Scientific Papers

Intron-mediated enhancement of DIACYLGLYCEROL ACYLTRANSFERASE1 expression in energycane promotes a step change for lipid accumulation in vegetative tissues | Biotechnology for Biofuels and Bioproducts


  • Khounani Z, Nazemi F, Shafiei M, Aghbashlo M, Tabatabaei M. Techno-economic aspects of a safflower-based biorefinery plant co-producing bioethanol and biodiesel. Energy Convers Manag. 2019;201:112184. https://doi.org/10.1016/j.enconman.2019.112184.

    Article 
    CAS 

    Google Scholar
     

  • Field JL, Richard TL, Smithwick EAH, Cai H, Laser MS, LeBauer DS, et al. Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. PNAS. 2020;117:21968–77. https://doi.org/10.1073/pnas.1920877117.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kilian L, Zhou X. The impact of rising oil prices on US inflation and inflation expectations in 2020–23. Energy Econ. 2022;113:106228. https://doi.org/10.2139/ssrn.3980337.

    Article 

    Google Scholar
     

  • Alexander AG. The energy cane alternative. 1985. https://doi.org/10.1016/0144-4565(86)90046-6.

  • Carvalho-Netto OV, Bressiani JA, Soriano HL, Fiori CS, Santos JM, Barbosa GVS, et al. The potential of the energy cane as the main biomass crop for the cellulosic industry. Chem Biol Technol Agric. 2014;1:1–8. https://doi.org/10.1186/s40538-014-0020-2.

    Article 
    CAS 

    Google Scholar
     

  • Diniz AL, Ferreira SS, Ten-Caten F, Margarido GRA, Dos Santos JM, de Barbosa GVS, et al. Genomic resources for energy cane breeding in the post genomics era. Comput Struct Biotechnol J. 2019;17:1404–14. https://doi.org/10.1016/j.csbj.2019.10.006.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knoll JE, Anderson WF, Missaoui A, Hale A, Hanna WW. Biomass production and stability of five energycane cultivars at two latitudes in Georgia. Agrosyst Geosci Environ. 2021;4:e20146. https://doi.org/10.1002/agg2.20146.

    Article 
    CAS 

    Google Scholar
     

  • Cruz LP, Pacheco VS, Silva LM, Almeida RL, Miranda MT, Pissolato MD, et al. Morpho-physiological bases of biomass production by energy cane and sugarcane: a comparative study. Ind Crops Prod. 2021;171:113884. https://doi.org/10.1016/j.indcrop.2021.113884.

    Article 
    CAS 

    Google Scholar
     

  • Gurr MI. The biosynthesis of triacylglycerols. Lipids: structure and function. Elsevier. 1980; 205–48. https://doi.org/10.1016/b978-0-12-675404-9.50014-x.

  • Williams KA. Oils, fats and fatty foods. Their practical examination.(Bolton & Revis). 1949. https://doi.org/10.1002/jctb.5000471829.

  • Miller R, Durrett TP, Kosma DK, Lydic TA, Muthan B, Koo AJK, et al. Altered lipid composition and enhanced nutritional value of Arabidopsis leaves following introduction of an algal diacylglycerol acyltransferase 2. Plant Cell. 2013;25:677–93. https://doi.org/10.1105/tpc.112.104752.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohlrogge J, Chapman K. The seeds of green energy: expanding the contribution of plant oils as biofuels. Biochem. 2011;33:34–8. https://doi.org/10.1042/bio03302034.

    Article 

    Google Scholar
     

  • Harwood JL, Ramli US, Tang M, Quant PA, Weselake RJ, Fawcett T, et al. Regulation and enhancement of lipid accumulation in oil crops: the use of metabolic control analysis for informed genetic manipulation. Eur J Lipid Sci Technol. 2013;115:1239–46. https://doi.org/10.1002/ejlt.201300257.

    Article 
    CAS 

    Google Scholar
     

  • Durrett TP, Benning C, Ohlrogge J. Plant triacylglycerols as feedstocks for the production of biofuels. Plant J. 2008;54:593–607. https://doi.org/10.1111/j.1365-313x.2008.03442.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Z, Ohlrogge JB. Turnover of fatty acids during natural senescence of Arabidopsis, Brachypodium, and switchgrass and in Arabidopsis β-oxidation mutants. Plant Physiol. 2009;150:1981–9. https://doi.org/10.1104/pp.109.140491.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy DJ. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res. 2001;40:325–438. https://doi.org/10.1016/s0163-7827(01)00013-3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo G, Cao VD, Kannan B, Liu H, Shanklin J, Altpeter F. Metabolic engineering of energycane to hyperaccumulate lipids in vegetative biomass. BMC Biotechnol. 2022;22:24. https://doi.org/10.1186/s12896-022-00753-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parajuli S, Kannan B, Karan R, Sanahuja G, Liu H, Garcia-Ruiz E, et al. Towards oilcane: engineering hyperaccumulation of triacylglycerol into sugarcane stems. GCB Bioenergy. 2020;12:476–90. https://doi.org/10.1111/gcbb.12684.

    Article 
    CAS 

    Google Scholar
     

  • Vanhercke T, Dyer JM, Mullen RT, Kilaru A, Rahman MM, Petrie JR, et al. Metabolic engineering for enhanced oil in biomass. Prog Lipid Res. 2019;74:103–29. https://doi.org/10.1016/j.plipres.2019.02.002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zale J, Jung JH, Kim JY, Pathak B, Karan R, Liu H, et al. Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass. Plant Biotechnol J. 2016;14:661–9. https://doi.org/10.1111/pbi.12411.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vanhercke T, El Tahchy A, Liu Q, Zhou X, Shrestha P, Divi UK, et al. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnol J. 2014;12:231–9. https://doi.org/10.1111/pbi.12131.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan J, Yan C, Zhang X, Xu C. Dual role for phospholipid: diacylglycerol acyltransferase: enhancing fatty acid synthesis and diverting fatty acids from membrane lipids to triacylglycerol in Arabidopsis leaves. Plant Cell. 2013;25:3506–18. https://doi.org/10.1105/tpc.113.117358.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vanhercke T, El Tahchy A, Shrestha P, Zhou X-R, Singh SP, Petrie JR. Synergistic effect of WRI1 and DGAT1 coexpression on triacylglycerol biosynthesis in plants. FEBS Lett. 2013;587:364–9. https://doi.org/10.1016/j.febslet.2012.12.018.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vanhercke T, Petrie JR, Singh SP. Energy densification in vegetative biomass through metabolic engineering. Biocatal Agric Biotechnol. 2014;3:75–80. https://doi.org/10.1016/j.bcab.2013.11.010.

    Article 

    Google Scholar
     

  • Yang Y, Munz J, Cass C, Zienkiewicz A, Kong Q, Ma W, et al. Ectopic expression of WRINKLED1 affects fatty acid homeostasis in Brachypodium distachyon vegetative tissues. Plant Physiol. 2015;169:1836–47. https://doi.org/10.1104/pp.15.01236.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beechey-Gradwell Z, Cooney L, Winichayakul S, Andrews M, Hea SY, Crowther T, et al. Storing carbon in leaf lipid sinks enhances perennial ryegrass carbon capture especially under high N and elevated CO2. J Exp Bot. 2020;71:2351–61. https://doi.org/10.1093/jxb/erz494.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vanhercke T, Belide S, Taylor MC, El Tahchy A, Okada S, Rolland V, et al. Up-regulation of lipid biosynthesis increases the oil content in leaves of Sorghum bicolor. Plant Biotechnol J. 2019;17:220–32. https://doi.org/10.1111/pbi.12959.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Q, Guo Q, Akbar S, Zhi Y, El Tahchy A, Mitchell M, et al. Genetic enhancement of oil content in potato tuber (Solanum tuberosum L.) through an integrated metabolic engineering strategy. Plant Biotechnol J. 2017;15:56–67. https://doi.org/10.1111/pbi.12590.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Focks N, Benning C. wrinkled1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol. 1998;118:91–101. https://doi.org/10.1104/pp.118.1.91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J. 2004;40:575–85. https://doi.org/10.1111/j.1365-313x.2004.02235.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baud S, Wuilleme S, To A, Rochat C, Lepiniec L. Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J. 2009;60:933–47. https://doi.org/10.1111/j.1365-313x.2009.04011.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baud S, Lepiniec L. Physiological and developmental regulation of seed oil production. Prog Lipid Res. 2010;49:235–49. https://doi.org/10.1016/j.plipres.2010.01.001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, et al. An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J. 2009;60:476–87. https://doi.org/10.1111/j.1365-313x.2009.03967.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lung S, Weselake RJ. Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis. Lipids. 2006;41:1073–88. https://doi.org/10.1007/s11745-006-5057-y.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saha S, Enugutti B, Rajakumari S, Rajasekharan R. Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase. Plant Physiol. 2006;141:1533–43. https://doi.org/10.1104/pp.106.082198.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milcamps A, Tumaney AW, Paddock T, Pan DA, Ohlrogge J, Pollard M. Isolation of a gene encoding a 1, 2-diacylglycerol-sn-acetyl-CoA acetyltransferase from developing seeds of Euonymus alatus. J Bio Chem. 2005;280:5370–7. https://doi.org/10.1074/jbc.m410276200.

    Article 
    CAS 

    Google Scholar
     

  • Zou J, Wei Y, Jako C, Kumar A, Selvaraj G, Taylor DC. The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J. 1999;19:645–53. https://doi.org/10.1046/j.1365-313x.1999.00555.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Routaboul J-M, Benning C, Bechtold N, Caboche M, Lepiniec L. The TAG1 locus of Arabidopsis encodes for a diacylglycerol acyltransferase. Plant Physiol Biochem. 1999;37:831–40. https://doi.org/10.1016/s0981-9428(99)00115-1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andrianov V, Borisjuk N, Pogrebnyak N, Brinker A, Dixon J, Spitsin S, et al. Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol J. 2010;8:277–87. https://doi.org/10.1111/j.1467-7652.2009.00458.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Capuano F, Beaudoin F, Napier JA, Shewry PR. Properties and exploitation of oleosins. Biotechnol Adv. 2007;25:203–6. https://doi.org/10.1016/j.biotechadv.2006.11.006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parthibane V, Rajakumari S, Venkateshwari V, Iyappan R, Rajasekharan R. Oleosin is bifunctional enzyme that has both monoacylglycerol acyltransferase and phospholipase activities. J Biol Chem. 2012;287:1946–54. https://doi.org/10.1074/jbc.m111.309955.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Winichayakul S, Scott RW, Roldan M, Hatier J-HB, Livingston S, Cookson R, et al. In vivo packaging of triacylglycerols enhances Arabidopsis leaf biomass and energy density. Plant Physiol. 2013;162:626–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang Y, Yu X, Anaokar S, Shi H, Dahl WB, Cai Y, et al. Engineering triacylglycerol accumulation in duckweed (Lemna japonica). Plant Biotechnol J. 2023;21:317–30. https://doi.org/10.1111/pbi.13943.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rozov SM, Deineko EV. Strategies for optimizing recombinant protein synthesis in plant cells: classical approaches and new directions. Mol Biol. 2019;53:157–75. https://doi.org/10.1134/S0026893319020146.

    Article 
    CAS 

    Google Scholar
     

  • Callis J, Fromm M, Walbot V. Introns increase gene expression in cultured maize cells. Genes Dev. 1987;1:1183–200. https://doi.org/10.1101/gad.1.10.1183.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gallegos JE, Rose AB. An intron-derived motif strongly increases gene expression from transcribed sequences through a splicing independent mechanism in Arabidopsis thaliana. Sci Rep. 2019;9:1–9. https://doi.org/10.1038/s41598-019-50389-5.

    Article 
    CAS 

    Google Scholar
     

  • Dwyer K, Agarwal N, Pile L, Ansari A. Gene architecture facilitates intron-mediated enhancement of transcription. Front Mol Biosci. 2021;8:669004. https://doi.org/10.3389/fmolb.2021.669004.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richard TL. Challenges in scaling up biofuels infrastructure. Science. 1979;2010(329):793–6. https://doi.org/10.1126/science.1189139.

    Article 
    CAS 

    Google Scholar
     

  • Qin H, Dong Y, von Arnim AG. Epigenetic interactions between Arabidopsis transgenes: characterization in light of transgene integration sites. Plant Mol Biol. 2003;52:217–31. https://doi.org/10.1023/A:1023941123149.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibney ER, Nolan CM. Epigenetics and gene expression. Heredity. 2010;105(1):4–13. https://doi.org/10.1038/hdy.2010.54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hobbs SL, Kpodar P, DeLong CM. The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol. 1990;15:851–64. https://doi.org/10.1007/BF00039425.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matzke AJ, Matzke MA. Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol. 1998;1(2):142–8. https://doi.org/10.1016/S1369-5266(98)80016-2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Assaad FF, Tucker KL, Signer ER. Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis. Plant Mol Biol. 1993;22:1067–85. https://doi.org/10.1007/BF00028978.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hobbs SL, Warkentin TD, DeLong CM. Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol. 1993;21:17–26. https://doi.org/10.1007/BF00039614.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu-Gang LI, Song-Biao CH, Zi-Xian LU, Tuan-Jie CH, Qian-Chun ZE, Zhen ZH. Impact of copy number on transgene expression in tobacco. J Integr Plant Biol. 2002;44(1):120.


    Google Scholar
     

  • Dean C, Favreau M, Bond-Nutter D, Bedbrook J, Dunsmuir P. Sequences downstream of translation start regulate quantitative expression of two petunia rbcS genes. Plant Cell. 1989;1:201–8. https://doi.org/10.1105/tpc.1.2.201.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mascarenhas D, Mettler IJ, Pierce DA, Lowe HW. Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol Biol. 1990;15:913–20. https://doi.org/10.1007/bf00039430.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McElroy D, Zhang W, Cao J, Wu R. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell. 1990;2:163–71. https://doi.org/10.1105/tpc.2.2.163.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oard JH, Paige D, Dvorak J. Chimeric gene expression using maize intron in cultured cells of breadwheat. Plant Cell Rep. 1989;8:156–60. https://doi.org/10.1007/bf00716830.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silva EM, Mettler IJ, Dietrich PS, Sinibaldi RM. Enhanced transient expression in maize protoplasts. Genome. 1988;30:72. https://doi.org/10.1007/978-1-4612-2694-9_109.

    Article 

    Google Scholar
     

  • Vasil V, Clancy M, Ferl RJ, Vasil IK, Hannah LC. Increased gene expression by the first intron of maize shrunken-1 locus in grass species. Plant Physiol. 1989;91:1575–9. https://doi.org/10.1104/pp.91.4.1575.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rose AB. Introns as gene regulators: a brick on the accelerator. Front Genet. 2019;9:672. https://doi.org/10.3389/fgene.2018.00672.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim MJ, Kim H, Shin JS, Chung C-H, Ohlrogge JB, Suh MC. Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5′-UTR intron. Mol Genet Genom. 2006;276:351–68. https://doi.org/10.1007/s00438-006-0148-2.

    Article 
    CAS 

    Google Scholar
     

  • Ott CJ, Suszko M, Blackledge NP, Wright JE, Crawford GE, Harris A. A complex intronic enhancer regulates expression of the CFTR gene by direct interaction with the promoter. J Cell Mol Med. 2009;13:680–92. https://doi.org/10.1111/j.1582-4934.2008.00621.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morello L, Bardini M, Sala F, Breviario D. A long leader intron of the Ostub16 rice β-tubulin gene is required for high-level gene expression and can autonomously promote transcription both in vivo and in vitro. Plant J. 2002;29:33–44. https://doi.org/10.1046/j.0960-7412.2001.01192.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koga M, Hayashi M, Kaida D. Splicing inhibition decreases phosphorylation level of Ser2 in Pol II CTD. Nucleic Acids Res. 2015;43:8258–67. https://doi.org/10.1093/nar/gkv740.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dahan O, Gingold H, Pilpel Y. Regulatory mechanisms and networks couple the different phases of gene expression. Trends Genet. 2011;27:316–22. https://doi.org/10.1016/j.tig.2011.05.008.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moabbi AM, Agarwal N, El Kaderi B, Ansari A. Role for gene looping in intron-mediated enhancement of transcription. PNAS. 2012;109:8505–10. https://doi.org/10.1073/pnas.1112400109.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Husini N, Medler S, Ansari A. Crosstalk of promoter and terminator during RNA polymerase II transcription cycle. BBA-Gene Regul Mech. 2020;1863:194657. https://doi.org/10.1016/j.bbagrm.2020.194657.

    Article 
    CAS 

    Google Scholar
     

  • Le Hir H, Gatfield D, Izaurralde E, Moore MJ. The exon–exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 2001;20:4987–97. https://doi.org/10.1093/emboj/20.17.4987.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akua T, Shaul O. The Arabidopsis thaliana MHX gene includes an intronic element that boosts translation when localized in a 5′ UTR intron. J Exp Bot. 2013;64:4255–70. https://doi.org/10.1093/jxb/ert235.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nott A, Le Hir H, Moore MJ. Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev. 2004;18:210–22. https://doi.org/10.1101/gad.1163204.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bourdon V, Harvey A, Lonsdale DM. Introns and their positions affect the translational activity of mRNA in plant cells. EMBO Rep. 2001;2:394–8. https://doi.org/10.1093/embo-reports/kve090.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laxa M. Intron-mediated enhancement: a tool for heterologous gene expression in plants? Front Plant Sci. 2017;7:1977. https://doi.org/10.3389/fpls.2016.01977.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snowden KC, Buchhholz WG, Hall TC. Intron position affects expression from the tpi promoter in rice. Plant Mol Biol. 1996;31:689–92. https://doi.org/10.1007/bf00042241.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding F, Elowitz MB. Constitutive splicing and economies of scale in gene expression. Nat Struct Mol Biol. 2019;26:424–32. https://doi.org/10.1038/s41594-019-0226-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao G, Zhang ZQ, Yin CF, Liu RY, Wu XM, Tan TL, et al. Characterization of the promoter and 5′-UTR intron of oleic acid desaturase (FAD2) gene in Brassica napus. Gene. 2014;545:45–55. https://doi.org/10.1016/j.gene.2014.05.008.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ikeda C, Taku K, Miyazaki T, Shirai R, Nelson RS, Nyunoya H, et al. Cooperative roles of introns 1 and 2 of tobacco resistance gene N in enhanced N transcript expression and antiviral defense responses. Sci Rep. 2021;11:1–14. https://doi.org/10.1038/s41598-021-94713-4.

    Article 
    CAS 

    Google Scholar
     

  • Andersson R, Sandelin A. Determinants of enhancer and promoter activities of regulatory elements. Nat Rev Genet. 2020;21:71–87. https://doi.org/10.1038/s41576-019-0173-8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Della Rosa M, Spivakov M. Silencers in the spotlight. Nat Genet. 2020;52:244–5. https://doi.org/10.1038/s41588-020-0583-8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172:393–407. https://doi.org/10.1016/j.cell.2018.01.011.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shlyueva D, Stampfel G, Stark A. Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet. 2014;15:272–86. https://doi.org/10.1038/nrg3682.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rose AB, Carter A, Korf I, Kojima N. Intron sequences that stimulate gene expression in Arabidopsis. Plant Mol Biol. 2016;92:337–46. https://doi.org/10.1007/s11103-016-0516-1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaeger D, Baier T, Lauersen KJ. Intronserter, an advanced online tool for design of intron containing transgenes. Algal Res. 2019;42:101588. https://doi.org/10.1016/j.algal.2019.101588.

    Article 

    Google Scholar
     

  • Jung JH, Altpeter F. TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol Biol. 2016;92:131–42. https://doi.org/10.1007/s11103-016-0499-y.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kannan B, Jung JH, Moxley GW, Lee S, Altpeter F. TALEN-mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield. Plant Biotechnol J. 2018;16:856–66. https://doi.org/10.1111/pbi.12833.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eid A, Mohan C, Sanchez S, Wang D, Altpeter F. Multiallelic, targeted mutagenesis of magnesium chelatase with CRISPR/Cas9 provides a rapidly scorable phenotype in highly polyploid sugarcane. FGEED. 2021;3:654996. https://doi.org/10.3389/fgeed.2021.654996.

    Article 

    Google Scholar
     

  • Oz MT, Altpeter A, Karan R, Merotto A, Altpeter F. CRISPR/Cas9-mediated multi-allelic gene targeting in sugarcane confers herbicide tolerance. FGEED. 2021;3:673566. https://doi.org/10.3389/fgeed.2021.673566.

    Article 

    Google Scholar
     

  • Zhao Y, Karan R, Altpeter F. Error-free recombination in sugarcane mediated by only 30 nucleotides of homology and CRISPR/Cas9 induced DNA breaks or cre-recombinase. Biotechnol J. 2021;16:2000650. https://doi.org/10.1002/biot.202000650.

    Article 
    CAS 

    Google Scholar
     

  • Woodard KR, Prine GM. Dry matter accumulation of elephantgrass, energycane, and elephantmillet in a subtropical climate. Crop Sci. 1993;33(4):818–24. https://doi.org/10.2135/cropsci1993.0011183x003300040038x.

    Article 

    Google Scholar
     

  • Erickson JE, Soikaew A, Sollenberger LE, Bennett JM. Water use and water-use efficiency of three perennial bioenergy grass crops in Florida. Agriculture. 2012;2(4):325–38. https://doi.org/10.3390/agriculture2040325.

    Article 

    Google Scholar
     

  • Sigua GC, Stone KC, Bauer PJ, Szogi AA. Biomass and nitrogen use efficiency of grain sorghum with nitrogen and supplemental irrigation. Agron J. 2018;110(3):1119–27. https://doi.org/10.2134/agronj2017.09.0533

    Article 
    CAS 

    Google Scholar
     

  • Mahama GY, Prasad PV, Mengel DB, Tesso TT. Influence of nitrogen fertilizer on growth and yield of grain sorghum hybrids and inbred lines. Agron J. 2014;106(5):1623–30. https://doi.org/10.2134/agronj14.0092

    Article 

    Google Scholar
     

  • Perry J. Field evaluation of tobacco engineered for high leaf-oil accumulation. Theses and Dissertations—Plant and Soil Sciences. 2019. https://doi.org/10.13023/etd.2019.283.

  • Berbeć AK, Matyka M. Biomass characteristics and energy yields of tobacco (Nicotiana tabacum L.) cultivated in eastern Poland. Agriculture. 2020;10(11):551.

    Article 

    Google Scholar
     

  • Van Gelder K, Oliveira-Filho ER, Messina CD, Venado RE, Wilker J, Rajasekar S, Ané JM, Amthor JS, Hanson AD. Running the numbers on plant synthetic biology solutions to global problems. Plant Sci. 2023 335:111815. https://doi.org/10.1016/j.plantsci.2023.111815

    Article 
    CAS 

    Google Scholar
     

  • Mudge SR, Basnayake SWV, Moyle RL, Osabe K, Graham MW, Morgan TE, et al. Mature-stem expression of a silencing-resistant sucrose isomerase gene drives isomaltulose accumulation to high levels in sugarcane. Plant Biotechnol J. 2013;11:502–9. https://doi.org/10.1111/pbi.12038.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Li Y, Wai CM, Beuchat G, Chen L. Identification and analysis of stem-specific promoters from sugarcane and energy cane for oil accumulation in their stems. GCB Bioenergy. 2021;13:1515–27. https://doi.org/10.1111/gcbb.12872.

    Article 
    CAS 

    Google Scholar
     

  • Vanhercke T, Divi UK, El Tahchy A, Liu Q, Mitchell M, Taylor MC, et al. Step changes in leaf oil accumulation via iterative metabolic engineering. Metab Eng. 2017;39:237–46. https://doi.org/10.1016/j.ymben.2016.12.007.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Graef G, LaVallee BJ, Tenopir P, Tat M, Schweiger B, Kinney AJ, et al. A high-oleic-acid and low-palmitic-acid soybean: agronomic performance and evaluation as a feedstock for biodiesel. Plant Biotechnol J. 2009;7:411–21. https://doi.org/10.1111/j.1467-7652.2009.00408.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato N. Lipid biosynthesis in epidermal, guard and mesophyll cell protoplasts from leaves of Vicia faba L. Plant Cell Physiol. 1985;26(5):805–11. https://doi.org/10.1093/oxfordjournals.pcp.a076974.

    Article 
    CAS 

    Google Scholar
     

  • Daloso DM, Antunes WC, Pinheiro DP, Waquim JP, Araújo WL, Loureiro ME, Fernie AR, Williams TC. Tobacco guard cells fix CO 2 by both Rubisco and PEP case while sucrose acts as a substrate during light-induced stomatal opening. Plant, Cell Environ. 2015;38(11):2353–71. https://doi.org/10.1111/pce.12555.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McLachlan DH, Lan J, Geilfus CM, Dodd AN, Larson T, Baker A, Horak H, Kollist H, He Z, Graham I, Mickelbart MV. The breakdown of stored triacylglycerols is required during light-induced stomatal opening. Curr Biol. 2016;26(5):707–12. https://doi.org/10.1016/j.cub.2016.01.019.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lebedenko EN, Birikh KR, Plutalov OV, Berlin YA. Method of artificial DNA splicing by directed ligation (SDL). Nucleic Acids Res. 1991;19:6757–61. https://doi.org/10.1093/nar/19.24.6757.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szybalski W, Kim SC, Hasan N, Podhajska AJ. Class-IIS restriction enzymes—a review. Gene. 1991;100:13–26. https://doi.org/10.1016/0378-1119(91)90345-c.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gordon VS, Comstock JC, Sandhu HS, Gilbert RA, Sood S, Korndorfer P, et al. Registration of ‘UFCP 84–1047’sugarcane for use as a biofuel feedstock. J Plant Regist. 2016;10:251–7. https://doi.org/10.3198/jpr2015.03.0021crc.

    Article 

    Google Scholar
     

  • Fouad MW, Hao W, Xiong Y, Steeves C, Sandhu KS, Altpeter F. Generation of transgenic energy cane plants with integration of minimal transgene expression cassette. Curr Pharm Biotechnol. 2015;16:407–13. https://doi.org/10.2174/1389201016666150303151559.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sandhu S, Altpeter F. Co-integration, co-expression and inheritance of unlinked minimal transgene expression cassettes in an apomictic turf and forage grass (Paspalum notatum Flugge). Plant Cell Rep. 2008;27:1755–65. https://doi.org/10.1007/s00299-008-0599-5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murray MG, Thompson W. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8:4321–6. https://doi.org/10.1093/nar/8.19.4321.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iskandar HM, Simpson RS, Casu RE, Bonnett GD, Maclean DJ, Manners JM. Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol Biol Report. 2004;22:325–37. https://doi.org/10.1007/bf02772676.

    Article 
    CAS 

    Google Scholar
     

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 1999;27:297–300. https://doi.org/10.1093/nar/27.1.297.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30:325–7. https://doi.org/10.1093/nar/30.1.325.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link