Scientific Papers

Methylomics and cancer: the current state of methylation profiling and marker development for clinical care | Cancer Cell International


  • Ge T, Gu X, Jia R, et al. Crosstalk between metabolic reprogramming and epigenetics in cancer: updates on mechanisms and therapeutic opportunities. Cancer Commun (Lond). 2022;42(11):1049–82.

    Article 
    PubMed 

    Google Scholar
     

  • Duan R, Fu Q, Sun Y, Li Q. Epigenetic clock: a promising biomarker and practical tool in aging. Ageing Res Rev. 2022;81: 101743.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahuja N, Sharma AR, Baylin SB. Epigenetic therapeutics: a new weapon in the war against cancer. Annu Rev Med. 2016;67:73–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farooqi AA, Fayyaz S, Poltronieri P, Calin G, Mallardo M. Epigenetic deregulation in cancer: enzyme players and non-coding RNAs. Semin Cancer Biol. 2022;83:197–207.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • WYATT GR. Occurrence of 5-methylcytosine in nucleic acids. Nature. 1950;166(4214):237–8.

    Article 
    PubMed 

    Google Scholar
     

  • Li S, Peng Y, Panchenko AR. DNA methylation: precise modulation of chromatin structure and dynamics. Curr Opin Struct Biol. 2022;75: 102430.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferragut Cardoso AP, Banerjee M, Nail AN, Lykoudi A, States JC. miRNA dysregulation is an emerging modulator of genomic instability. Semin Cancer Biol. 2021;76:120–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng Y, He C, Wang M, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019;4:62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong M, Tao S, Zhang L, et al. RNA sequencing: new technologies and applications in cancer research. J Hematol Oncol. 2020;13(1):166.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan S, Chen R. Pathological implication of protein post-translational modifications in cancer. Mol Aspects Med. 2022;86: 101097.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baylin SB, Jones PA. A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer. 2011;11(10):726–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen YC, Gotea V, Margolin G, Elnitski L. Significant associations between driver gene mutations and DNA methylation alterations across many cancer types. PLoS Comput Biol. 2017;13(11): e1005840.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saghafinia S, Mina M, Riggi N, Hanahan D, Ciriello G. Pan-cancer landscape of aberrant DNA methylation across human tumors. Cell Rep. 2018;25(4):1066-1080e8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin. Cancer Cell. 2012;22(1):9–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen H, Laird PW. Interplay between the cancer genome and epigenome. Cell. 2013;153(1):38–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li N, Zeng A, Wang Q, Chen M, Zhu S, Song L. Regulatory function of DNA methylation mediated lncRNAs in gastric cancer. Cancer Cell Int. 2022;22(1):227.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Widschwendter M, Jones A, Evans I, et al. Epigenome-based cancer risk prediction: rationale, opportunities and challenges. Nat Rev Clin Oncol. 2018;15(5):292–309.

    Article 
    PubMed 

    Google Scholar
     

  • Do C, Dumont E, Salas M, et al. Allele-specific DNA methylation is increased in cancers and its dense mapping in normal plus neoplastic cells increases the yield of disease-associated regulatory SNPs. Genome Biol. 2020;21(1):153.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernandez-Meza G, von Felden J, Gonzalez-Kozlova EE, et al. DNA methylation profiling of human hepatocarcinogenesis. Hepatology. 2021;74(1):183–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo J, Zheng J, Zhang H, Tong J. RNA m6A methylation regulators in ovarian cancer. Cancer Cell Int. 2021;21(1):609.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan J, Liu F, Xiao X, et al. METTL3 promotes colorectal carcinoma progression by regulating the m6A-CRB3-Hippo axis. J Exp Clin Cancer Res. 2022;41(1):19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hogg SJ, Beavis PA, Dawson MA, Johnstone RW. Targeting the epigenetic regulation of antitumour immunity. Nat Rev Drug Discov. 2020;19(11):776–800.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo H, Wei W, Ye Z, Zheng J, Xu RH. Liquid biopsy of methylation biomarkers in cell-free DNA. Trends Mol Med. 2021;27(5):482–500.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li E, Zhang Y. DNA methylation in mammals. Cold Spring Harb Perspect Biol. 2014;6(5): a019133.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dor Y, Cedar H. Principles of DNA methylation and their implications for biology and medicine. Lancet. 2018;392(10149):777–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greenberg M, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20(10):590–607.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Michalak EM, Burr ML, Bannister AJ, Dawson MA. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat Rev Mol Cell Biol. 2019;20(10):573–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Z, Lv J, Yu H, et al. Mechanism of RNA modification N6-methyladenosine in human cancer. Mol Cancer. 2020;19(1):104.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen M, Wong CM. The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis. Mol Cancer. 2020;19(1):44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roignant JY, Soller M. M(6)A in mRNA: an ancient mechanism for fine-tuning gene expression. Trends Genet. 2017;33(6):380–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10(2):93–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24(2):177–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pendleton KE, Chen B, Liu K, et al. The U6 snRNA m(6)a methyltransferase METTL16 regulates SAM synthetase intron retention. Cell. 2017;169(5):824–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du A, Li S, Zhou Y, et al. M6A-mediated upregulation of circMDK promotes tumorigenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. Mol Cancer. 2022;21(1):109.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han H, Fan G, Song S, et al. piRNA-30473 contributes to tumorigenesis and poor prognosis by regulating m6A RNA methylation in DLBCL. Blood. 2021;137(12):1603–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia G, Fu Y, He C. Reversible RNA adenosine methylation in biological regulation. Trends Genet. 2013;29(2):108–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Separovich RJ, Pang C, Wilkins MR. Controlling the controllers: regulation of histone methylation by phosphosignalling. Trends Biochem Sci. 2020;45(12):1035–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17(8):487–500.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du J, Johnson LM, Jacobsen SE, Patel DJ. DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol. 2015;16(9):519–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell. 2012;48(4):491–507.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He K, Cao X, Deng X. Histone methylation in epigenetic regulation and temperature responses. Curr Opin Plant Biol. 2021;61: 102001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gou D, Liu R, Shan X, et al. Gluconeogenic enzyme PCK1 supports S-adenosylmethionine biosynthesis and promotes H3K9me3 modification to suppress hepatocellular carcinoma progression. J Clin Invest. 2023;133(13): 161713.

    Article 

    Google Scholar
     

  • Yu SH, Zhu KY, Chen J, et al. JMJD3 facilitates C/EBPβ-centered transcriptional program to exert oncorepressor activity in AML. Nat Commun. 2018;9(1):3369.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan X, Thymann T, Gao F, Sangild PT. Rapid gut adaptation to preterm birth involves feeding-related DNA methylation reprogramming of intestinal genes in pigs. Front Immunol. 2020;11: 565.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cokus SJ, Feng S, Zhang X, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature. 2008;452(7184):215–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 2005;33(18):5868–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ziller MJ, Hansen KD, Meissner A, Aryee MJ. Coverage recommendations for methylation analysis by whole-genome bisulfite sequencing. Nat Methods. 2015;12(3):230–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo H, Zhu P, Guo F, et al. Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing. Nat Protoc. 2015;10(5):645–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou Y, Guo H, Cao C, et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 2016;26(3):304–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batra RN, Lifshitz A, Vidakovic AT, et al. DNA methylation landscapes of 1538 breast cancers reveal a replication-linked clock, epigenomic instability and cis-regulation. Nat Commun. 2021;12(1):5406.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun X, Yi J, Yang J, et al. An integrated epigenomic–transcriptomic landscape of lung cancer reveals novel methylation driver genes of diagnostic and therapeutic relevance. Theranostics. 2021;11(11):5346–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laajala E, Kalim UU, Grönroos T, et al. Umbilical cord blood DNA methylation in children who later develop type 1 diabetes. Diabetologia. 2022;65(9):1534–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klughammer J, Kiesel B, Roetzer T, et al. The DNA methylation landscape of glioblastoma disease progression shows extensive heterogeneity in time and space. Nat Med. 2018;24(10):1611–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shareef SJ, Bevill SM, Raman AT, et al. Extended-representation bisulfite sequencing of gene regulatory elements in multiplexed samples and single cells. Nat Biotechnol. 2021;39(9):1086–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Zhao H, Huang Y, et al. Genome-wide cell-free DNA methylation analyses improve accuracy of non-invasive diagnostic imaging for early-stage breast cancer. Mol Cancer. 2021;20(1):36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun HW, Dai SJ, Kong HR, et al. Accurate prediction of acute pancreatitis severity based on genome-wide cell free DNA methylation profiles. Clin Epigenetics. 2021;13(1):223.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992;89(5):1827–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang S, Qin C, Cao G, Guo L, Feng C, Zhang W. Genome-wide analysis of DNA methylation profiles in a senescence-accelerated mouse prone 8 brain using whole-genome bisulfite sequencing. Bioinformatics. 2017;33(11):1591–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han Y, Ji L, Guan Y, et al. An epigenomic landscape of cervical intraepithelial neoplasia and cervical cancer using single-base resolution methylome and hydroxymethylome. Clin Transl Med. 2021;11(7): e498.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magenheim J, Rokach A, Peretz A, et al. Universal lung epithelium DNA methylation markers for detection of lung damage in liquid biopsies. Eur Respir J. 2022;60:2103056.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raine A, Manlig E, Wahlberg P, Syvänen AC, Nordlund J. Splinted ligation adapter tagging (SPLAT), a novel library preparation method for whole genome bisulphite sequencing. Nucleic Acids Res. 2017;45(6):e36.

    Article 
    PubMed 

    Google Scholar
     

  • Li J, Li Y, Li W, et al. Guide positioning sequencing identifies aberrant DNA methylation patterns that alter cell identity and tumor-immune surveillance networks. Genome Res. 2019;29(2):270–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu H, Yuan Z, Tan T, et al. Improved tagmentation-based whole-genome bisulfite sequencing for input DNA from less than 100 mammalian cells. Epigenomics. 2015;7(1):47–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao F, Niu Y, Sun YE, et al. De novo DNA methylation during monkey pre-implantation embryogenesis. Cell Res. 2017;27(4):526–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Y, Lu H, Zhang D, et al. Integrated analyses of multi-omics reveal global patterns of methylation and hydroxymethylation and screen the tumor suppressive roles of HADHB in colorectal cancer. Clin Epigenetics. 2018;10:30.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi J, Shi Y, Tan Y, et al. Regional gain and global loss of 5-hydroxymethylcytosine coexist in genitourinary cancers and regulate different oncogenic pathways. Clin Epigenetics. 2022;14(1):117.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun HL, Zhu AC, Gao Y, et al. Stabilization of ERK-phosphorylated METTL3 by USP5 increases m(6)a methylation. Mol Cell. 2020;80(4):633–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Chen J, Gao WQ, Yang R. METTL14 promotes prostate tumorigenesis by inhibiting THBS1 via an m6A-YTHDF2-dependent mechanism. Cell Death Discov. 2022;8(1):143.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saletore Y, Meyer K, Korlach J, Vilfan ID, Jaffrey S, Mason CE. The birth of the epitranscriptome: deciphering the function of RNA modifications. Genome Biol. 2012;13(10): 175.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Y, Gong C, Li Z, et al. Demethylase ALKBH5 suppresses invasion of gastric cancer via PKMYT1 m6A modification. Mol Cancer. 2022;21(1):34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farlik M, Sheffield NC, Nuzzo A, et al. Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep. 2015;10(8):1386–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandberg R. Entering the era of single-cell transcriptomics in biology and medicine. Nat Methods. 2014;11(1):22–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smallwood SA, Lee HJ, Angermueller C, et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods. 2014;11(8):817–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Müller S, Nebe-von-Caron G. Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev. 2010;34(4):554–87.

    Article 
    PubMed 

    Google Scholar
     

  • Shields CW 4th, Reyes CD, López GP. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip. 2015;15(5):1230–49.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu F, Wang Y, Gu H, Wang X. Technologies and applications of single-cell DNA methylation sequencing. Theranostics. 2023;13(8):2439–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miura F, Enomoto Y, Dairiki R, Ito T. Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res. 2012;40(17):e136.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu P, Guo H, Ren Y, et al. Single-cell DNA methylome sequencing of human preimplantation embryos. Nat Genet. 2018;50(1):12–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen SY, Singhania R, Fehringer G, et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature. 2018;563(7732):579–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu J, Song J, Wang T, et al. A combination of methylation and protein markers is capable of detecting gastric cancer detection by combined markers. Epigenomics. 2021;13(19):1557–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song L, Li Y, Jia J, et al. Algorithm optimization in methylation detection with multiple RT-qPCR. PLoS ONE. 2016;11(11): e0163333.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu L, Wang J, Sun G, et al. M(6)a mRNA methylation regulates CTNNB1 to promote the proliferation of hepatoblastoma. Mol Cancer. 2019;18(1):188.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin H, Zhang X, Yang P, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun. 2021;12(1):1394.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yue B, Song C, Yang L, et al. METTL3-mediated N6-methyladenosine modification is critical for epithelial–mesenchymal transition and metastasis of gastric cancer. Mol Cancer. 2019;18(1):142.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu W, Hu Q, Nie E, et al. Hypoxia induces H19 expression through direct and indirect Hif-1α activity, promoting oncogenic effects in glioblastoma. Sci Rep. 2017;7: 45029.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu J, Chai P, Xie M, et al. Histone lactylation drives oncogenesis by facilitating m(6)a reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 2021;22(1):85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu D, Zhang XX, Li MC, et al. C/EBPβ enhances platinum resistance of ovarian cancer cells by reprogramming H3K79 methylation. Nat Commun. 2018;9(1):1739.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nuñez JK, Chen J, Pommier GC, et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell. 2021;184(9):2503-2519e17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moussa HF, Angstman JF, Khalil AS. Here to stay: writing lasting epigenetic memories. Cell. 2021;184(9):2281–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kröger N, Sockel K, Wolschke C, et al. Comparison between 5-azacytidine treatment and allogeneic stem-cell transplantation in elderly patients with advanced MDS according to donor availability (VidazaAllo study). J Clin Oncol. 2021;39(30):3318–27.

    Article 
    PubMed 

    Google Scholar
     

  • DiNardo CD, Maiti A, Rausch CR, et al. 10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or refractory acute myeloid leukaemia: a single-centre, phase 2 trial. Lancet Haematol. 2020;7(10):e724-36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaminskas E, Farrell A, Abraham S, et al. Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res. 2005;11(10):3604–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei AH, Döhner H, Pocock C, et al. Oral azacitidine maintenance therapy for acute myeloid leukemia in first remission. N Engl J Med. 2020;383(26):2526–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toh TB, Lim JJ, Chow EK. Epigenetics in cancer stem cells. Mol Cancer. 2017;16(1):29.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piunti A, Meghani K, Yu Y, et al. Immune activation is essential for the antitumor activity of EZH2 inhibition in urothelial carcinoma. Sci Adv. 2022;8(40): eabo8043.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hollebecque A, Salvagni S, Plummer R, et al. Clinical activity of CC-90011, an oral, potent, and reversible LSD1 inhibitor, in advanced malignancies. Cancer. 2022;128(17):3185–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skvortsova K, Stirzaker C, Taberlay P. The DNA methylation landscape in cancer. Essays Biochem. 2019;63(6):797–811.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Roermund JG, Hinnen KA, Tolman CJ, et al. Periprostatic fat correlates with tumour aggressiveness in prostate cancer patients. BJU Int. 2011;107(11):1775–9.

    Article 
    PubMed 

    Google Scholar
     

  • Lin PC, Giannopoulou EG, Park K, et al. Epigenomic alterations in localized and advanced prostate cancer. Neoplasia. 2013;15(4):373–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article 
    PubMed 

    Google Scholar
     

  • Hulbert A, Jusue-Torres I, Stark A, et al. Early detection of lung cancer using DNA promoter hypermethylation in plasma and sputum. Clin Cancer Res. 2017;23(8):1998–2005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong S, Li W, Wang L, et al. Histone-related genes are hypermethylated in lung cancer and hypermethylated HIST1H4F could serve as a pan-cancer biomarker. Cancer Res. 2019;79(24):6101–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen XY, Zhang J, Zhu JS. The role of m(6)a RNA methylation in human cancer. Mol Cancer. 2019;18(1):103.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan G, Flores NM, Hausmann S, et al. Elevated NSD3 histone methylation activity drives squamous cell lung cancer. Nature. 2021;590(7846):504–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imperiale TF, Ransohoff DF, Itzkowitz SH, et al. Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med. 2014;370(14):1287–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaes N, Schonkeren SL, Rademakers G, et al. Loss of enteric neuronal Ndrg4 promotes colorectal cancer via increased release of Nid1 and Fbln2. EMBO Rep. 2021;22(6): e51913.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, She J, Yang J, et al. NDRG4 in gastric cancer determines tumor cell proliferation and clinical outcome. Mol Carcinog. 2018;57(6):762–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen J, Liu X, Qi Y, et al. BMP3 suppresses colon tumorigenesis via ActRIIB/SMAD2-dependent and TAK1/JNK signaling pathways. J Exp Clin Cancer Res. 2019;38(1):428.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu D, Zhou G, Jin P, et al. Detection of colorectal cancer using a simplified SEPT9 gene methylation assay is a reliable method for opportunistic screening. J Mol Diagn. 2016;18(4):535–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bergheim J, Semaan A, Gevensleben H, et al. Potential of quantitative SEPT9 and SHOX2 methylation in plasmatic circulating cell-free DNA as auxiliary staging parameter in colorectal cancer: a prospective observational cohort study. Br J Cancer. 2018;118(9):1217–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han YD, Oh TJ, Chung TH, et al. Early detection of colorectal cancer based on presence of methylated syndecan-2 (SDC2) in stool DNA. Clin Epigenetics. 2019;11(1):51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barault L, Amatu A, Siravegna G, et al. Discovery of methylated circulating DNA biomarkers for comprehensive non-invasive monitoring of treatment response in metastatic colorectal cancer. Gut. 2018;67(11):1995–2005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee Y, Dho SH, Lee J, et al. Hypermethylation of PDX1, EN2, and MSX1 predicts the prognosis of colorectal cancer. Exp Mol Med. 2022;54(2):156–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Lu Y, Wang M, Wu Y, Wang X, Li Y. Roles of E3 ubiquitin ligases in gastric cancer carcinogenesis and their effects on cisplatin resistance. J Mol Med (Berl). 2021;99(2):193–212.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun W, Ma G, Zhang L, et al. DNMT3A-mediated silence in ADAMTS9 expression is restored by RNF180 to inhibit viability and motility in gastric cancer cells. Cell Death Dis. 2021;12(5):428.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheung KF, Lam CN, Wu K, et al. Characterization of the gene structure, functional significance, and clinical application of RNF180, a novel gene in gastric cancer. Cancer. 2012;118(4):947–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Z, Liu H, Sun W, et al. RNF180 mediates STAT3 activity by regulating the expression of RhoC via the proteasomal pathway in gastric cancer cells. Cell Death Dis. 2020;11(10):881.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9.

    Article 

    Google Scholar
     

  • Matsusaka K, Funata S, Fukuyo M, et al. Epstein–Barr virus infection induces genome-wide de novo DNA methylation in non-neoplastic gastric epithelial cells. J Pathol. 2017;242(4):391–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Germi R, Guigue N, Lupo J, et al. Methylation of Epstein–Barr virus Rta promoter in EBV primary infection, reactivation and lymphoproliferation. J Med Virol. 2016;88(10):1814–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Sethi NS, Hinoue T, et al. Comparative molecular analysis of gastrointestinal adenocarcinomas. Cancer Cell. 2018;33(4):721-735e8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren J, Lu P, Zhou X, et al. Genome-scale methylation analysis of circulating cell-free DNA in gastric cancer patients. Clin Chem. 2022;68(2):354–64.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang B, Wu Q, Li B, Wang D, Wang L, Zhou YL. M(6)a regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer. Mol Cancer. 2020;19(1):53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuo W, Sun M, Wang K, et al. M(6)am methyltransferase PCIF1 is essential for aggressiveness of gastric cancer cells by inhibiting TM9SF1 mRNA translation. Cell Discov. 2022;8(1):48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016;66(4):271–89.

    Article 
    PubMed 

    Google Scholar
     

  • Xi Y, Lin Y, Guo W, et al. Multi-omic characterization of genome-wide abnormal DNA methylation reveals diagnostic and prognostic markers for esophageal squamous-cell carcinoma. Signal Transduct Target Ther. 2022;7(1):53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma K, Kalra A, Tsai HL, Okello S, Cheng Y, Meltzer SJ. Accurate nonendoscopic detection of esophageal squamous cell carcinoma using methylated DNA biomarkers. Gastroenterology. 2022;163(2):507-509e2.

    Article 
    PubMed 

    Google Scholar
     

  • Shimizu M, Koma YI, Sakamoto H, et al. Metallothionein 2A expression in cancer-associated fibroblasts and cancer cells promotes esophageal squamous cell carcinoma progression. Cancers (Basel). 2021;13(18): 4552.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krizkova S, Kepinska M, Emri G, et al. An insight into the complex roles of metallothioneins in malignant diseases with emphasis on (sub)isoforms/isoforms and epigenetics phenomena. Pharmacol Ther. 2018;183:90–117.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su J, Wu G, Ye Y, et al. NSUN2-mediated RNA 5-methylcytosine promotes esophageal squamous cell carcinoma progression via LIN28B-dependent GRB2 mRNA stabilization. Oncogene. 2021;40(39):5814–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Xu W, Kang W, et al. Genomic analysis of liver cancer unveils novel driver genes and distinct prognostic features. Theranostics. 2018;8(6):1740–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oussalah A, Rischer S, Bensenane M, et al. Plasma mSEPT9: a novel circulating cell-free DNA-based epigenetic biomarker to diagnose hepatocellular carcinoma. EBioMedicine. 2018;30:138–47.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villanueva A, Portela A, Sayols S, et al. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology. 2015;61(6):1945–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu X, Li J, Gassa A, et al. Circulating tumor DNA as an emerging liquid biopsy biomarker for early diagnosis and therapeutic monitoring in hepatocellular carcinoma. Int J Biol Sci. 2020;16(9):1551–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lan T, Li H, Zhang D, et al. KIAA1429 contributes to liver cancer progression through N6-methyladenosine-dependent post-transcriptional modification of GATA3. Mol Cancer. 2019;18(1):186.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qureshi SA, Bashir MU, Yaqinuddin A. Utility of DNA methylation markers for diagnosing cancer. Int J Surg. 2010;8(3):194–8.

    Article 
    PubMed 

    Google Scholar
     

  • Farkas SA, Milutin-Gašperov N, Grce M, Nilsson TK. Genome-wide DNA methylation assay reveals novel candidate biomarker genes in cervical cancer. Epigenetics. 2013;8(11):1213–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li C, Wang Z, Zhang J, et al. Crosstalk of mRNA, miRNA, lncRNA, and circRNA and their regulatory pattern in pulmonary fibrosis. Mol Ther Nucleic Acids. 2019;18:204–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Q, Reed M, Zhu H, et al. Epigenome-wide DNA methylation and transcriptome profiling of localized and locally advanced prostate cancer: uncovering new molecular markers. Genomics. 2022;114(5): 110474.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu W, Xu M, Wang L, et al. Integrative analysis of DNA methylation and gene expression identified cervical cancer-specific diagnostic biomarkers. Signal Transduct Target Ther. 2019;4:55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link