Scientific Papers

Effect of genotype on individual response to the pharmacological treatment of glaucoma: a systematic review and meta-analysis | Biology Direct


  • Harasymowycz P, Birt C, Gooi P, Heckler L, Hutnik C, Jinapriya D, et al. Medical management of glaucoma in the 21st century from a Canadian perspective. J Ophthalmol. 2016;2016:6509809. https://doi.org/10.1155/2016/6509809.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas S, Hodge W, Malvankar-Mehta M. The cost-effectiveness analysis of teleglaucoma screening device. PLoS ONE. 2015;10(9):e0137913. https://doi.org/10.1371/journal.pone.0137913.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–90. https://doi.org/10.1016/j.ophtha.2014.05.013.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang N, Wang J, Li Y, Jiang B. Prevalence of primary open angle glaucoma in the last 20 years: a meta-analysis and systematic review. Sci Rep. 2021;11(1):13762. https://doi.org/10.1038/s41598-021-92971-w.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leite MT, Sakata LM, Medeiros FA. Managing glaucoma in developing countries. Arq Bras Oftalmol. 2011;74:83–4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901–11. https://doi.org/10.1001/jama.2014.3192.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mi XS, Yuan TF, So KF. The current research status of normal tension glaucoma. Clin Interv Aging. 2014;9:1563–71. https://doi.org/10.2147/cia.s67263.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition—Chapter 2: classification and terminology supported by the EGS Foundation. Br J Ophthalmol. 2017;101(5):73. https://doi.org/10.1136/bjophthalmol-2016-EGSguideline.002.

  • Gemenetzi M, Yang Y, Lotery AJ. Current concepts on primary open-angle glaucoma genetics: a contribution to disease pathophysiology and future treatment. Eye (London). 2012;26(3):355–69. https://doi.org/10.1038/eye.2011.309.

    Article 
    CAS 

    Google Scholar
     

  • Kumar A, Basavaraj MG, Gupta SK, Qamar I, Ali AM, Bajaj V, et al. Role of CYP1B1, MYOC, OPTN, and OPTC genes in adult-onset primary open-angle glaucoma: predominance of CYP1B1 mutations in Indian patients. Mol Vis. 2007;13:667–76.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma: II. The Site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99(4):635–49. https://doi.org/10.1001/archopht.1981.03930010635009.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stone EM, Fingert JH, Alward WL, Nguyen TD, Polansky JR, Sunden SL, et al. Identification of a gene that causes primary open angle glaucoma. Science. 1997;275(5300):668–70. https://doi.org/10.1126/science.275.5300.668.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thorleifsson G, Walters GB, Hewitt AW, Masson G, Helgason A, DeWan A, et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat Genet. 2010;42(10):906–9. https://doi.org/10.1038/ng.661.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakano M, Ikeda Y, Taniguchi T, Yagi T, Fuwa M, Omi N, et al. Three susceptible loci associated with primary open-angle glaucoma identified by genome-wide association study in a Japanese population. Proc Natl Acad Sci USA. 2009;106(31):12838–42. https://doi.org/10.1073/pnas.0906397106.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pasutto F, Matsumoto T, Mardin CY, Sticht H, Brandstätter JH, Michels-Rautenstrauss K, et al. Heterozygous NTF4 mutations impairing neurotrophin-4 signaling in patients with primary open-angle glaucoma. Am J Hum Genet. 2009;85(4):447–56. https://doi.org/10.1016/j.ajhg.2009.08.016.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vithana EN, Nongpiur ME, Venkataraman D, Chan SH, Mavinahalli J, Aung T. Identification of a novel mutation in the NTF4 gene that causes primary open-angle glaucoma in a Chinese population. Mol Vis. 2010;16:1640–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M, et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science. 2002;295(5557):1077–9. https://doi.org/10.1126/science.1066901.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monemi S, Spaeth G, DaSilva A, Popinchalk S, Ilitchev E, Liebmann J, et al. Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1. Hum Mol Genet. 2005;14(6):725–33. https://doi.org/10.1093/hmg/ddi068.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weinreb RN, Levin LA. Is neuroprotection a viable therapy for glaucoma? Arch Ophthalmol. 1999;117(11):1540–4. https://doi.org/10.1001/archopht.117.11.1540.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doozandeh A, Yazdani S. Neuroprotection in glaucoma. J Ophthalmic Vis Res. 2016;11(2):209–20. https://doi.org/10.4103/2008-322X.183923.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scuteri D, Rombolà L, Watanabe C, Sakurada S, Corasaniti MT, Bagetta G, et al. Impact of nutraceuticals on glaucoma: a systematic review. Prog Brain Res. 2020;257:141–54. https://doi.org/10.1016/bs.pbr.2020.07.014.

    Article 
    PubMed 

    Google Scholar
     

  • Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol (Chicago, Ill: 1960). 2002;120(10):1268–79. https://doi.org/10.1001/archopht.120.10.1268.

    Article 

    Google Scholar
     

  • Scuteri D, Bagetta G, Nucci C, Aiello F, Cesareo M, Tonin P, et al. Evidence on the neuroprotective properties of brimonidine in glaucoma. Prog Brain Res. 2020;257:155–66. https://doi.org/10.1016/bs.pbr.2020.07.008.

    Article 
    PubMed 

    Google Scholar
     

  • Toris CB, McLaughlin MA, Dworak DP, Fan S, Havens S, Zhan GL, et al. Effects of rho kinase inhibitors on intraocular pressure and aqueous humor dynamics in nonhuman primates and rabbits. J Ocul Pharmacol Ther: Off J Assoc Ocul Pharmacol Ther. 2016;32(6):355–64. https://doi.org/10.1089/jop.2015.0116.

    Article 
    CAS 

    Google Scholar
     

  • Scuteri D, Corasaniti MT, Tonin P, Nicotera P, Bagetta G. Role of CGRP pathway polymorphisms in migraine: a systematic review and impact on CGRP mAbs migraine therapy. J Headache Pain. 2021. https://doi.org/10.1186/s10194-021-01295-7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scuteri D, Adornetto A, Rombolà L, Naturale MD, De Francesco AE, Esposito S, et al. Pattern of triptans use: a retrospective prescription study in Calabria, Italy. Neural Regen Res. 2020;15(7):1340–3. https://doi.org/10.4103/1673-5374.272630.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szabó V, Borgulya G, Filkorn T, Majnik J, Bányász I, Nagy ZZ. The variant N363S of glucocorticoid receptor in steroid-induced ocular hypertension in Hungarian patients treated with photorefractive keratectomy. Mol Vis. 2007;13:659–66.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCarty CA, Burmester JK, Mukesh BN, Patchett RB, Wilke RA. Intraocular pressure response to topical beta-blockers associated with an ADRB2 single-nucleotide polymorphism. Arch Ophthalmol (Chicago, Ill: 1960). 2008;126(7):959–63. https://doi.org/10.1001/archopht.126.7.959.

    Article 
    CAS 

    Google Scholar
     

  • Yang Y, Wu K, Yuan H, Yu M. Cytochrome oxidase 2D6 gene polymorphism in primary open-angle glaucoma with various effects to ophthalmic timolol. J Ocul Pharmacol Ther: Off J Assoc Ocul Pharmacol Ther. 2009;25(2):163–71. https://doi.org/10.1089/jop.2008.0028.

    Article 
    CAS 

    Google Scholar
     

  • Nieminen T, Uusitalo H, Mäenpää J, Turjanmaa V, Rane A, Lundgren S, et al. Polymorphisms of genes CYP2D6, ADRB1 and GNAS1 in pharmacokinetics and systemic effects of ophthalmic timolol. A pilot study. Eur J Clin Pharmacol. 2005;61(11):811–9. https://doi.org/10.1007/s00228-005-0052-4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakurai M, Higashide T, Ohkubo S, Takeda H, Sugiyama K. Association between genetic polymorphisms of the prostaglandin F2α receptor gene, and response to latanoprost in patients with glaucoma and ocular hypertension. Br J Ophthalmol. 2014;98(4):469–73. https://doi.org/10.1136/bjophthalmol-2013-304267.

    Article 
    PubMed 

    Google Scholar
     

  • Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100. https://doi.org/10.1371/journal.pmed.1000100.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clin Res Ed). 2021;372:n71. https://doi.org/10.1136/bmj.n71.

    Article 

    Google Scholar
     

  • e LJ. The HuGENet™HuGE review handbook, Version 1.0. Ottawa: University of Ottawa. 2006.

  • Lefebvre C, Glanville J, Briscoe S, Littlewood A, Marshall C, Metzendorf MI, et al. Searching for and selecting studies. Cochrane Handbook for systematic reviews of interventions. 2019:67–107

  • McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C. PRESS peer review of electronic search strategies: 2015 guideline statement. J Clin Epidemiol. 2016;75:40–6. https://doi.org/10.1016/j.jclinepi.2016.01.021.

    Article 
    PubMed 

    Google Scholar
     

  • Ryan R, Group. CCaCR. Cochrane Consumers and Communication Review Group: data synthesis and analysis. http://cccrg.cochrane.org. Accessed 13 Mar 2019.

  • Thakkinstian A, McKay GJ, McEvoy M, Chakravarthy U, Chakrabarti S, Silvestri G, et al. Systematic review and meta-analysis of the association between complement component 3 and age-related macular degeneration: a HuGE review and meta-analysis. Am J Epidemiol. 2011;173(12):1365–79. https://doi.org/10.1093/aje/kwr025.

    Article 
    PubMed 

    Google Scholar
     

  • McGuinness LA, Higgins JPT. Risk-of-bias VISualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods. 2020. https://doi.org/10.1002/jrsm.1411.

    Article 
    PubMed 

    Google Scholar
     

  • DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials. 2007;28(2):105–14. https://doi.org/10.1016/j.cct.2006.04.004.

    Article 
    PubMed 

    Google Scholar
     

  • Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58. https://doi.org/10.1002/sim.1186.

    Article 
    PubMed 

    Google Scholar
     

  • Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629. https://doi.org/10.1136/bmj.315.7109.629.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campos-Mollo E, Sánchez-Sánchez F, López-Garrido MP, López-Sánchez E, López-Martínez F, Escribano J. MYOC gene mutations in Spanish patients with autosomal dominant primary open-angle glaucoma: a founder effect in southeast Spain. Mol Vis. 2007;13:1666–73.

    CAS 
    PubMed 

    Google Scholar
     

  • Lei L, Li S, Liu X, Zhang C. The clinical feature of myocilin Y437H mutation in a Chinese family with primary open-angle glaucoma. Br J Ophthalmol. 2019;103(10):1524–9. https://doi.org/10.1136/bjophthalmol-2018-313069.

    Article 
    PubMed 

    Google Scholar
     

  • Moshetova LK, Soshina MM, Turkina KI, Grishina EA, Sozaeva ZA, Kachanova AA, et al. Effect of CYP2D6*4, CYP2D6*10 polymorphisms on the safety of treatment with timolol maleate in patients with glaucoma. Drug Metab Personal Ther. 2023;38(2):143–8. https://doi.org/10.1515/dmpt-2022-0117.

    Article 
    CAS 

    Google Scholar
     

  • Kirilenko MY, Tikunova EV, Sirotina SS, Polonikov AV, Bushueva OY, Churnosov MI. Studying the association between genetic polymorphism of growth factors and the development of primary open-angle glaucoma. Vestn Oftalmol. 2017;133(3):9–15. https://doi.org/10.17116/oftalma201713339-15.

    Article 
    PubMed 

    Google Scholar
     

  • Pleet A, Sulewski M, Salowe RJ, Fertig R, Salinas J, Rhodes A, et al. Risk factors associated with progression to blindness from primary open-angle glaucoma in an African-American population. Ophthalmic Epidemiol. 2016;23(4):248–56. https://doi.org/10.1080/09286586.2016.1193207.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qassim A, Souzeau E, Siggs OM, Hassall MM, Han X, Griffiths HL, et al. An intraocular pressure polygenic risk score stratifies multiple primary open-angle glaucoma parameters including treatment intensity. Ophthalmology. 2020;127(7):901–7. https://doi.org/10.1016/j.ophtha.2019.12.025.

    Article 
    PubMed 

    Google Scholar
     

  • Wei YT, Li YQ, Bai YJ, Wang M, Chen JH, Ge J, et al. Pro370Leu myocilin mutation in a Chinese pedigree with juvenile-onset open angle glaucoma. Mol Vis. 2011;17:1449–56.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zebardast N, Sekimitsu S, Wang J, Elze T, Gharahkhani P, Cole BS, et al. Characteristics of p.Gln368Ter myocilin variant and influence of polygenic risk on glaucoma penetrance in the UK biobank. Ophthalmology. 2021;128(9):1300–11. https://doi.org/10.1016/j.ophtha.2021.03.007.

    Article 
    PubMed 

    Google Scholar
     

  • Salminen L, Lindberg R, Toivari HR, Huupponen R, Kaila T, Iisalo E. Prevalence of debrisoquine oxidation phenotypes in glaucoma patients. Int Ophthalmol. 1989;13(1–2):91–3. https://doi.org/10.1007/bf02028645.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hedman K, Larsson LI. The effect of latanoprost compared with timolol in African-American, Asian, Caucasian, and Mexican open-angle glaucoma or ocular hypertensive patients. Surv Ophthalmol. 2002;47(Suppl 1):S77-89. https://doi.org/10.1016/s0039-6257(02)00310-7.

    Article 
    PubMed 

    Google Scholar
     

  • Netland PA, Landry T, Sullivan EK, Andrew R, Silver L, Weiner A, et al. Travoprost compared with latanoprost and timolol in patients with open-angle glaucoma or ocular hypertension. Am J Ophthalmol. 2001;132(4):472–84. https://doi.org/10.1016/s0002-9394(01)01177-1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Canut MI, Villa O, Kudsieh B, Mattlin H, Banchs I, González JR, et al. MLIP genotype as a predictor of pharmacological response in primary open-angle glaucoma and ocular hypertension. Sci Rep. 2021;11(1):1583. https://doi.org/10.1038/s41598-020-80954-2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang P, Jiang B, Xie L, Huang W. PTGFR and SLCO2A1 gene polymorphisms determine intraocular pressure response to latanoprost in Han Chinese patients with glaucoma. Curr Eye Res. 2016;41(12):1561–5. https://doi.org/10.3109/02713683.2016.1143013.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCarty CA, Berg R, Patchett R, Wilke RA, Burmester JK. Lack of association between polymorphisms in the prostaglandin F2α receptor and solute carrier organic anion transporter family 2A1 genes and intraocular pressure response to prostaglandin analogs. Ophthalmic Genet. 2012;33(2):74–6. https://doi.org/10.3109/13816810.2011.628357.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Opazo-Toro V, Fortuna V, Jiménez W, Pazos López M, Royo MJM, Ventura-Abreu N, et al. Genotype and phenotype influence the personal response to prostaglandin analogues and beta-blockers in Spanish glaucoma and ocular hypertension patients. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24032093.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colomb E, Nguyen TD, Bechetoille A, Dascotte JC, Valtot F, Brezin AP, et al. Association of a single nucleotide polymorphism in the TIGR/MYOCILIN gene promoter with the severity of primary open-angle glaucoma. Clin Genet. 2001;60(3):220–5. https://doi.org/10.1034/j.1399-0004.2001.600308.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui XJ, Zhao AG, Wang XL. Correlations of AFAP1, GMDS and PTGFR gene polymorphisms with intra-ocular pressure response to latanoprost in patients with primary open-angle glaucoma. J Clin Pharm Ther. 2017;42(1):87–92. https://doi.org/10.1111/jcpt.12468.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao LC, Wang D, Liu FQ, Huang ZY, Huang HG, Wang GH, et al. Influence of PTGS1, PTGFR, and MRP4 genetic variants on intraocular pressure response to latanoprost in Chinese primary open-angle glaucoma patients. Eur J Clin Pharmacol. 2015;71(1):43–50. https://doi.org/10.1007/s00228-014-1769-8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu XL, Jia QJ, Wang LN, Liu ZM, Liu H, Duan XC, et al. Roles of CYP2C19 gene polymorphisms in susceptibility to POAG and individual differences in drug treatment response. Med Sci Monit: Int Med J Exp Clin Res. 2016;22:310–5. https://doi.org/10.12659/msm.894868.

    Article 
    CAS 

    Google Scholar
     

  • Liu H, Yang ZK, Li Y, Zhang WJ, Wang YT, Duan XC. ABCB1 variants confer susceptibility to primary open-angle glaucoma and predict individual differences to latanoprost treatment. Biomed Pharmacother = Biomed Pharmacother. 2016;80:115–20. https://doi.org/10.1016/j.biopha.2016.02.028.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ussa F, Fernandez I, Brion M, Carracedo A, Blazquez F, Garcia MT, et al. Association between SNPs of metalloproteinases and prostaglandin F2α receptor genes and latanoprost response in open-angle glaucoma. Ophthalmology. 2015;122(5):1040-8.e4. https://doi.org/10.1016/j.ophtha.2014.12.038.

    Article 
    PubMed 

    Google Scholar
     

  • Yuan H, Yu M, Yang Y, Wu K, Lin X, Li J. Association of CYP2D6 single-nucleotide polymorphism with response to ophthalmic timolol in primary open-angle glaucoma—a pilot study. J Ocul Pharmacol Ther: Off J Assoc Ocul Pharmacol Ther. 2010;26(5):497–501. https://doi.org/10.1089/jop.2010.0013.

    Article 
    CAS 

    Google Scholar
     

  • Haddaway NR, Page MJ, Pritchard CC, McGuinness LA. PRISMA2020: an R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst Rev. 2022;18(2):e1230. https://doi.org/10.1002/cl2.1230.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Attia J, Thakkinstian A, D’Este C. Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. J Clin Epidemiol. 2003;56(4):297–303. https://doi.org/10.1016/s0895-4356(03)00011-8.

    Article 
    PubMed 

    Google Scholar
     

  • Thakkinstian A, McEvoy M, Minelli C, Gibson P, Hancox B, Duffy D, et al. Systematic review and meta-analysis of the association between {beta}2-adrenoceptor polymorphisms and asthma: a HuGE review. Am J Epidemiol. 2005;162(3):201–11. https://doi.org/10.1093/aje/kwi184.

    Article 
    PubMed 

    Google Scholar
     

  • Ioannidis JP, Boffetta P, Little J, O’Brien TR, Uitterlinden AG, Vineis P, et al. Assessment of cumulative evidence on genetic associations: interim guidelines. Int J Epidemiol. 2008;37(1):120–32. https://doi.org/10.1093/ije/dym159.

    Article 
    PubMed 

    Google Scholar
     

  • McGuinness LA, Higgins JPT. Risk-of-bias VISualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods. 2021;12(1):55–61. https://doi.org/10.1002/jrsm.1411.

    Article 
    PubMed 

    Google Scholar
     

  • Sterne JAC, Harbord RM. Funnel plots in meta-analysis. Stand Genomic Sci. 2004;4(2):127–41. https://doi.org/10.1177/1536867×0400400204.

    Article 

    Google Scholar
     

  • Libby RT, Anderson MG, Pang IH, Robinson ZH, Savinova OV, Cosma IM, et al. Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. Vis Neurosci. 2005;22(5):637–48. https://doi.org/10.1017/s0952523805225130.

    Article 
    PubMed 

    Google Scholar
     

  • Jakobs TC, Libby RT, Ben Y, John SW, Masland RH. Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J Cell Biol. 2005;171(2):313–25. https://doi.org/10.1083/jcb.200506099.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choquet H, Paylakhi S, Kneeland SC, Thai KK, Hoffmann TJ, Yin J, et al. A multiethnic genome-wide association study of primary open-angle glaucoma identifies novel risk loci. Nat Commun. 2018;9(1):2278. https://doi.org/10.1038/s41467-018-04555-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senatorov V, Malyukova I, Fariss R, Wawrousek EF, Swaminathan S, Sharan SK, et al. Expression of mutated mouse myocilin induces open-angle glaucoma in transgenic mice. J Neurosci: Off J Soc Neurosci. 2006;26(46):11903–14. https://doi.org/10.1523/jneurosci.3020-06.2006.

    Article 
    CAS 

    Google Scholar
     

  • Zhou Y, Grinchuk O, Tomarev SI. Transgenic mice expressing the Tyr437His mutant of human myocilin protein develop glaucoma. Invest Ophthalmol Vis Sci. 2008;49(5):1932–9. https://doi.org/10.1167/iovs.07-1339.

    Article 
    PubMed 

    Google Scholar
     

  • Mabuchi F, Mabuchi N, Sakurada Y, Yoneyama S, Kashiwagi K, Yamagata Z, et al. Genetic variants associated with glaucomatous visual field loss in primary open-angle glaucoma. Sci Rep. 2022;12(1):20744. https://doi.org/10.1038/s41598-022-24915-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tribble JR, Hui F, Quintero H, El Hajji S, Bell K, Di Polo A, et al. Neuroprotection in glaucoma: mechanisms beyond intraocular pressure lowering. Mol Aspects Med. 2023;92:101193. https://doi.org/10.1016/j.mam.2023.101193.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link