1–11.

    Article 

    Google Scholar
     

  • Guo J, Zhong J, Liu GE, Yang L, Li L, Chen G, et al. Identification and population genetic analyses of copy number variations in six domestic goat breeds and Bezoar ibexes using next-generation sequencing. BMC Genomics. 2020;21:1–13.

    Article 
    CAS 

    Google Scholar
     

  • Davoudi P, Do DN, Rathgeber B, Colombo SM, Sargolzaei M, Plastow G et al. Genome-wide detection of copy number variation in american mink using whole-genome sequencing. BMC Genomics. 2022;23.

  • Kim YM, Ha SJ, Seong HS, Choi JY, Baek HJ, Yang BC, et al. Identification of Copy Number Variations in four horse breed populations in South Korea. Animals. 2022;12:3501.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jenkins GM, Goddard ME, Black MA, Brauning R, Auvray B, Dodds KG, et al. Copy number variants in the sheep genome detected using multiple approaches. BMC Genomics. 2016;17:1–14.

    Article 

    Google Scholar
     

  • Turner DJ, Miretti M, Rajan D, Fiegler H, Carter NP, Blayney ML, et al. Germline rates of de novo meiotic deletions and duplications causing several genomic disorders. Nat Genet. 2008;40:90–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solé M, Ablondi M, Binzer-Panchal A, Velie BD, Hollfelder N, Buys N, et al. Inter- A nd intra-breed genome-wide copy number diversity in a large cohort of european equine breeds. BMC Genomics. 2019;20:1–12.

    Article 

    Google Scholar
     

  • Duan J, Zhang JG, Deng HW, Wang YP. Comparative studies of Copy Number Variation detection methods for next-generation sequencing Technologies. PLoS ONE. 2013;8:e59128.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gross AM, Ajay SS, Rajan V, Brown C, Bluske K, Burns NJ, et al. Copy-number variants in clinical genome sequencing: deployment and interpretation for rare and undiagnosed disease. Genet Med. 2019;21:1121–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stothard P, Choi JW, Basu U, Sumner-Thomson JM, Meng Y, Liao X et al. Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery. BMC Genomics. 2011;12.

  • Zhan B, Fadista J, Thomsen B, Hedegaard J, Panitz F, Bendixen C. Global assessment of genomic variation in cattle by genome resequencing and high-throughput genotyping. BMC Genomics. 2011;12:1–20.

    Article 

    Google Scholar
     

  • Crooijmans RPMA, Fife MS, Fitzgerald TW, Strickland S, Cheng HH, Kaiser P, et al. Large scale variation in DNA copy number in chicken breeds. BMC Genomics. 2013;14:1–10.

    Article 

    Google Scholar
     

  • S K, J G, N K, K D, N N, P J, et al. Genetic variation and relationships among eight indian riverine buffalo breeds. Mol Ecol. 2006;15:593–600.

  • Lye ZN, Purugganan MD. Copy Number Variation in Domestication. Trends Plant Sci. 2019;24:352–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Chen N, Chen H, Lei C, Sun T. Comparative analyses of copy number variations between swamp and river buffalo. Gene. 2022;830:146509.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Letaief R, Rebours E, Grohs C, Meersseman C, Fritz S, Trouilh L, et al. Identification of copy number variation in french dairy and beef breeds using next-generation sequencing. Genet Sel Evol. 2017;49:77.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Chai Z, Hu D, Ji Q, Xin J, Zhang C, et al. A global analysis of CNVs in diverse yak populations using whole-genome resequencing. BMC Genomics. 2019;20:1–12.


    Google Scholar
     

  • Zhang X, Wang K, Wang L, Yang Y, Ni Z, Xie X, et al. Genome-wide patterns of copy number variation in the chinese yak genome. BMC Genomics. 2016;17:1–12.

    Article 
    CAS 

    Google Scholar
     

  • Sun T, Hanif Q, Chen H, Lei C, Dang R. Copy number variations of four Y-Linked genes in Swamp Buffaloes. Anim (Basel). 2020;10.

  • Zhang L, Bai W, Yuan N, Du Z. Comprehensively benchmarking applications for detecting copy number variation. PLoS Comput Biol. 2019;15:e1007069.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao Y, Jiang J, Yang S, Hou Y, Liu GE, Zhang S, et al. CNV discovery for milk composition traits in dairy cattle using whole genome resequencing. BMC Genomics. 2017;18:1–12.

    Article 

    Google Scholar
     

  • Gehrke LJ, Upadhyay M, Heidrich K, Kunz E, Klaus-Halla D, Weber F et al. A de novo frameshift mutation in ZEB2 causes polledness, abnormal skull shape, small body stature and subfertility in Fleckvieh cattle. Scientific Reports 2020 10:1. 2020;10:1–14.

  • Zhang D, Zhang X, Li F, La Y, Li G, Zhang Y, et al. The association of polymorphisms in the ovine PPARGC1B and ZEB2 genes with body weight in Hu sheep. Anim Biotechnol. 2022;33:90–7.

    Article 
    PubMed 

    Google Scholar
     

  • Hussain T, Shah SZA, Zhao D, Sreevatsan S, Zhou X. The role of IL-10 in Mycobacterium avium subsp. paratuberculosis infection. Cell Communication and Signaling. 2016;2016 14:1.


    Google Scholar
     

  • Nakamura K, Kusama K, Ideta A, Kimura K, Hori M, Imakawa K. Effects of miR-98 in intrauterine extracellular vesicles on maternal immune regulation during the peri-implantation period in cattle. Sci Rep. 2019;9.

  • Oliveira HR, Cant JP, Brito LF, Feitosa FLB, Chud TCS, Fonseca PAS, et al. Genome-wide association for milk production traits and somatic cell score in different lactation stages of Ayrshire, Holstein, and Jersey dairy cattle. J Dairy Sci. 2019;102:8159–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strillacci MG, Vevey M, Blanchet V, Mantovani R, Sartori C, Bagnato A. The genomic variation in the Aosta cattle breeds raised in an extensive Alpine Farming System. Anim (Basel). 2020;10:1–18.


    Google Scholar
     

  • Goo YH, Son SH, Paul A. Lipid Droplet-Associated Hydrolase promotes lipid Droplet Fusion and enhances ATGL degradation and triglyceride Accumulation. Sci Rep. 2017;7.

  • Settle S, Marker P, Gurley K, Sinha A, Thacker A, Wang Y, et al. The BMP family Member Gdf7 is required for seminal vesicle growth, branching morphogenesis, and cytodifferentiation. Dev Biol. 2001;234:138–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shinde SS, Sharma S, Teekas L, Sharma A, Vijay N. Recurrent erosion of COA1/MITRAC15 exemplifies conditional gene dispensability in oxidative phosphorylation. Scientific Reports 2021 11:1. 2021;11:1–16.

  • Hussain S, Sun M, Guo Y, Mushtaq N, Zhao Y, Yuan Y, et al. SFMBT2 positively regulates SOX9 and chondrocyte proliferation. Int J Mol Med. 2018;42:3503–12.

    CAS 
    PubMed 

    Google Scholar
     

  • Cui R, Chen D, Li N, Cai M, Wan T, Zhang X, et al. PARD3 gene variation as candidate cause of nonsyndromic cleft palate only. J Cell Mol Med. 2022;26:4292–304.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lanneau D, Wettstein G, Bonniaud P, Garrido C. Heat shock proteins: cell protection through protein triage. ScientificWorldJournal. 2010;10:1543–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansen PJ. Prospects for gene introgression or gene editing as a strategy for reduction of the impact of heat stress on production and reproduction in cattle. Theriogenology. 2020;154:190–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Müller M, Fazi F, Ciaudo C. Argonaute Proteins: from structure to function in Development and pathological cell fate determination. Front Cell Dev Biol. 2020;7:360.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohabeer AL, Kroetsch JT, McFadden M, Khosraviani N, Broekelmann TJ, Hou G, et al. Deletion of type VIII collagen reduces blood pressure, increases carotid artery functional distensibility and promotes elastin deposition. Matrix Biol Plus. 2021;12:100085.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson GR, Posokhova E, Martemyanov KA. The R7 RGS protein family: multi-subunit regulators of neuronal G protein signaling. Cell Biochem Biophys. 2009;54:33–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teng J, Wang D, Zhao C, Zhang X, Chen Z, Liu J et al. Longitudinal genome-wide association studies of milk production traits in Holstein cattle using whole-genome sequence data imputed from medium-density chip data. J Dairy Sci. 2023;106.

  • Xu Y, Feng Y, Li S, Sun J. Identification and characterization of apoptosis-related gene serine/threonine kinase 17A (STK17A) from japanese flounder Paralichthys olivaceus. Fish Shellfish Immunol. 2020;98:1008–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahoney MM, Ramanathan C, Hagenauer MH, Thompson RC, Smale L, Lee T. Daily rhythms and sex differences in vasoactive intestinal polypeptide, VIPR2 receptor and arginine vasopressin mRNA in the suprachiasmatic nucleus of a diurnal rodent, Arvicanthis niloticus. Eur J Neurosci. 2009;30:1537–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erdman VV, Karimov DD, Tuktarova IA, Timasheva YR, Nasibullin TR, Korytina GF. Alu Deletions in LAMA2 and CDH4 genes are Key Components of Polygenic Predictors of Longevity. Int J Mol Sci. 2022;23.

  • Hernández-Montiel W, Martínez-Núñez MA, Ramón-Ugalde JP, Román-Ponce SI, Calderón-Chagoya R, Zamora-Bustillos R. Genome-wide Association Study reveals candidate genes for litter size traits in Pelibuey Sheep. Anim (Basel). 2020;10.

  • Tao L, He XY, Wang FY, Pan LX, Wang XY, Gan SQ, et al. Identification of genes associated with litter size combining genomic approaches in Luzhong mutton sheep. Anim Genet. 2021;52:545–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou C, Liu Y, Zheng X, Shang K, Cheng M, Wang L, et al. Characterization of olfactory receptor repertoires provides insights into the high-altitude adaptation of the yak based on the chromosome-level genome. Int J Biol Macromol. 2022;209:220–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu X, Zhu H, Chen B, He X, Shen Y, Zhang X et al. Tubulin alpha 1b is Associated with the Immune Cell Infiltration and the response of HCC Patients to Immunotherapy. Diagnostics. 2022;12.

  • Ostrowska M, Zwierzchowski L, Brzozowska P, Kawecka-Grochocka E, Żelazowska B, Bagnicka E. The effect of single-nucleotide polymorphism in the promoter region of bovine alpha-lactalbumin (LALBA) gene on LALBA expression in milk cells and milk traits of cows. J Anim Sci. 2021;99:1–9.

    Article 

    Google Scholar
     

  • Dutta P, Talenti A, Young R, Jayaraman S, Callaby R, Jadhav SK et al. Whole genome analysis of water buffalo and global cattle breeds highlights convergent signatures of domestication. Nature Communications 2020 11:1. 2020;11:1–13.

  • Andrews S, FastQC. A Quality Control tool for High Throughput Sequence Data. Soil. 2010;5. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 21 Dec 2021.

  • Krueger F. Babraham Bioinformatics – Trim Galore! Version 0.4.4. 2017. https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/. Accessed 24 Dec 2021.

  • Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013.

  • NDDB_SH_1 – Genome. – Assembly – NCBI. https://www.ncbi.nlm.nih.gov/assembly/GCF_019923935.1. Accessed 6 May 2023.

  • Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:1–4.

    Article 
    CAS 

    Google Scholar
     

  • Picard Tools – By Broad Institute. https://broadinstitute.github.io/picard/. Accessed 6 May 2023.

  • Yoon S, Xuan Z, Makarov V, Ye K, Sebat J. Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res. 2009;19:1586–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mallory XF, Edrisi M, Navin N, Nakhleh L. Methods for copy number aberration detection from single-cell DNA-sequencing data. Genome Biol. 2020;21:1–22.

    Article 

    Google Scholar
     

  • Jang J, Kim K, Lee YH, Kim H. Population differentiated copy number variation of Bos taurus, Bos indicus and their african hybrids. BMC Genomics. 2021;22:1–11.

    Article 

    Google Scholar
     

  • Hao Z, Lv D, Ge Y, Shi J, Weijers D, Yu G, et al. RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput Sci. 2020;6:1–11.

    Article 

    Google Scholar
     

  • Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link